updated to non-docker-compose build and run
This commit is contained in:
		@@ -5,6 +5,7 @@
 | 
			
		||||
FROM nvidia/cuda:10.1-base-ubuntu18.04
 | 
			
		||||
LABEL maintainer="Christoph Schranz <christoph.schranz@salzburgresearch.at>"
 | 
			
		||||
# This is a concatenated Dockerfile, the maintainers of subsequent sections may vary.
 | 
			
		||||
RUN chmod 1777 /tmp && chmod 1777 /var/tmp
 | 
			
		||||
 | 
			
		||||
############################################################################
 | 
			
		||||
#################### Dependency: jupyter/base-image ########################
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										26
									
								
								README.md
									
									
									
									
									
								
							
							
						
						
									
										26
									
								
								README.md
									
									
									
									
									
								
							@@ -29,7 +29,7 @@ The image of this repository is available on [Dockerhub](https://hub.docker.com/
 | 
			
		||||
    The CUDA toolkit is not required on the host system, as it will be deployed 
 | 
			
		||||
    in [NVIDIA-docker](https://github.com/NVIDIA/nvidia-docker). 
 | 
			
		||||
    You can be sure that you can access your GPU within Docker, 
 | 
			
		||||
    if the command `docker run --runtime nvidia nvidia/cuda:10.1-base-ubuntu18.04 nvidia-smi`
 | 
			
		||||
    if the command `docker run --gpus all nvidia/cuda:10.1-base-ubuntu18.04 nvidia-smi`
 | 
			
		||||
    returns a result similar to this one:
 | 
			
		||||
    ```bash
 | 
			
		||||
    Mon Jun 22 09:06:28 2020       
 | 
			
		||||
@@ -58,19 +58,31 @@ The image of this repository is available on [Dockerhub](https://hub.docker.com/
 | 
			
		||||
 | 
			
		||||
## Quickstart
 | 
			
		||||
 | 
			
		||||
First of all, it is necessary to generate the `Dockerfile` based on the
 | 
			
		||||
First of all, it is necessary to generate the `Dockerfile` based on the NIVIDA base image and the 
 | 
			
		||||
[docker-stacks](https://github.com/jupyter/docker-stacks).
 | 
			
		||||
As soon as you have access to your GPU within Docker containers 
 | 
			
		||||
(make sure the command `docker run --runtime nvidia nvidia/cuda:10.1-base-ubuntu18.04 nvidia-smi` shows your
 | 
			
		||||
GPU statistics), you can generate a Dockerfile and build it via docker-compose.
 | 
			
		||||
The two commands will start *GPU-Jupyter* on [localhost:8848](http://localhost:8848) with the default 
 | 
			
		||||
(make sure the command `docker run --gpus all nvidia/cuda:10.1-base-ubuntu18.04 nvidia-smi` shows your
 | 
			
		||||
GPU statistics), you can generate a Dockerfile, build and run it.
 | 
			
		||||
The following commands will start *GPU-Jupyter* on [localhost:8848](http://localhost:8848) with the default 
 | 
			
		||||
password `asdf`.
 | 
			
		||||
 | 
			
		||||
  ```bash
 | 
			
		||||
  ./generate-Dockerfile.sh
 | 
			
		||||
  ./start-local.sh -p 8848  # where -p stands for the port, default 8888
 | 
			
		||||
  ./generate_Dockerfile.sh
 | 
			
		||||
  docker build -t gpu-jupyter .build/  # will take a while
 | 
			
		||||
  docker run -d -p [port]:8888 gpu-jupyter  # starts gpu-jupyter WITHOUT GPU support
 | 
			
		||||
  ``` 
 | 
			
		||||
 | 
			
		||||
To run the container with GPU support, a local data volume and , run:
 | 
			
		||||
  ```bash
 | 
			
		||||
docker run -d -it --rm --gpus all -p [JUPYTER_PORT]:8888 -v ./data:/home/jovyan/work -e GRANT_SUDO="yes" -e JUPYTER_ENABLE_LAB="yes" gpu-jupyter
 | 
			
		||||
  ``` 
 | 
			
		||||
  
 | 
			
		||||
Or on windows:
 | 
			
		||||
  ```bash
 | 
			
		||||
docker run -d -it --rm --gpus all -p [JUPYTER_PORT]:8888 -v /${PWD}/data:/home/jovyan/work -e GRANT_SUDO="yes" -e JUPYTER_ENABLE_LAB="yes" gpu-jupyter
 | 
			
		||||
  ``` 
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
## Parameter
 | 
			
		||||
 | 
			
		||||
The script `generate-Dockerfile.sh` has multiple parameters:
 | 
			
		||||
 
 | 
			
		||||
		Reference in New Issue
	
	Block a user