diff --git a/.build/Dockerfile b/.build/Dockerfile index 0328c86..c007c06 100644 --- a/.build/Dockerfile +++ b/.build/Dockerfile @@ -1,6 +1,6 @@ # Use NVIDIA CUDA as base image and run the same installation as in the other packages. # The version of cudatoolkit must match those of the base image, see Dockerfile.pytorch -FROM nvidia/cuda:10.2-base-ubuntu18.04 +FROM nvidia/cuda:10.1-base-ubuntu18.04 LABEL maintainer="Jupyter Project " ############################################################################ @@ -380,7 +380,7 @@ RUN conda install --quiet --yes \ # Install PyTorch, version of cudatoolkit must match those of the base image RUN conda install -y -c pytorch \ - cudatoolkit=10.2 \ + cudatoolkit=10.1 \ 'pytorch=1.3.1' \ torchvision && \ conda clean --all -f -y && \ diff --git a/README.md b/README.md index 0c01c24..aec1668 100644 --- a/README.md +++ b/README.md @@ -75,7 +75,7 @@ In order to stop the local deployment, run: A Jupyter instance often requires data from other services. If that data-source is containerized in Docker and sharing a port for communication shouldn't be allowed, e.g., for security reasons, -then connecting the data-source with *GPU-Jupyter* within a Docker Swarm is a great option! \ +then connecting the data-source with *GPU-Jupyter* within a Docker Swarm is a great option! ### Set up Docker Swarm and Registry diff --git a/docker-compose.yml b/docker-compose.yml index 66970f7..e8f8351 100755 --- a/docker-compose.yml +++ b/docker-compose.yml @@ -1,7 +1,6 @@ version: "3.4" services: gpu-jupyter: - image: 127.0.0.1:5001/gpu-jupyter build: .build ports: - ${JUPYTER_PORT}:8888