/** * MIT License * * Copyright (c) 2017 Tessil * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #ifndef TSL_SPARSE_MAP_H #define TSL_SPARSE_MAP_H #include #include #include #include #include #include #include "sparse_hash.h" namespace tsl { /** * Implementation of a sparse hash map using open-addressing with quadratic probing. * The goal on the hash map is to be the most memory efficient possible, even at low load factor, * while keeping reasonable performances. * * `GrowthPolicy` defines how the map grows and consequently how a hash value is mapped to a bucket. * By default the map uses `tsl::sh::power_of_two_growth_policy`. This policy keeps the number of buckets * to a power of two and uses a mask to map the hash to a bucket instead of the slow modulo. * Other growth policies are available and you may define your own growth policy, * check `tsl::sh::power_of_two_growth_policy` for the interface. * * `ExceptionSafety` defines the exception guarantee provided by the class. By default only the basic * exception safety is guaranteed which mean that all resources used by the hash map will be freed (no memory leaks) * but the hash map may end-up in an undefined state if an exception is thrown (undefined here means that some elements * may be missing). This can ONLY happen on rehash (either on insert or if `rehash` is called explicitly) and will * occur if the Allocator can't allocate memory (`std::bad_alloc`) or if the copy constructor (when a nothrow * move constructor is not available) throws an exception. This can be avoided by calling `reserve` beforehand. * This basic guarantee is similar to the one of `google::sparse_hash_map` and `spp::sparse_hash_map`. * It is possible to ask for the strong exception guarantee with `tsl::sh::exception_safety::strong`, the drawback * is that the map will be slower on rehashes and will also need more memory on rehashes. * * `Sparsity` defines how much the hash set will compromise between insertion speed and memory usage. A high * sparsity means less memory usage but longer insertion times, and vice-versa for low sparsity. The default * `tsl::sh::sparsity::medium` sparsity offers a good compromise. It doesn't change the lookup speed. * * `Key` and `T` must be nothrow move constructible and/or copy constructible. * * If the destructor of `Key` or `T` throws an exception, the behaviour of the class is undefined. * * Iterators invalidation: * - clear, operator=, reserve, rehash: always invalidate the iterators. * - insert, emplace, emplace_hint, operator[]: if there is an effective insert, invalidate the iterators. * - erase: always invalidate the iterators. */ template, class KeyEqual = std::equal_to, class Allocator = std::allocator>, class GrowthPolicy = tsl::sh::power_of_two_growth_policy<2>, tsl::sh::exception_safety ExceptionSafety = tsl::sh::exception_safety::basic, tsl::sh::sparsity Sparsity = tsl::sh::sparsity::medium> class sparse_map { private: template using has_is_transparent = tsl::detail_sparse_hash::has_is_transparent; class KeySelect { public: using key_type = Key; const key_type& operator()(const std::pair& key_value) const noexcept { return key_value.first; } key_type& operator()(std::pair& key_value) noexcept { return key_value.first; } }; class ValueSelect { public: using value_type = T; const value_type& operator()(const std::pair& key_value) const noexcept { return key_value.second; } value_type& operator()(std::pair& key_value) noexcept { return key_value.second; } }; using ht = detail_sparse_hash::sparse_hash, KeySelect, ValueSelect, Hash, KeyEqual, Allocator, GrowthPolicy, ExceptionSafety, Sparsity, tsl::sh::probing::quadratic>; public: using key_type = typename ht::key_type; using mapped_type = T; using value_type = typename ht::value_type; using size_type = typename ht::size_type; using difference_type = typename ht::difference_type; using hasher = typename ht::hasher; using key_equal = typename ht::key_equal; using allocator_type = typename ht::allocator_type; using reference = typename ht::reference; using const_reference = typename ht::const_reference; using pointer = typename ht::pointer; using const_pointer = typename ht::const_pointer; using iterator = typename ht::iterator; using const_iterator = typename ht::const_iterator; public: /* * Constructors */ sparse_map(): sparse_map(ht::DEFAULT_INIT_BUCKET_COUNT) { } explicit