{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"from matplotlib import pyplot as plt\n",
"import seaborn as sns\n",
"sns.set(style=\"whitegrid\")\n",
"tips = sns.load_dataset(\"tips\")"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Index(['Private', 'Apps', 'Accept', 'Enroll', 'Top10perc', 'Top25perc',\n",
" 'F.Undergrad', 'P.Undergrad', 'Outstate', 'Room.Board', 'Books',\n",
" 'Personal', 'PhD', 'Terminal', 'S.F.Ratio', 'perc.alumni', 'Expend',\n",
" 'Grad.Rate'],\n",
" dtype='object')"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"college = pd.read_csv(\"./../datasets/College.csv\")\n",
"college.set_index(\"Unnamed: 0\", inplace=True)\n",
"college.columns"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Apps | \n",
" Accept | \n",
" Enroll | \n",
" Top10perc | \n",
" Top25perc | \n",
" F.Undergrad | \n",
" P.Undergrad | \n",
" Outstate | \n",
" Room.Board | \n",
" Books | \n",
" Personal | \n",
" PhD | \n",
" Terminal | \n",
" S.F.Ratio | \n",
" perc.alumni | \n",
" Expend | \n",
" Grad.Rate | \n",
"
\n",
" \n",
" \n",
" \n",
" count | \n",
" 777.000000 | \n",
" 777.000000 | \n",
" 777.000000 | \n",
" 777.000000 | \n",
" 777.000000 | \n",
" 777.000000 | \n",
" 777.000000 | \n",
" 777.000000 | \n",
" 777.000000 | \n",
" 777.000000 | \n",
" 777.000000 | \n",
" 777.000000 | \n",
" 777.000000 | \n",
" 777.000000 | \n",
" 777.000000 | \n",
" 777.000000 | \n",
" 777.00000 | \n",
"
\n",
" \n",
" mean | \n",
" 3001.638353 | \n",
" 2018.804376 | \n",
" 779.972973 | \n",
" 27.558559 | \n",
" 55.796654 | \n",
" 3699.907336 | \n",
" 855.298584 | \n",
" 10440.669241 | \n",
" 4357.526384 | \n",
" 549.380952 | \n",
" 1340.642214 | \n",
" 72.660232 | \n",
" 79.702703 | \n",
" 14.089704 | \n",
" 22.743887 | \n",
" 9660.171171 | \n",
" 65.46332 | \n",
"
\n",
" \n",
" std | \n",
" 3870.201484 | \n",
" 2451.113971 | \n",
" 929.176190 | \n",
" 17.640364 | \n",
" 19.804778 | \n",
" 4850.420531 | \n",
" 1522.431887 | \n",
" 4023.016484 | \n",
" 1096.696416 | \n",
" 165.105360 | \n",
" 677.071454 | \n",
" 16.328155 | \n",
" 14.722359 | \n",
" 3.958349 | \n",
" 12.391801 | \n",
" 5221.768440 | \n",
" 17.17771 | \n",
"
\n",
" \n",
" min | \n",
" 81.000000 | \n",
" 72.000000 | \n",
" 35.000000 | \n",
" 1.000000 | \n",
" 9.000000 | \n",
" 139.000000 | \n",
" 1.000000 | \n",
" 2340.000000 | \n",
" 1780.000000 | \n",
" 96.000000 | \n",
" 250.000000 | \n",
" 8.000000 | \n",
" 24.000000 | \n",
" 2.500000 | \n",
" 0.000000 | \n",
" 3186.000000 | \n",
" 10.00000 | \n",
"
\n",
" \n",
" 25% | \n",
" 776.000000 | \n",
" 604.000000 | \n",
" 242.000000 | \n",
" 15.000000 | \n",
" 41.000000 | \n",
" 992.000000 | \n",
" 95.000000 | \n",
" 7320.000000 | \n",
" 3597.000000 | \n",
" 470.000000 | \n",
" 850.000000 | \n",
" 62.000000 | \n",
" 71.000000 | \n",
" 11.500000 | \n",
" 13.000000 | \n",
" 6751.000000 | \n",
" 53.00000 | \n",
"
\n",
" \n",
" 50% | \n",
" 1558.000000 | \n",
" 1110.000000 | \n",
" 434.000000 | \n",
" 23.000000 | \n",
" 54.000000 | \n",
" 1707.000000 | \n",
" 353.000000 | \n",
" 9990.000000 | \n",
" 4200.000000 | \n",
" 500.000000 | \n",
" 1200.000000 | \n",
" 75.000000 | \n",
" 82.000000 | \n",
" 13.600000 | \n",
" 21.000000 | \n",
" 8377.000000 | \n",
" 65.00000 | \n",
"
\n",
" \n",
" 75% | \n",
" 3624.000000 | \n",
" 2424.000000 | \n",
" 902.000000 | \n",
" 35.000000 | \n",
" 69.000000 | \n",
" 4005.000000 | \n",
