structure and quickstart
This commit is contained in:
		
							
								
								
									
										43
									
								
								README.md
									
									
									
									
									
								
							
							
						
						
									
										43
									
								
								README.md
									
									
									
									
									
								
							@@ -1,2 +1,43 @@
 | 
				
			|||||||
# gpu-jupyter
 | 
					# gpu-jupyter
 | 
				
			||||||
Leverage the power of Jupyter through your NVIDEA GPU and use Tensorflow and Pytorch in collaborative notebooks. 
 | 
					#### Leverage the power of Jupyter and use your NVIDEA GPU and use Tensorflow and Pytorch in collaborative notebooks. 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					## Contents
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					1. [Requirements](#requirements)
 | 
				
			||||||
 | 
					2. [Quickstart](#quickstart)
 | 
				
			||||||
 | 
					3. [Deployment](#deployment-in-the-docker-swarm)
 | 
				
			||||||
 | 
					3. [Configuration](#configuration)
 | 
				
			||||||
 | 
					4. [Trouble-Shooting](#trouble-shooting)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					## Requirements
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					1.  Install [Docker](https://www.docker.com/community-edition#/download) version **1.10.0+**
 | 
				
			||||||
 | 
					2.  Install [Docker Compose](https://docs.docker.com/compose/install/) version **1.6.0+**
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					3.  Get access to use your GPU via the CUDA drivers, see this [blog-post](https://medium.com/@christoph.schranz)
 | 
				
			||||||
 | 
					4.  Clone this repository
 | 
				
			||||||
 | 
					    ```bash
 | 
				
			||||||
 | 
					    git clone https://github.com/iot-salzburg/gpu-jupyter.git
 | 
				
			||||||
 | 
					    cd gpu-jupyter
 | 
				
			||||||
 | 
					    ```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					## Quickstart
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					As soon as you have access to your GPU locally (it can be tested via a Tensorflow or PyTorch), you can run these commands to start the jupyter notebook via docker-compose:
 | 
				
			||||||
 | 
					  ```bash
 | 
				
			||||||
 | 
					  ./start-local.sh
 | 
				
			||||||
 | 
					  ```
 | 
				
			||||||
 | 
					  
 | 
				
			||||||
 | 
					This will run jupyter on the default port [localhost:8888](localhost:8888). The general usage is:
 | 
				
			||||||
 | 
					  ```bash
 | 
				
			||||||
 | 
					  ./start-local.sh -p [port]  # port must be an integer with 4 or more digits.
 | 
				
			||||||
 | 
					  ```
 | 
				
			||||||
 | 
					In order to stop the local deployment, run:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  ```bash
 | 
				
			||||||
 | 
					  ./stop-local.sh
 | 
				
			||||||
 | 
					  ```
 | 
				
			||||||
 | 
					 
 | 
				
			||||||
 | 
					  
 | 
				
			||||||
 
 | 
				
			|||||||
		Reference in New Issue
	
	Block a user