updated to non-docker-compose build and run
This commit is contained in:
parent
ffe73f572f
commit
708643b60c
@ -5,6 +5,7 @@
|
||||
FROM nvidia/cuda:10.1-base-ubuntu18.04
|
||||
LABEL maintainer="Christoph Schranz <christoph.schranz@salzburgresearch.at>"
|
||||
# This is a concatenated Dockerfile, the maintainers of subsequent sections may vary.
|
||||
RUN chmod 1777 /tmp && chmod 1777 /var/tmp
|
||||
|
||||
############################################################################
|
||||
#################### Dependency: jupyter/base-image ########################
|
||||
|
26
README.md
26
README.md
@ -29,7 +29,7 @@ The image of this repository is available on [Dockerhub](https://hub.docker.com/
|
||||
The CUDA toolkit is not required on the host system, as it will be deployed
|
||||
in [NVIDIA-docker](https://github.com/NVIDIA/nvidia-docker).
|
||||
You can be sure that you can access your GPU within Docker,
|
||||
if the command `docker run --runtime nvidia nvidia/cuda:10.1-base-ubuntu18.04 nvidia-smi`
|
||||
if the command `docker run --gpus all nvidia/cuda:10.1-base-ubuntu18.04 nvidia-smi`
|
||||
returns a result similar to this one:
|
||||
```bash
|
||||
Mon Jun 22 09:06:28 2020
|
||||
@ -58,19 +58,31 @@ The image of this repository is available on [Dockerhub](https://hub.docker.com/
|
||||
|
||||
## Quickstart
|
||||
|
||||
First of all, it is necessary to generate the `Dockerfile` based on the
|
||||
First of all, it is necessary to generate the `Dockerfile` based on the NIVIDA base image and the
|
||||
[docker-stacks](https://github.com/jupyter/docker-stacks).
|
||||
As soon as you have access to your GPU within Docker containers
|
||||
(make sure the command `docker run --runtime nvidia nvidia/cuda:10.1-base-ubuntu18.04 nvidia-smi` shows your
|
||||
GPU statistics), you can generate a Dockerfile and build it via docker-compose.
|
||||
The two commands will start *GPU-Jupyter* on [localhost:8848](http://localhost:8848) with the default
|
||||
(make sure the command `docker run --gpus all nvidia/cuda:10.1-base-ubuntu18.04 nvidia-smi` shows your
|
||||
GPU statistics), you can generate a Dockerfile, build and run it.
|
||||
The following commands will start *GPU-Jupyter* on [localhost:8848](http://localhost:8848) with the default
|
||||
password `asdf`.
|
||||
|
||||
```bash
|
||||
./generate-Dockerfile.sh
|
||||
./start-local.sh -p 8848 # where -p stands for the port, default 8888
|
||||
./generate_Dockerfile.sh
|
||||
docker build -t gpu-jupyter .build/ # will take a while
|
||||
docker run -d -p [port]:8888 gpu-jupyter # starts gpu-jupyter WITHOUT GPU support
|
||||
```
|
||||
|
||||
To run the container with GPU support, a local data volume and , run:
|
||||
```bash
|
||||
docker run -d -it --rm --gpus all -p [JUPYTER_PORT]:8888 -v ./data:/home/jovyan/work -e GRANT_SUDO="yes" -e JUPYTER_ENABLE_LAB="yes" gpu-jupyter
|
||||
```
|
||||
|
||||
Or on windows:
|
||||
```bash
|
||||
docker run -d -it --rm --gpus all -p [JUPYTER_PORT]:8888 -v /${PWD}/data:/home/jovyan/work -e GRANT_SUDO="yes" -e JUPYTER_ENABLE_LAB="yes" gpu-jupyter
|
||||
```
|
||||
|
||||
|
||||
## Parameter
|
||||
|
||||
The script `generate-Dockerfile.sh` has multiple parameters:
|
||||
|
Loading…
Reference in New Issue
Block a user