update docker-stacks, torchviz, dockerhub-image description
This commit is contained in:
parent
49d0c6f49d
commit
c250aea2fe
@ -2,7 +2,7 @@
|
||||
|
||||
# **Please do not change this file directly!**
|
||||
# To adapt this Dockerfile, adapt 'generate-Dockerfile.sh' or 'src/Dockerfile.usefulpackages'.
|
||||
# More information can be found in the documentation.
|
||||
# More information can be found in the README under configuration.
|
||||
|
||||
|
||||
# Use NVIDIA CUDA as base image and run the same installation as in the other packages.
|
||||
@ -22,7 +22,8 @@ RUN chmod 1777 /tmp && chmod 1777 /var/tmp
|
||||
# Ubuntu 20.04 (focal)
|
||||
# https://hub.docker.com/_/ubuntu/?tab=tags&name=focal
|
||||
# OS/ARCH: linux/amd64
|
||||
ARG ROOT_CONTAINER=ubuntu:focal-20200423@sha256:238e696992ba9913d24cfc3727034985abd136e08ee3067982401acdc30cbf3f
|
||||
ARG ROOT_CONTAINER=ubuntu:focal-20201106@sha256:4e4bc990609ed865e07afc8427c30ffdddca5153fd4e82c20d8f0783a291e241
|
||||
|
||||
|
||||
LABEL maintainer="Jupyter Project <jupyter@googlegroups.com>"
|
||||
ARG NB_USER="jovyan"
|
||||
@ -34,13 +35,33 @@ SHELL ["/bin/bash", "-o", "pipefail", "-c"]
|
||||
|
||||
USER root
|
||||
|
||||
# ---- Miniforge installer ----
|
||||
# Default values can be overridden at build time
|
||||
# (ARGS are in lower case to distinguish them from ENV)
|
||||
# Check https://github.com/conda-forge/miniforge/releases
|
||||
# Conda version
|
||||
ARG conda_version="4.9.2"
|
||||
# Miniforge installer patch version
|
||||
ARG miniforge_patch_number="0"
|
||||
# Miniforge installer architecture
|
||||
ARG miniforge_arch="x86_64"
|
||||
# Python implementation to use
|
||||
# can be either Miniforge3 to use Python or Miniforge-pypy3 to use PyPy
|
||||
ARG miniforge_python="Miniforge3"
|
||||
|
||||
# Miniforge archive to install
|
||||
ARG miniforge_version="${conda_version}-${miniforge_patch_number}"
|
||||
# Miniforge installer
|
||||
ARG miniforge_installer="${miniforge_python}-${miniforge_version}-Linux-${miniforge_arch}.sh"
|
||||
# Miniforge checksum
|
||||
ARG miniforge_checksum="6321775eb2c02d7f51d3a9004ce0be839099f126f4099c781531428536669560"
|
||||
|
||||
# Install all OS dependencies for notebook server that starts but lacks all
|
||||
# features (e.g., download as all possible file formats)
|
||||
ENV DEBIAN_FRONTEND noninteractive
|
||||
RUN apt-get update \
|
||||
&& apt-get install -yq --no-install-recommends \
|
||||
wget \
|
||||
bzip2 \
|
||||
ca-certificates \
|
||||
sudo \
|
||||
locales \
|
||||
@ -61,16 +82,21 @@ ENV CONDA_DIR=/opt/conda \
|
||||
LANG=en_US.UTF-8 \
|
||||
LANGUAGE=en_US.UTF-8
|
||||
ENV PATH=$CONDA_DIR/bin:$PATH \
|
||||
HOME=/home/$NB_USER
|
||||
HOME=/home/$NB_USER \
|
||||
CONDA_VERSION="${conda_version}" \
|
||||
MINIFORGE_VERSION="${miniforge_version}"
|
||||
|
||||
# Copy a script that we will use to correct permissions after running certain commands
|
||||
COPY fix-permissions /usr/local/bin/fix-permissions
|
||||
RUN chmod a+rx /usr/local/bin/fix-permissions
|
||||
|
||||
# Enable prompt color in the skeleton .bashrc before creating the default NB_USER
|
||||
RUN sed -i 's/^#force_color_prompt=yes/force_color_prompt=yes/' /etc/skel/.bashrc
|
||||
# hadolint ignore=SC2016
|
||||
RUN sed -i 's/^#force_color_prompt=yes/force_color_prompt=yes/' /etc/skel/.bashrc && \