sparse_map(size_type bucket_count, const Hash& hash = Hash(), const KeyEqual& equal = KeyEqual(), const Allocator& alloc = Allocator()): m_ht(bucket_count, hash, equal, alloc, ht::DEFAULT_MAX_LOAD_FACTOR) { } sparse_map(size_type bucket_count, const Allocator& alloc): sparse_map(bucket_count, Hash(), KeyEqual(), alloc) { } sparse_map(size_type bucket_count, const Hash& hash, const Allocator& alloc): sparse_map(bucket_count, hash, KeyEqual(), alloc) { } explicit sparse_map(const Allocator& alloc): sparse_map(ht::DEFAULT_INIT_BUCKET_COUNT, alloc) { } template sparse_map(InputIt first, InputIt last, size_type bucket_count = ht::DEFAULT_INIT_BUCKET_COUNT, const Hash& hash = Hash(), const KeyEqual& equal = KeyEqual(), const Allocator& alloc = Allocator()): sparse_map(bucket_count, hash, equal, alloc) { insert(first, last); } template sparse_map(InputIt first, InputIt last, size_type bucket_count, const Allocator& alloc): sparse_map(first, last, bucket_count, Hash(), KeyEqual(), alloc) { } template sparse_map(InputIt first, InputIt last, size_type bucket_count, const Hash& hash, const Allocator& alloc): sparse_map(first, last, bucket_count, hash, KeyEqual(), alloc) { } sparse_map(std::initializer_list init, size_type bucket_count = ht::DEFAULT_INIT_BUCKET_COUNT, const Hash& hash = Hash(), const KeyEqual& equal = KeyEqual(), const Allocator& alloc = Allocator()): sparse_map(init.begin(), init.end(), bucket_count, hash, equal, alloc) { } sparse_map(std::initializer_list init, size_type bucket_count, const Allocator& alloc): sparse_map(init.begin(), init.end(), bucket_count, Hash(), KeyEqual(), alloc) { } sparse_map(std::initializer_list init, size_type bucket_count, const Hash& hash, const Allocator& alloc): sparse_map(init.begin(), init.end(), bucket_count, hash, KeyEqual(), alloc) { } sparse_map& operator=(std::initializer_list ilist) { m_ht.clear(); m_ht.reserve(ilist.size()); m_ht.insert(ilist.begin(), ilist.end()); return *this; } allocator_type get_allocator() const { return m_ht.get_allocator(); } /* * Iterators */ iterator begin() noexcept { return m_ht.begin(); } const_iterator begin() const noexcept { return m_ht.begin(); } const_iterator cbegin() const noexcept { return m_ht.cbegin(); } iterator end() noexcept { return m_ht.end(); } const_iterator end() const noexcept { return m_ht.end(); } const_iterator cend() const noexcept { return m_ht.cend(); } /* * Capacity */ bool empty() const noexcept { return m_ht.empty(); } size_type size() const noexcept { return m_ht.size(); } size_type max_size() const noexcept { return m_ht.max_size(); } /* * Modifiers */ void clear() noexcept { m_ht.clear(); } std::pair insert(const value_type& value) { return m_ht.insert(value); } template::value>::type* = nullptr> std::pair insert(P&& value) { return m_ht.emplace(std::forward

(value)); } std::pair insert(value_type&& value) { return m_ht.insert(std::move(value)); } iterator insert(const_iterator hint, const value_type& value) { return m_ht.insert_hint(hint, value); } template::value>::type* = nullptr> iterator insert(const_iterator hint, P&& value) { return m_ht.emplace_hint(hint, std::forward

(value)); } iterator insert(const_iterator hint, value_type&& value) { return m_ht.insert_hint(hint, std::move(value)); } template void insert(InputIt first, InputIt last) { m_ht.insert(first, last); } void insert(std::initializer_list ilist) { m_ht.insert(ilist.begin(), ilist.end()); } template std::pair insert_or_assign(const key_type& k, M&& obj) { return m_ht.insert_or_assign(k, std::forward(obj)); } template std::pair insert_or_assign(key_type&& k, M&& obj) { return m_ht.insert_or_assign(std::move(k), std::forward(obj)); } template iterator insert_or_assign(const_iterator hint, const key_type& k, M&& obj) { return m_ht.insert_or_assign(hint, k, std::forward(obj)); } template iterator insert_or_assign(const_iterator hint, key_type&& k, M&& obj) { return m_ht.insert_or_assign(hint, std::move(k), std::forward(obj)); } /** * Due to the way elements are stored, emplace will need to move or copy the key-value once. * The method is equivalent to `insert(value_type(std::forward(args)...));`. * * Mainly here for compatibility with the `std::unordered_map` interface. */ template std::pair emplace(Args&&... args) { return m_ht.emplace(std::forward(args)...); } /** * Due to the way elements are stored, emplace_hint