" 967.000000 | \n",
" 12925.000000 | \n",
" 5050.000000 | \n",
" 600.000000 | \n",
" 1700.000000 | \n",
" 85.000000 | \n",
" 92.000000 | \n",
" 16.500000 | \n",
" 31.000000 | \n",
" 10830.000000 | \n",
" 78.00000 | \n",
"
\n",
" \n",
" max | \n",
" 48094.000000 | \n",
" 26330.000000 | \n",
" 6392.000000 | \n",
" 96.000000 | \n",
" 100.000000 | \n",
" 31643.000000 | \n",
" 21836.000000 | \n",
" 21700.000000 | \n",
" 8124.000000 | \n",
" 2340.000000 | \n",
" 6800.000000 | \n",
" 103.000000 | \n",
" 100.000000 | \n",
" 39.800000 | \n",
" 64.000000 | \n",
" 56233.000000 | \n",
" 118.00000 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Apps Accept Enroll Top10perc Top25perc \\\n",
"count 777.000000 777.000000 777.000000 777.000000 777.000000 \n",
"mean 3001.638353 2018.804376 779.972973 27.558559 55.796654 \n",
"std 3870.201484 2451.113971 929.176190 17.640364 19.804778 \n",
"min 81.000000 72.000000 35.000000 1.000000 9.000000 \n",
"25% 776.000000 604.000000 242.000000 15.000000 41.000000 \n",
"50% 1558.000000 1110.000000 434.000000 23.000000 54.000000 \n",
"75% 3624.000000 2424.000000 902.000000 35.000000 69.000000 \n",
"max 48094.000000 26330.000000 6392.000000 96.000000 100.000000 \n",
"\n",
" F.Undergrad P.Undergrad Outstate Room.Board Books \\\n",
"count 777.000000 777.000000 777.000000 777.000000 777.000000 \n",
"mean 3699.907336 855.298584 10440.669241 4357.526384 549.380952 \n",
"std 4850.420531 1522.431887 4023.016484 1096.696416 165.105360 \n",
"min 139.000000 1.000000 2340.000000 1780.000000 96.000000 \n",
"25% 992.000000 95.000000 7320.000000 3597.000000 470.000000 \n",
"50% 1707.000000 353.000000 9990.000000 4200.000000 500.000000 \n",
"75% 4005.000000 967.000000 12925.000000 5050.000000 600.000000 \n",
"max 31643.000000 21836.000000 21700.000000 8124.000000 2340.000000 \n",
"\n",
" Personal PhD Terminal S.F.Ratio perc.alumni \\\n",
"count 777.000000 777.000000 777.000000 777.000000 777.000000 \n",
"mean 1340.642214 72.660232 79.702703 14.089704 22.743887 \n",
"std 677.071454 16.328155 14.722359 3.958349 12.391801 \n",
"min 250.000000 8.000000 24.000000 2.500000 0.000000 \n",
"25% 850.000000 62.000000 71.000000 11.500000 13.000000 \n",
"50% 1200.000000 75.000000 82.000000 13.600000 21.000000 \n",
"75% 1700.000000 85.000000 92.000000 16.500000 31.000000 \n",
"max 6800.000000 103.000000 100.000000 39.800000 64.000000 \n",
"\n",
" Expend Grad.Rate \n",
"count 777.000000 777.00000 \n",
"mean 9660.171171 65.46332 \n",
"std 5221.768440 17.17771 \n",
"min 3186.000000 10.00000 \n",
"25% 6751.000000 53.00000 \n",
"50% 8377.000000 65.00000 \n",
"75% 10830.000000 78.00000 \n",
"max 56233.000000 118.00000 "
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"college.describe()"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Private | \n",
" Apps | \n",
" Accept | \n",
" Enroll | \n",
" Top10perc | \n",
" Top25perc | \n",
" F.Undergrad | \n",
" P.Undergrad | \n",
" Outstate | \n",
" Room.Board | \n",
" Books | \n",
" Personal | \n",
" PhD | \n",
" Terminal | \n",
" S.F.Ratio | \n",
" perc.alumni | \n",
" Expend | \n",
" Grad.Rate | \n",
"
\n",
" \n",
" Unnamed: 0 | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" Abilene Christian University | \n",
" Yes | \n",
" 1660 | \n",
" 1232 | \n",
" 721 | \n",
" 23 | \n",
" 52 | \n",
" 2885 | \n",
" 537 | \n",
" 7440 | \n",
" 3300 | \n",
" 450 | \n",