|
||||
# Add call to conda init script see https://stackoverflow.com/a/58081608/4413446
|
||||
echo 'eval "$(command conda shell.bash hook 2> /dev/null)"' >> /etc/skel/.bashrc
|
||||
|
||||
# Create NB_USER wtih name jovyan user with UID=1000 and in the 'users' group
|
||||
# Create NB_USER with name jovyan user with UID=1000 and in the 'users' group
|
||||
# and make sure these dirs are writable by the `users` group.
|
||||
RUN echo "auth requisite pam_deny.so" >> /etc/pam.d/su && \
|
||||
sed -i.bak -e 's/^%admin/#%admin/' /etc/sudoers && \
|
||||
@ -83,42 +109,34 @@ RUN echo "auth requisite pam_deny.so" >> /etc/pam.d/su && \
|
||||
fix-permissions $CONDA_DIR
|
||||
|
||||
USER $NB_UID
|
||||
WORKDIR $HOME
|
||||
ARG PYTHON_VERSION=default
|
||||
|
||||
# Setup work directory for backward-compatibility
|
||||
RUN mkdir /home/$NB_USER/work && \
|
||||
fix-permissions /home/$NB_USER
|
||||
|
||||
# Install conda as jovyan and check the md5 sum provided on the download site
|
||||
ENV MINICONDA_VERSION=4.8.2 \
|
||||
MINICONDA_MD5=87e77f097f6ebb5127c77662dfc3165e \
|
||||
CONDA_VERSION=4.8.2
|
||||
RUN mkdir "/home/$NB_USER/work" && \
|
||||
fix-permissions "/home/$NB_USER"
|
||||
|
||||
# Install conda as jovyan and check the sha256 sum provided on the download site
|
||||
WORKDIR /tmp
|
||||
RUN wget --quiet https://repo.continuum.io/miniconda/Miniconda3-py37_${MINICONDA_VERSION}-Linux-x86_64.sh && \
|
||||
echo "${MINICONDA_MD5} *Miniconda3-py37_${MINICONDA_VERSION}-Linux-x86_64.sh" | md5sum -c - && \
|
||||
/bin/bash Miniconda3-py37_${MINICONDA_VERSION}-Linux-x86_64.sh -f -b -p $CONDA_DIR && \
|
||||
rm Miniconda3-py37_${MINICONDA_VERSION}-Linux-x86_64.sh && \
|
||||
|
||||
# Prerequisites installation: conda, pip, tini
|
||||
RUN wget --quiet "https://github.com/conda-forge/miniforge/releases/download/${miniforge_version}/${miniforge_installer}" && \
|
||||
echo "${miniforge_checksum} *${miniforge_installer}" | sha256sum --check && \
|
||||
/bin/bash "${miniforge_installer}" -f -b -p $CONDA_DIR && \
|
||||
rm "${miniforge_installer}" && \
|
||||
# Conda configuration see https://conda.io/projects/conda/en/latest/configuration.html
|
||||
echo "conda ${CONDA_VERSION}" >> $CONDA_DIR/conda-meta/pinned && \
|
||||
conda config --system --prepend channels conda-forge && \
|
||||
conda config --system --set auto_update_conda false && \
|
||||
conda config --system --set show_channel_urls true && \
|
||||
conda config --system --set channel_priority strict && \
|
||||
if [ ! $PYTHON_VERSION = 'default' ]; then conda install --yes python=$PYTHON_VERSION; fi && \
|
||||
conda list python | grep '^python ' | tr -s ' ' | cut -d '.' -f 1,2 | sed 's/$/.*/' >> $CONDA_DIR/conda-meta/pinned && \
|
||||
conda install --quiet --yes conda && \
|
||||
conda install --quiet --yes pip && \
|
||||
conda install --quiet --yes \
|
||||
"conda=${CONDA_VERSION}" \
|
||||
'pip' \
|
||||
'tini=0.18.0' && \
|
||||
conda update --all --quiet --yes && \
|
||||
conda clean --all -f -y && \
|
||||
rm -rf /home/$NB_USER/.cache/yarn && \
|
||||
fix-permissions $CONDA_DIR && \
|
||||
fix-permissions /home/$NB_USER
|
||||
|
||||
# Install Tini
|
||||
RUN conda install --quiet --yes 'tini=0.18.0' && \
|
||||
conda list tini | grep tini | tr -s ' ' | cut -d ' ' -f 1,2 >> $CONDA_DIR/conda-meta/pinned && \
|
||||
conda clean --all -f -y && \
|
||||
rm -rf /home/$NB_USER/.cache/yarn && \
|
||||
fix-permissions $CONDA_DIR && \
|
||||
fix-permissions /home/$NB_USER
|
||||
|
||||
@ -129,9 +147,9 @@ RUN conda install --quiet --yes 'tini=0.18.0' && \
|
||||
# Do all this in a single RUN command to avoid duplicating all of the
|
||||
# files across image layers when the permissions change
|
||||
RUN conda install --quiet --yes \
|
||||
'notebook=6.0.3' \
|
||||
'jupyterhub=1.1.0' \
|
||||
'jupyterlab=2.1.3' && \
|
||||
'notebook=6.1.6' \
|