will need to move or copy the key-value once. * The method is equivalent to `insert(hint, value_type(std::forward(args)...));`. * * Mainly here for compatibility with the `std::unordered_map` interface. */ template iterator emplace_hint(const_iterator hint, Args&&... args) { return m_ht.emplace_hint(hint, std::forward(args)...); } template std::pair try_emplace(const key_type& k, Args&&... args) { return m_ht.try_emplace(k, std::forward(args)...); } template std::pair try_emplace(key_type&& k, Args&&... args) { return m_ht.try_emplace(std::move(k), std::forward(args)...); } template iterator try_emplace(const_iterator hint, const key_type& k, Args&&... args) { return m_ht.try_emplace_hint(hint, k, std::forward(args)...); } template iterator try_emplace(const_iterator hint, key_type&& k, Args&&... args) { return m_ht.try_emplace_hint(hint, std::move(k), std::forward(args)...); } iterator erase(iterator pos) { return m_ht.erase(pos); } iterator erase(const_iterator pos) { return m_ht.erase(pos); } iterator erase(const_iterator first, const_iterator last) { return m_ht.erase(first, last); } size_type erase(const key_type& key) { return m_ht.erase(key); } /** * Use the hash value `precalculated_hash` instead of hashing the key. The hash value should be the same * as `hash_function()(key)`, otherwise the behaviour is undefined. Useful to speed-up the lookup * if you already have the hash. */ size_type erase(const key_type& key, std::size_t precalculated_hash) { return m_ht.erase(key, precalculated_hash); } /** * This overload only participates in the overload resolution if the typedef `KeyEqual::is_transparent` exists. * If so, `K` must be hashable and comparable to `Key`. */ template::value>::type* = nullptr> size_type erase(const K& key) { return m_ht.erase(key); } /** * @copydoc erase(const K& key) * * Use the hash value `precalculated_hash` instead of hashing the key. The hash value should be the same * as `hash_function()(key)`, otherwise the behaviour is undefined. Useful to speed-up the lookup * if you already have the hash. */ template::value>::type* = nullptr> size_type erase(const K& key, std::size_t precalculated_hash) { return m_ht.erase(key, precalculated_hash); } void swap(sparse_map& other) { other.m_ht.swap(m_ht); } /* * Lookup */ T& at(const Key& key) { return m_ht.at(key); } /** * Use the hash value `precalculated_hash` instead of hashing the key. The hash value should be the same * as `hash_function()(key)`, otherwise the behaviour is undefined. Useful to speed-up the lookup * if you already have the hash. */ T& at(const Key& key, std::size_t precalculated_hash) { return m_ht.at(key, precalculated_hash); } const T& at(const Key& key) const { return m_ht.at(key); } /** * @copydoc at(const Key& key, std::size_t precalculated_hash) */ const T& at(const Key& key, std::size_t precalculated_hash) const { return m_ht.at(key, precalculated_hash); } /** * This overload only participates in the overload resolution if the typedef `KeyEqual::is_transparent` exists. * If so, `K` must be hashable and comparable to `Key`. */ template::value>::type* = nullptr> T& at(const K& key) { return m_ht.at(key); } /** * @copydoc at(const K& key) * * Use the hash value `precalculated_hash` instead of hashing the key. The hash value should be the same * as `hash_function()(key)`, otherwise the behaviour is undefined. Useful to speed-up the lookup * if you already have the hash. */ template::value>::type* = nullptr> T& at(const K& key, std::size_t precalculated_hash) { return m_ht.at(key, precalculated_hash); } /** * @copydoc at(const K& key) */ template::value>::type* = nullptr> const T& at(const K& key) const { return m_ht.at(key); } /** * @copydoc at(const K& key, std::size_t precalculated_hash) */ template::value>::type* = nullptr> const T& at(const K& key, std::size_t precalculated_hash) const { return m_ht.at(key, precalculated_hash); } T& operator[](const Key& key) { return m_ht[key]; } T& operator[](Key&& key) { return m_ht[std::move(key)]; } size_type count(const Key& key) const { return m_ht.count(key); } /** * Use the hash value `precalculated_hash` instead of hashing the key. The hash value should be the same * as `hash_function()(key)`, otherwise the behaviour is undefined. Useful to speed-up the lookup * if you already have the hash. */ size_type count(const Key& key, std::size_t precalculated_hash) const { return m_ht.count(key, precalculated_hash); } /** * This overload only participates in the overload resolution if the typedef `KeyEqual::is_transparent` exists. * If so, `K` must be hashable and comparable to `Key`. */ template::value>::type* = nullptr> size_type count(const K& key) const { return m_ht.count(key); } /** * @copydoc count(const K& key) const * * Use the hash value `precalculated_hash` instead of hashing the key. The hash value should be the same * as `hash_function()(key)`, otherwise the behaviour is undefined. Useful to speed-up the lookup * if you already have the hash. */ template::value>::type* = nullptr> size_type count(const K& key, std::size_t precalculated_hash) const { return m_ht.count(key, precalculated_hash); } iterator find(const Key& key) { return m_ht.find(key); } /** * Use the hash value `precalculated_hash` instead of hashing the key. The hash value should be the same * as `hash_function()(key)`, otherwise the behaviour is undefined. Useful to speed-up the lookup * if you already have the hash. */ iterator find(const Key& key, std::size_t precalculated_hash) { return m_ht.find(key, precalculated_hash); } const_iterator find(const Key& key) const { return m_ht.find(key); } /** * @copydoc find(const Key& key, std::size_t precalculated_hash) */ const_iterator find(const Key& key, std::size_t precalculated_hash) const { return m_ht.find(key, precalculated_hash); } /** * This overload only participates in the overload resolution if the typedef `KeyEqual::is_transparent` exists. * If so, `K` must be hashable and comparable to `Key`. */ template::value>::type* = nullptr> iterator find(const K& key) { return m_ht.find(key); } /** * @copydoc find(const K& key) * * Use the hash value `precalculated_hash` instead of hashing the key. The hash value should be the same * as `hash_function()(key)`, otherwise the behaviour is undefined. Useful to speed-up the lookup * if you already have the hash. */ template::value>::type* = nullptr> iterator find(const K& key, std::size_t precalculated_hash) { return m_ht.find(key, precalculated_hash); } /** * @copydoc find(const K& key) */ template::value>::type* = nullptr> const_iterator find(const K& key) const { return m_ht.find(key); } /** * @copydoc find(const K& key) * * Use the hash value `precalculated_hash` instead of hashing the key. The hash value should be the same * as `hash_function()(key)`, otherwise the behaviour is undefined. Useful to speed-up the lookup * if you already have the hash. */ template::value>::type* = nullptr> const_iterator find(const K& key, std::size_t precalculated_hash) const { return m_ht.find(key, precalculated_hash); } bool contains(const Key& key) const { return m_ht.contains(key); } /** * Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same * as hash_function()(key). Usefull to speed-up the lookup if you already have the hash. */ bool contains(const Key& key, std::size_t precalculated_hash) const { return m_ht.contains(key, precalculated_hash); } /** * This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists. * If so, K must be hashable and comparable to Key. */ template::value>::type* = nullptr> bool contains(const K& key) const { return m_ht.contains(key); } /** * @copydoc contains(const K& key) const * * Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same * as hash_function()(key). Usefull to speed-up the lookup if you already have the hash. */ template::value>::type* = nullptr> bool contains(const K& key, std::size_t precalculated_hash) const { return m_ht.contains(key, precalculated_hash); } std::pair equal_range(const Key& key) { return m_ht.equal_range(key); } /** * Use the hash value `precalculated_hash` instead of hashing the key. The hash value should be the same * as `hash_function()(key)`, otherwise the behaviour is undefined. Useful to speed-up the lookup * if you already have the hash. */ std::pair equal_range(const Key& key, std::size_t precalculated_hash) { return m_ht.equal_range(key, precalculated_hash); } std::pair equal_range(const Key& key) const { return m_ht.equal_range(key); } /** * @copydoc equal_range(const Key& key, std::size_t precalculated_hash) */ std::pair equal_range(const Key& key, std::size_t precalculated_hash) const { return m_ht.equal_range(key, precalculated_hash); } /** * This overload only participates in the overload resolution if the