From fb97025ac0213ee5445e09ba5151ce6f33270439 Mon Sep 17 00:00:00 2001 From: Christoph Schranz Date: Tue, 5 Jan 2021 14:07:01 +0100 Subject: [PATCH] ignore push_tag and fixed README explaination --- .gitignore | 1 + README.md | 16 +++++++++------- 2 files changed, 10 insertions(+), 7 deletions(-) diff --git a/.gitignore b/.gitignore index 56548eb..ff72562 100644 --- a/.gitignore +++ b/.gitignore @@ -116,3 +116,4 @@ venv.bak/ src/jupyter_notebook_config.json .idea /Deployment-notes.md +/push_tag.sh diff --git a/README.md b/README.md index 4b2939f..58afb55 100644 --- a/README.md +++ b/README.md @@ -11,17 +11,17 @@ The image of this repository is available on [Dockerhub](https://hub.docker.com/ ## Contents -1. [Requirements](#requirements) -2. [Quickstart](#quickstart) +1. [Quickstart](#quickstart) +2. [Build your own image](#build-your-own-image) 3. [Tracing](#tracing) 4. [Configuration](#configuration) 5. [Deployment](#deployment-in-the-docker-swarm) 6. [Issues and Contributing](#issues-and-contributing) -## Requirements +## Quickstart -1. A computer with a NVIDIA GPU +1. A computer with an NVIDIA GPU is required. 2. Install [Docker](https://www.docker.com/community-edition#/download) version **1.10.0+** and [Docker Compose](https://docs.docker.com/compose/install/) version **1.6.0+**. 3. Get access to your GPU via CUDA drivers within Docker containers. @@ -62,11 +62,13 @@ The image of this repository is available on [Dockerhub](https://hub.docker.com/ environment will be downloaded: ```bash cd your-working-directory - docker run --gpus all -d -it -p 8848:8888 -v data:/home/jovyan/work -e GRANT_SUDO=yes -e JUPYTER_ENABLE_LAB=yes --user root cschranz/gpu-jupyter:v1.1_cuda-10.1_ubuntu-18.04_python-only + docker run --gpus all -d -it -p 8848:8888 -v data:/home/jovyan/work -e GRANT_SUDO=yes -e JUPYTER_ENABLE_LAB=yes --user root cschranz/gpu-jupyter:v1.2_cuda-10.1_ubuntu-18.04_python-only ``` - This starts a new instance of the GPU-Jupyter service on at [http://localhost:8848](http://localhost:8848) (port `8484`). + This starts an instance with of *GPU-Jupyter* the tag `v1.2_cuda-10.1_ubuntu-18.04_python-only` at [http://localhost:8848](http://localhost:8848) (port `8484`). The default password is `asdf` which should be changed as described [below](#set-password). Furthermore, data within the host's `data` directory is shared with the container. + Other versions of GPU-Jupyter are available and listed on Dockerhub under [Tags](https://hub.docker.com/r/cschranz/gpu-jupyter/tags?page=1&ordering=last_updated). + Within the Jupyterlab instance, you can check if you can access your GPU by opening a new terminal window and running `nvidia-smi`. In terminal windows, you can also install new packages for your own projects. @@ -74,7 +76,7 @@ Some example code can be found in the repository under `extra/Getting_Started`. If you want to learn more about Jupyterlab, check out this [tutorial](https://www.youtube.com/watch?v=7wfPqAyYADY). -## Build a modified version +## Build your own Image First, it is necessary to generate the `Dockerfile` in `.build`, that is based on the NIVIDA base image and the [docker-stacks](https://github.com/jupyter/docker-stacks).