||||
'jupyterhub=1.3.0' \
|
||||
'jupyterlab=2.2.9' && \
|
||||
conda clean --all -f -y && \
|
||||
npm cache clean --force && \
|
||||
jupyter notebook --generate-config && \
|
||||
@ -148,10 +166,16 @@ CMD ["start-notebook.sh"]
|
||||
|
||||
# Copy local files as late as possible to avoid cache busting
|
||||
COPY start.sh start-notebook.sh start-singleuser.sh /usr/local/bin/
|
||||
# Currently need to have both jupyter_notebook_config and jupyter_server_config to support classic and lab
|
||||
COPY jupyter_notebook_config.py /etc/jupyter/
|
||||
|
||||
# Fix permissions on /etc/jupyter as root
|
||||
USER root
|
||||
|
||||
# Prepare upgrade to JupyterLab V3.0 #1205
|
||||
RUN sed -re "s/c.NotebookApp/c.ServerApp/g" \
|
||||
/etc/jupyter/jupyter_notebook_config.py > /etc/jupyter/jupyter_server_config.py
|
||||
|
||||
RUN fix-permissions /etc/jupyter/
|
||||
|
||||
# Switch back to jovyan to avoid accidental container runs as root
|
||||
@ -173,29 +197,27 @@ USER root
|
||||
# Install all OS dependencies for fully functional notebook server
|
||||
RUN apt-get update && apt-get install -yq --no-install-recommends \
|
||||
build-essential \
|
||||
emacs-nox \
|
||||
vim-tiny \
|
||||
git \
|
||||
inkscape \
|
||||
jed \
|
||||
libsm6 \
|
||||
libxext-dev \
|
||||
libxrender1 \
|
||||
lmodern \
|
||||
netcat \
|
||||
python-dev \
|
||||
# ---- nbconvert dependencies ----
|
||||
texlive-xetex \
|
||||
texlive-fonts-recommended \
|
||||
texlive-plain-generic \
|
||||
# Optional dependency
|
||||
texlive-fonts-extra \
|
||||
# ----
|
||||
tzdata \
|
||||
unzip \
|
||||
nano \
|
||||
nano-tiny \
|
||||
&& apt-get clean && rm -rf /var/lib/apt/lists/*
|
||||
|
||||
# Create alternative for nano -> nano-tiny
|
||||
RUN update-alternatives --install /usr/bin/nano nano /bin/nano-tiny 10
|
||||
|
||||
# Switch back to jovyan to avoid accidental container runs as root
|
||||
USER $NB_UID
|
||||
|
||||
@ -210,10 +232,10 @@ LABEL maintainer="Jupyter Project <jupyter@googlegroups.com>"
|
||||
|
||||
USER root
|
||||
|
||||
# ffmpeg for matplotlib anim & dvipng for latex labels
|
||||
# ffmpeg for matplotlib anim & dvipng+cm-super for latex labels
|
||||
RUN apt-get update && \
|
||||
apt-get install -y --no-install-recommends ffmpeg dvipng && \
|
||||
rm -rf /var/lib/apt/lists/*
|
||||
apt-get install -y --no-install-recommends ffmpeg dvipng cm-super && \
|
||||
apt-get clean && rm -rf /var/lib/apt/lists/*
|
||||
|
||||
USER $NB_UID
|
||||
|
||||
@ -221,31 +243,29 @@ USER $NB_UID
|
||||
RUN conda install --quiet --yes \
|
||||
'beautifulsoup4=4.9.*' \
|
||||
'conda-forge::blas=*=openblas' \
|
||||
'bokeh=2.0.*' \
|
||||
'bokeh=2.2.*' \
|
||||
'bottleneck=1.3.*' \
|
||||
'cloudpickle=1.4.*' \
|
||||
'cloudpickle=1.6.*' \
|
||||
'cython=0.29.*' \
|
||||
'dask=2.15.*' \
|
||||
'dask=2020.12.*' \
|
||||
'dill=0.3.*' \
|
||||
'h5py=2.10.*' \
|
||||
'hdf5=1.10.*' \
|
||||
'ipywidgets=7.5.*' \
|
||||
'h5py=3.1.*' \
|
||||
'ipywidgets=7.6.*' \
|
||||
'ipympl=0.5.*'\
|
||||
'matplotlib-base=3.2.*' \
|
||||
# numba update to 0.49 fails resolving deps.
|
||||
'numba=0.48.*' \
|
||||
'matplotlib-base=3.3.*' \
|
||||
'numba=0.52.*' \
|
||||
'numexpr=2.7.*' \
|
||||
'pandas=1.0.*' \
|
||||
'pandas=1.1.*' \
|
||||
'patsy=0.5.*' \
|
||||
'protobuf=3.11.*' \
|
||||
'protobuf=3.14.*' \
|
||||
'pytables=3.6.*' \
|
||||
'scikit-image=0.16.*' \
|
||||
'scikit-learn=0.22.*' \
|
||||
'scipy=1.4.*' \
|
||||
'seaborn=0.10.*' \
|
||||
'scikit-image=0.18.*' \
|
||||
'scikit-learn=0.24.*' \
|
||||
'scipy=1.5.*' \
|
||||
'seaborn=0.11.*' \
|
||||
'sqlalchemy=1.3.*' \
|
||||
'statsmodels=0.11.*' \
|
||||
'sympy=1.5.*' \
|
||||
'statsmodels=0.12.*' \
|
||||
'sympy=1.7.*' \
|
||||
'vincent=0.4.*' \
|
||||
'widgetsnbextension=3.5.*'\
|
||||
'xlrd=1.2.*' \
|
||||
@ -283,102 +303,6 @@ RUN MPLBACKEND=Agg python -c "import matplotlib.pyplot" && \