typedef `KeyEqual::is_transparent` exists. * If so, `K` must be hashable and comparable to `Key`. */ template::value>::type* = nullptr> std::pair equal_range(const K& key) { return m_ht.equal_range(key); } /** * @copydoc equal_range(const K& key) * * Use the hash value `precalculated_hash` instead of hashing the key. The hash value should be the same * as `hash_function()(key)`, otherwise the behaviour is undefined. Useful to speed-up the lookup * if you already have the hash. */ template::value>::type* = nullptr> std::pair equal_range(const K& key, std::size_t precalculated_hash) { return m_ht.equal_range(key, precalculated_hash); } /** * @copydoc equal_range(const K& key) */ template::value>::type* = nullptr> std::pair equal_range(const K& key) const { return m_ht.equal_range(key); } /** * @copydoc equal_range(const K& key, std::size_t precalculated_hash) */ template::value>::type* = nullptr> std::pair equal_range(const K& key, std::size_t precalculated_hash) const { return m_ht.equal_range(key, precalculated_hash); } /* * Bucket interface */ size_type bucket_count() const { return m_ht.bucket_count(); } size_type max_bucket_count() const { return m_ht.max_bucket_count(); } /* * Hash policy */ float load_factor() const { return m_ht.load_factor(); } float max_load_factor() const { return m_ht.max_load_factor(); } void max_load_factor(float ml) { m_ht.max_load_factor(ml); } void rehash(size_type count) { m_ht.rehash(count); } void reserve(size_type count) { m_ht.reserve(count); } /* * Observers */ hasher hash_function() const { return m_ht.hash_function(); } key_equal key_eq() const { return m_ht.key_eq(); } /* * Other */ /** * Convert a `const_iterator` to an `iterator`. */ iterator mutable_iterator(const_iterator pos) { return m_ht.mutable_iterator(pos); } /** * Serialize the map through the `serializer` parameter. * * The `serializer` parameter must be a function object that supports the following call: * - `template void operator()(const U& value);` where the types `std::uint64_t`, `float` and `std::pair` must be supported for U. * * The implementation leaves binary compatibilty (endianness, IEEE 754 for floats, ...) of the types it serializes * in the hands of the `Serializer` function object if compatibilty is required. */ template void serialize(Serializer& serializer) const { m_ht.serialize(serializer); } /** * Deserialize a previouly serialized map through the `deserializer` parameter. * * The `deserializer` parameter must be a function object that supports the following calls: * - `template U operator()();` where the types `std::uint64_t`, `float` and `std::pair` must be supported for U. * * If the deserialized hash map type is hash compatible with the serialized map, the deserialization process can be * sped up by setting `hash_compatible` to true. To be hash compatible, the Hash, KeyEqual and GrowthPolicy must behave the * same way than the ones used on the serialized map. The `std::size_t` must also be of the same size as the one on the platform used * to serialize the map. If these criteria are not met, the behaviour is undefined with `hash_compatible` sets to true. * * The behaviour is undefined if the type `Key` and `T` of the `sparse_map` are not the same as the * types used during serialization. * * The implementation leaves binary compatibilty (endianness, IEEE 754 for floats, size of int, ...) of the types it * deserializes in the hands of the `Deserializer` function object if compatibilty is required. */ template static sparse_map deserialize(Deserializer& deserializer, bool hash_compatible = false) { sparse_map map(0); map.m_ht.deserialize(deserializer, hash_compatible); return map; } friend bool operator==(const sparse_map& lhs, const sparse_map& rhs) { if(lhs.size() != rhs.size()) { return false; } for(const auto& element_lhs: lhs) { const auto it_element_rhs = rhs.find(element_lhs.first); if(it_element_rhs == rhs.cend() || element_lhs.second != it_element_rhs->second) { return false; } } return true; } friend bool operator!=(const sparse_map& lhs, const sparse_map& rhs) { return !operator==(lhs, rhs); } friend void swap(sparse_map& lhs, sparse_map& rhs) { lhs.swap(rhs); } private: ht m_ht; }; /** * Same as `tsl::sparse_map`. */ template, class KeyEqual = std::equal_to, class Allocator = std::allocator>> using sparse_pg_map = sparse_map; } // end namespace tsl #endif