|
||||
|
||||
USER $NB_UID
|
||||
|
||||
WORKDIR $HOME
|
||||
|
||||
############################################################################
|
||||
################ Dependency: jupyter/datascience-notebook ##################
|
||||
############################################################################
|
||||
|
||||
# Copyright (c) Jupyter Development Team.
|
||||
# Distributed under the terms of the Modified BSD License.
|
||||
|
||||
LABEL maintainer="Jupyter Project <jupyter@googlegroups.com>"
|
||||
|
||||
# Set when building on Travis so that certain long-running build steps can
|
||||
# be skipped to shorten build time.
|
||||
ARG TEST_ONLY_BUILD
|
||||
|
||||
# Fix DL4006
|
||||
SHELL ["/bin/bash", "-o", "pipefail", "-c"]
|
||||
|
||||
USER root
|
||||
|
||||
# R pre-requisites
|
||||
RUN apt-get update && \
|
||||
apt-get install -y --no-install-recommends \
|
||||
fonts-dejavu \
|
||||
gfortran \
|
||||
gcc && \
|
||||
rm -rf /var/lib/apt/lists/*
|
||||
|
||||
# Julia dependencies
|
||||
# install Julia packages in /opt/julia instead of $HOME
|
||||
ENV JULIA_DEPOT_PATH=/opt/julia
|
||||
ENV JULIA_PKGDIR=/opt/julia
|
||||
ENV JULIA_VERSION=1.4.1
|
||||
|
||||
WORKDIR /tmp
|
||||
|
||||
# hadolint ignore=SC2046
|
||||
RUN mkdir "/opt/julia-${JULIA_VERSION}" && \
|
||||
wget -q https://julialang-s3.julialang.org/bin/linux/x64/$(echo "${JULIA_VERSION}" | cut -d. -f 1,2)"/julia-${JULIA_VERSION}-linux-x86_64.tar.gz" && \
|
||||
echo "fd6d8cadaed678174c3caefb92207a3b0e8da9f926af6703fb4d1e4e4f50610a *julia-${JULIA_VERSION}-linux-x86_64.tar.gz" | sha256sum -c - && \
|
||||
tar xzf "julia-${JULIA_VERSION}-linux-x86_64.tar.gz" -C "/opt/julia-${JULIA_VERSION}" --strip-components=1 && \
|
||||
rm "/tmp/julia-${JULIA_VERSION}-linux-x86_64.tar.gz"
|
||||
RUN ln -fs /opt/julia-*/bin/julia /usr/local/bin/julia
|
||||
|
||||
# Show Julia where conda libraries are \
|
||||
RUN mkdir /etc/julia && \
|
||||
echo "push!(Libdl.DL_LOAD_PATH, \"$CONDA_DIR/lib\")" >> /etc/julia/juliarc.jl && \
|
||||
# Create JULIA_PKGDIR \
|
||||
mkdir "${JULIA_PKGDIR}" && \
|
||||
chown "${NB_USER}" "${JULIA_PKGDIR}" && \
|
||||
fix-permissions "${JULIA_PKGDIR}"
|
||||
|
||||
USER $NB_UID
|
||||
|
||||
# R packages including IRKernel which gets installed globally.
|
||||
RUN conda install --quiet --yes \
|
||||
'r-base=3.6.3' \
|
||||
'r-caret=6.0*' \
|
||||
'r-crayon=1.3*' \
|
||||
'r-devtools=2.3*' \
|
||||
'r-forecast=8.12*' \
|
||||
'r-hexbin=1.28*' \
|
||||
'r-htmltools=0.4*' \
|
||||
'r-htmlwidgets=1.5*' \
|
||||
'r-irkernel=1.1*' \
|
||||
'r-nycflights13=1.0*' \
|
||||
'r-plyr=1.8*' \
|
||||
'r-randomforest=4.6*' \
|
||||
'r-rcurl=1.98*' \
|
||||
'r-reshape2=1.4*' \
|
||||
'r-rmarkdown=2.1*' \
|
||||
'r-rsqlite=2.2*' \
|
||||
'r-shiny=1.4*' \
|
||||
'r-tidyverse=1.3*' \
|
||||
'rpy2=3.1*' \
|
||||
&& \
|
||||
conda clean --all -f -y && \
|
||||
fix-permissions "${CONDA_DIR}" && \
|
||||
fix-permissions "/home/${NB_USER}"
|
||||
|
||||
# Add Julia packages. Only add HDF5 if this is not a test-only build since
|
||||
# it takes roughly half the entire build time of all of the images on Travis
|
||||
# to add this one package and often causes Travis to timeout.
|
||||
#
|
||||
# Install IJulia as jovyan and then move the kernelspec out
|
||||
# to the system share location. Avoids problems with runtime UID change not
|
||||
# taking effect properly on the .local folder in the jovyan home dir.
|
||||
RUN julia -e 'import Pkg; Pkg.update()' && \
|
||||
(test $TEST_ONLY_BUILD || julia -e 'import Pkg; Pkg.add("HDF5")') && \
|
||||
julia -e "using Pkg; pkg\"add IJulia\"; pkg\"precompile\"" && \
|
||||
# move kernelspec out of home \
|
||||
mv "${HOME}/.local/share/jupyter/kernels/julia"* "${CONDA_DIR}/share/jupyter/kernels/" && \
|
||||
chmod -R go+rx "${CONDA_DIR}/share/jupyter" && \
|
||||
rm -rf "${HOME}/.local" && \
|
||||
fix-permissions "${JULIA_PKGDIR}" "${CONDA_DIR}/share/jupyter"
|
||||
|
||||
WORKDIR $HOME
|
||||
|
||||
############################################################################
|
||||
@ -403,6 +327,8 @@ RUN conda install --quiet --yes \
|
||||
torchvision \
|
||||
cudatoolkit=10.1 -c pytorch
|
||||
# pip install torch_nightly -f https://download.pytorch.org/whl/nightly/cu90/torch_nightly.html && \
|
||||
RUN pip install --no-cache-dir torchviz
|
||||
|
||||
|
||||
# Clean installation
|
||||
RUN conda clean --all -f -y && \
|
||||
|
@ -1 +1 @@
|
||||
Subproject commit d676cdf9b4847b5a5da2d4367aed56265174a5ef
|
||||
Subproject commit 703d8b2dcb886be2fe5aa4660a48fbcef647e7aa
|
@ -25,7 +25,7 @@ for d in "$@"; do
|
||||
\) \
|
||||
-exec chgrp $NB_GID {} \; \
|
||||
-exec chmod g+rwX {} \;
|
||||
# setuid,setgid *on directories only*
|
||||
# setuid, setgid *on directories only*
|
||||
find "$d" \
|
||||
\( \
|
||||
-type d \
|
||||
|
@ -7,7 +7,7 @@ import os
|
||||
import errno
|
||||
import stat
|
||||
|
||||
c = get_config()
|
||||
c = get_config() # noqa: F821
|
||||
c.NotebookApp.ip = '0.0.0.0'
|
||||
c.NotebookApp.port = 8888
|
||||
c.NotebookApp.open_browser = False
|
||||
|
@ -47,19 +47,6 @@ if [ $(id -u) == 0 ] ; then
|
||||
usermod -d /home/$NB_USER -l $NB_USER jovyan
|
||||
fi
|
||||
|
||||
# Handle case where provisioned storage does not have the correct permissions by default
|
||||
# Ex: default NFS/EFS (no auto-uid/gid)
|
||||
if [[ "$CHOWN_HOME" == "1" || "$CHOWN_HOME" == 'yes' ]]; then
|
||||
echo "Changing ownership of /home/$NB_USER to $NB_UID:$NB_GID with options '${CHOWN_HOME_OPTS}'"
|
||||
chown $CHOWN_HOME_OPTS $NB_UID:$NB_GID /home/$NB_USER
|
||||
fi
|
||||
if [ ! -z "$CHOWN_EXTRA" ]; then
|
||||
for extra_dir in $(echo $CHOWN_EXTRA | tr ',' ' '); do
|
||||
echo "Changing ownership of ${extra_dir} to $NB_UID:$NB_GID with options '${CHOWN_EXTRA_OPTS}'"
|
||||
chown $CHOWN_EXTRA_OPTS $NB_UID:$NB_GID $extra_dir
|
||||
done
|
||||
fi
|
||||
|
||||
# handle home and working directory if the username changed
|
||||
if [[ "$NB_USER" != "jovyan" ]]; then
|
||||
# changing username, make sure homedir exists
|
||||
@ -76,11 +63,24 @@ if [ $(id -u) == 0 ] ; then
|
||||
fi
|
||||
fi
|
||||
|
||||
# Handle case where provisioned storage does not have the correct permissions by default
|
||||
# Ex: default NFS/EFS (no auto-uid/gid)
|
||||
if [[ "$CHOWN_HOME" == "1" || "$CHOWN_HOME" == 'yes' ]]; then
|
||||
echo "Changing ownership of /home/$NB_USER to $NB_UID:$NB_GID with options '${CHOWN_HOME_OPTS}'"
|
||||
chown $CHOWN_HOME_OPTS $NB_UID:$NB_GID /home/$NB_USER
|
||||
fi
|
||||
if [ ! -z "$CHOWN_EXTRA" ]; then
|
||||
for extra_dir in $(echo $CHOWN_EXTRA | tr ',' ' '); do
|
||||
echo "Changing ownership of ${extra_dir} to $NB_UID:$NB_GID with options '${CHOWN_EXTRA_OPTS}'"
|
||||
chown $CHOWN_EXTRA_OPTS $NB_UID:$NB_GID $extra_dir
|
||||
done
|
||||
fi
|
||||
|
||||
# Change UID:GID of NB_USER to NB_UID:NB_GID if it does not match
|
||||
if [ "$NB_UID" != $(id -u $NB_USER) ] || [ "$NB_GID" != $(id -g $NB_USER) ]; then
|
||||
echo "Set user $NB_USER UID:GID to: $NB_UID:$NB_GID"
|
||||
if [ "$NB_GID" != $(id -g $NB_USER) ]; then
|
||||
groupadd -g $NB_GID -o ${NB_GROUP:-${NB_USER}}
|
||||
groupadd -f -g $NB_GID -o ${NB_GROUP:-${NB_USER}}
|
||||
fi
|
||||
userdel $NB_USER
|
||||
useradd --home /home/$NB_USER -u $NB_UID -g $NB_GID -G 100 -l $NB_USER
|
||||
@ -101,7 +101,7 @@ if [ $(id -u) == 0 ] ; then
|
||||
echo "Executing the command: ${cmd[@]}"
|
||||
exec sudo -E -H -u $NB_USER PATH=$PATH XDG_CACHE_HOME=/home/$NB_USER/.cache PYTHONPATH=${PYTHONPATH:-} "${cmd[@]}"
|
||||
else
|
||||
if [[ "$NB_UID" == "$(id -u jovyan)" && "$NB_GID" == "$(id -g jovyan)" ]]; then
|
||||
if [[ "$NB_UID" == "$(id -u jovyan 2>/dev/null)" && "$NB_GID" == "$(id -g jovyan 2>/dev/null)" ]]; then
|
||||
# User is not attempting to override user/group via environment
|
||||
# variables, but they could still have overridden the uid/gid that
|
||||
# container runs as. Check that the user has an entry in the passwd
|
||||
|
100
README.md
100
README.md
@ -21,62 +21,81 @@ The image of this repository is available on [Dockerhub](https://hub.docker.com/
|
||||
|
||||
## Requirements
|
||||
|
||||
1. A NVIDIA GPU
|
||||
1. A computer with a NVIDIA GPU
|
||||
2. Install [Docker](https://www.docker.com/community-edition#/download) version **1.10.0+**
|
||||
and [Docker Compose](https://docs.docker.com/compose/install/) version **1.6.0+**.
|
||||
3. Get access to your GPU via CUDA drivers within Docker containers. Therfore, check out this
|
||||
[medium article](https://medium.com/@christoph.schranz/set-up-your-own-gpu-based-jupyterlab-e0d45fcacf43).
|
||||
The CUDA toolkit is not required on the host system, as it will be deployed
|
||||
in [NVIDIA-docker](https://github.com/NVIDIA/nvidia-docker).
|
||||
3. Get access to your GPU via CUDA drivers within Docker containers.
|
||||
You can be sure that you can access your GPU within Docker,
|
||||
if the command `docker run --gpus all nvidia/cuda:10.1-base-ubuntu18.04 nvidia-smi`
|
||||
if the command `docker run --gpus all nvidia/cuda:10.1-cudnn7-runtime-ubuntu18.04 nvidia-smi`
|
||||
returns a result similar to this one:
|
||||
```bash
|
||||
Mon Jun 22 09:06:28 2020
|
||||
Tue Jan 5 09:38:21 2021
|
||||
+-----------------------------------------------------------------------------+
|
||||
| NVIDIA-SMI 440.82 Driver Version: 440.82 CUDA Version: 10.1 |
|
||||
| NVIDIA-SMI 450.80.02 Driver Version: 450.80.02 CUDA Version: 10.1 |
|
||||
|-------------------------------+----------------------+----------------------+
|
||||
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
|
||||
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|
||||
| | | MIG M. |
|
||||
|===============================+======================+======================|
|
||||
| 0 GeForce RTX 207... Off | 00000000:01:00.0 On | N/A |
|
||||
| 0% 46C P8 9W / 215W | 424MiB / 7974MiB | 6% Default |
|
||||
| 0% 40C P8 7W / 215W | 360MiB / 7974MiB | 1% Default |
|
||||
| | | N/A |
|
||||
+-------------------------------+----------------------+----------------------+
|
||||
|
||||
+-----------------------------------------------------------------------------+
|
||||
| Processes: GPU Memory |
|
||||
| GPU PID Type Process name Usage |
|
||||
| Processes: |
|
||||
| GPU GI CI PID Type Process name GPU Memory |
|
||||
| ID ID Usage |
|
||||
|=============================================================================|
|
||||
+-----------------------------------------------------------------------------+
|
||||
```
|
||||
4. Clone the Repository or pull the image from
|
||||
[Dockerhub](https://hub.docker.com/repository/docker/cschranz/gpu-jupyter):
|
||||
If you don't get an output similar than this one, follow the installation steps in this
|
||||
[medium article](https://medium.com/@christoph.schranz/set-up-your-own-gpu-based-jupyterlab-e0d45fcacf43).
|
||||
The CUDA toolkit is not required on the host system, as it will be
|
||||
installed within the Docker containers using [NVIDIA-docker](https://github.com/NVIDIA/nvidia-docker).
|
||||
It is also important to keep your installed CUDA version in mind, when you pull images.
|
||||
**You can't run images based on `nvidia/cuda:11.1` if you have only CUDA version 10.1 installed.**
|
||||
Check your host's CUDA-version with `nvcc --version` and update to at least
|
||||
the same version you want to pull.
|
||||
|
||||
4. Pull and run the image. This can last some hours, as a whole data-science
|
||||
environment will be downloaded:
|
||||
```bash
|
||||
git clone https://github.com/iot-salzburg/gpu-jupyter.git
|
||||
cd gpu-jupyter
|
||||
cd your-working-directory
|
||||
docker run --gpus all -d -it -p 8848:8888 -v data:/home/jovyan/work -e GRANT_SUDO=yes -e JUPYTER_ENABLE_LAB=yes --user root cschranz/gpu-jupyter:v1.1_cuda-10.1_ubuntu-18.04_python-only
|
||||
```
|
||||
This starts a new instance of the GPU-Jupyter service on at [http://localhost:8848](http://localhost:8848) (port `8484`).
|
||||
The default password is `asdf` which should be changed as described [below](#set-password).
|
||||
Furthermore, data within the host's `data` directory is shared with the container.
|
||||
|
||||
## Quickstart
|
||||
Within the Jupyterlab instance, you can check if you can access your GPU by opening a new terminal window and running
|
||||
`nvidia-smi`. In terminal windows, you can also install new packages for your own projects.
|
||||
Some example code can be found in the repository under `extra/Getting_Started`.
|
||||
If you want to learn more about Jupyterlab, check out this [tutorial](https://www.youtube.com/watch?v=7wfPqAyYADY).
|
||||
|
||||
First of all, it is necessary to generate the `Dockerfile` that is based on
|
||||
|
||||
## Build a modified version
|
||||
|
||||
First, it is necessary to generate the `Dockerfile` in `.build`, that is based on
|
||||
the NIVIDA base image and the [docker-stacks](https://github.com/jupyter/docker-stacks).
|
||||
As soon as you have access to your GPU within Docker containers
|
||||
(make sure the command `docker run --gpus all nvidia/cuda:10.1-base-ubuntu18.04 nvidia-smi`
|
||||
(make sure the command `docker run --gpus all nvidia/cuda:10.1-cudnn7-runtime-ubuntu18.04 nvidia-smi`
|
||||
shows your GPU statistics), you can generate the Dockerfile, build and run it.
|
||||
The following commands will start *GPU-Jupyter* on [localhost:8848](http://localhost:8848)
|
||||
with the default password `asdf`.
|
||||
|
||||
```bash
|
||||
git clone https://github.com/iot-salzburg/gpu-jupyter.git
|
||||
cd gpu-jupyter
|
||||
# generate a Dockerfile with python and without Julia and R
|
||||
./generate-Dockerfile.sh --no-datascience-notebook
|
||||
docker build -t gpu-jupyter .build/ # will take a while
|
||||
docker run -d -p [port]:8888 gpu-jupyter # starts gpu-jupyter WITHOUT GPU support
|
||||
docker run --gpus all -d -it -p 8848:8888 -v $pwd/data:/home/jovyan/work -e GRANT_SUDO=yes -e JUPYTER_ENABLE_LAB=yes --user root --restart always --name gpu-jupyter_1 gpu-jupyter
|
||||
```
|
||||
|
||||
To run the container WITH GPU support, a local data volume and some other configurations, run:
|
||||
```bash
|
||||
docker run --gpus all -d -it -p 8848:8888 -v $(pwd)/data:/home/jovyan/work -e GRANT_SUDO=yes -e JUPYTER_ENABLE_LAB=yes --user root --restart always --name gpu-jupyter_1 gpu-jupyter
|
||||
```
|
||||
This starts a container WITH GPU support, a shared local data volume `data`
|
||||
and some other configurations like root permissions which are necessary to install packages within the container.
|
||||
For more configurations, scroll down to [Configuration of the Dockerfile-Generation](#configuration-of-the-dockerfile-generation).
|
||||
|
||||
### Start via Docker Compose
|
||||
|
||||
@ -92,14 +111,16 @@ underlying `docker-compose.yml`:
|
||||
|
||||
With these commands we can see if everything worked well:
|
||||
```bash
|
||||
bash show-local.sh # a env-var safe wrapper for 'docker-compose logs -f'
|
||||
docker ps
|
||||
docker logs [service-name]
|
||||
docker logs [service-name] # or
|
||||
bash show-local.sh # a env-var safe wrapper for 'docker-compose logs -f'
|
||||
```
|
||||
|
||||
In order to stop the local deployment, run:
|
||||
|
||||
```bash
|
||||
docker ps
|
||||
docker rm -f [service-name] # or
|
||||
./stop-local.sh
|
||||
```
|
||||
|
||||
@ -134,13 +155,16 @@ the essential `gpulibs` are installed, but not the packages within `src/Dockerfi
|
||||
|
||||
### Custom Installations
|
||||
|
||||
**As `.build/Dockerfile` is overwritten, it is suggested to append custom installations either
|
||||
Custom packages can be installed within a container, or by modifying the file
|
||||
`src/Dockerfile.usefulpackages`.
|
||||
**As `.build/Dockerfile` is overwritten each time a Dockerfile is generated,
|
||||
it is suggested to append custom installations either
|
||||
within `src/Dockerfile.usefulpackages` or in `generate-Dockerfile.sh`.**
|
||||
If you think some package is missing in the default stack, please let us know!
|
||||
If an essential package is missing in the default stack, please let us know!
|
||||
|
||||
|
||||
|
||||
### Set the Password
|
||||
### Set Password
|
||||
|
||||
Please set a new password using `src/jupyter_notebook_config.json`.
|
||||
Therefore, hash your password in the form (password)(salt) using a sha1 hash generator, e.g., the sha1 generator of [sha1-online.com](http://www.sha1-online.com/).
|
||||
@ -162,24 +186,30 @@ Then update the config file as shown below and restart the service.
|
||||
|
||||
#### Update CUDA to another version
|
||||
|
||||
Please check version compatibilities for [CUDA and Pytorch](https://pytorch.org/get-started/locally/)
|
||||
respectively [CUDA and Tensorflow](https://www.tensorflow.org/install/gpu) previously.
|
||||
To update CUDA to another version, change in `Dockerfile.header`
|
||||
The host's CUDA-version must be equal or higher than that of the
|
||||
container itself (in `Dockerfile.header`).
|
||||
Check the host's version with `nvcc --version` and the version compatibilities
|
||||
for CUDA-dependent packages as [Pytorch](https://pytorch.org/get-started/locally/)
|
||||
respectively [Tensorflow](https://www.tensorflow.org/install/gpu) previously.
|
||||
Then modify, if supported, the CUDA-version in `Dockerfile.header` to, e.g.:
|
||||
the line:
|
||||
|
||||
FROM nvidia/cuda:10.1-base-ubuntu18.04
|
||||
FROM nvidia/cuda:11.1-base-ubuntu20.04
|
||||
|
||||
and in the `Dockerfile.pytorch` the line:
|
||||
|
||||
cudatoolkit=10.1
|
||||
cudatoolkit=11.1
|
||||
|
||||
Then re-generate and re-run the image, as closer described above:
|
||||
Then re-generate, re-build and run the updated image, as closer described above:
|
||||
Note that a change in the first line of the Dockerfile will re-build the whole image.
|
||||
|
||||
```bash
|
||||
./generate-Dockerfile.sh
|
||||
./start-local.sh -p 8848
|
||||
docker build -t gpu-jupyter .build/ # will take a while
|
||||
docker run --gpus all -d -it -p 8848:8888 -v $pwd/data:/home/jovyan/work -e GRANT_SUDO=yes -e JUPYTER_ENABLE_LAB=yes --user root --restart always --name gpu-jupyter_1 gpu-jupyter
|
||||
```
|
||||
|
||||
|
||||
#### Update Docker-Stack
|
||||
|
||||
The [docker-stacks](https://github.com/jupyter/docker-stacks) are used as a
|
||||
|
@ -5,7 +5,7 @@ cd $(cd -P -- "$(dirname -- "$0")" && pwd -P)
|
||||
export DOCKERFILE=".build/Dockerfile"
|
||||
export STACKS_DIR=".build/docker-stacks"
|
||||
# please test the build of the commit in https://github.com/jupyter/docker-stacks/commits/master in advance
|
||||
export HEAD_COMMIT="04f7f60d34a674a2964d96a6cb97c57a7870a828"
|
||||
export HEAD_COMMIT="703d8b2dcb886be2fe5aa4660a48fbcef647e7aa"
|
||||
|
||||
while [[ "$#" -gt 0 ]]; do case $1 in
|
||||
-c|--commit) HEAD_COMMIT="$2"; shift;;
|
||||
|
@ -16,6 +16,8 @@ RUN conda install --quiet --yes \
|
||||
torchvision \
|
||||
cudatoolkit=10.1 -c pytorch
|
||||
# pip install torch_nightly -f https://download.pytorch.org/whl/nightly/cu90/torch_nightly.html && \
|
||||
RUN pip install --no-cache-dir torchviz
|
||||
|
||||
|
||||
# Clean installation
|
||||
RUN conda clean --all -f -y && \
|
||||
|
Loading…
Reference in New Issue
Block a user