" 2200 | \n",
" 70 | \n",
" 78 | \n",
" 18.1 | \n",
" 12 | \n",
" 7041 | \n",
" 60 | \n",
"
\n",
" \n",
" Adelphi University | \n",
" Yes | \n",
" 2186 | \n",
" 1924 | \n",
" 512 | \n",
" 16 | \n",
" 29 | \n",
" 2683 | \n",
" 1227 | \n",
" 12280 | \n",
" 6450 | \n",
" 750 | \n",
" 1500 | \n",
" 29 | \n",
" 30 | \n",
" 12.2 | \n",
" 16 | \n",
" 10527 | \n",
" 56 | \n",
"
\n",
" \n",
" Adrian College | \n",
" Yes | \n",
" 1428 | \n",
" 1097 | \n",
" 336 | \n",
" 22 | \n",
" 50 | \n",
" 1036 | \n",
" 99 | \n",
" 11250 | \n",
" 3750 | \n",
" 400 | \n",
" 1165 | \n",
" 53 | \n",
" 66 | \n",
" 12.9 | \n",
" 30 | \n",
" 8735 | \n",
" 54 | \n",
"
\n",
" \n",
" Agnes Scott College | \n",
" Yes | \n",
" 417 | \n",
" 349 | \n",
" 137 | \n",
" 60 | \n",
" 89 | \n",
" 510 | \n",
" 63 | \n",
" 12960 | \n",
" 5450 | \n",
" 450 | \n",
" 875 | \n",
" 92 | \n",
" 97 | \n",
" 7.7 | \n",
" 37 | \n",
" 19016 | \n",
" 59 | \n",
"
\n",
" \n",
" Alaska Pacific University | \n",
" Yes | \n",
" 193 | \n",
" 146 | \n",
" 55 | \n",
" 16 | \n",
" 44 | \n",
" 249 | \n",
" 869 | \n",
" 7560 | \n",
" 4120 | \n",
" 800 | \n",
" 1500 | \n",
" 76 | \n",
" 72 | \n",
" 11.9 | \n",
" 2 | \n",
" 10922 | \n",
" 15 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Private Apps Accept Enroll Top10perc \\\n",
"Unnamed: 0 \n",
"Abilene Christian University Yes 1660 1232 721 23 \n",
"Adelphi University Yes 2186 1924 512 16 \n",
"Adrian College Yes 1428 1097 336 22 \n",
"Agnes Scott College Yes 417 349 137 60 \n",
"Alaska Pacific University Yes 193 146 55 16 \n",
"\n",
" Top25perc F.Undergrad P.Undergrad Outstate \\\n",
"Unnamed: 0 \n",
"Abilene Christian University 52 2885 537 7440 \n",
"Adelphi University 29 2683 1227 12280 \n",
"Adrian College 50 1036 99 11250 \n",
"Agnes Scott College 89 510 63 12960 \n",
"Alaska Pacific University 44 249 869 7560 \n",
"\n",
" Room.Board Books Personal PhD Terminal \\\n",
"Unnamed: 0 \n",
"Abilene Christian University 3300 450 2200 70 78 \n",
"Adelphi University 6450 750 1500 29 30 \n",
"Adrian College 3750 400 1165 53 66 \n",
"Agnes Scott College 5450 450 875 92 97 \n",
"Alaska Pacific University 4120 800 1500 76 72 \n",
"\n",
" S.F.Ratio perc.alumni Expend Grad.Rate \n",
"Unnamed: 0 \n",
"Abilene Christian University 18.1 12 7041 60 \n",
"Adelphi University 12.2 16 10527 56 \n",
"Adrian College 12.9 30 8735 54 \n",
"Agnes Scott College 7.7 37 19016 59 \n",
"Alaska Pacific University 11.9 2 10922 15 "
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"college.head()"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZoAAAEMCAYAAAD9OXA9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nO3dd3RUdf7/8eedPimkAWk0pQYiCIQmJEikLVVEBXEVFV30p36/a13ZrwusXWR1dWF10bUXBFyqQlBC7yjFiFQBIQmBVJJJZjLl/v6IZEVBEpibm8y8H+d4TubezL3vBHNfcz/3UxRVVVWEEEIIjRj0LkAIIURgk6ARQgihKQkaIYQQmpKgEUIIoSkJGiGEEJoy6V1AfePz+XA4HJjNZhRF0bscIYRoEFRVxe12ExoaisFw7j2MBM0vOBwODhw4oHcZQgjRILVr147w8PBztknQ/ILZbAaqflkWi0XnaoQQomGorKzkwIED1dfQn5Og+YWzzWUWiwWr1apzNUII0bCc75GDdAYQQgihKQkaIYQQmpKgEUIIoSkJGiGEEJqSoBFCCKEpCRohhBCakqARmtq2bRuHDh3SuwwhhI5kHI3Q1NNPP43dbmfevHl6lyKE0Inc0QjNVVRU6F2CEEJHEjRCCCE0JUEjhBBCUxI0QgghNCVBI4QQQlMSNEIIITQlQSM0o6qq3iUIIeoBCRqhGY/Ho3cJQoh6QIJGaMblculdghCiHpCgEZqRoBFCgASN0JDT6dS7BCFEPSBBIzRTXl5e/bXX69WxEiGEniRohGZKS0urv/556AghgosEjdBMSUnJeb8WQgQXCRqhmaKiovN+LYQILhI0QjOnT5+u/vrUqVM6ViKE0JMEjdBMTk4ORlsEKAq5ubl6lyOE0ImssCk0c+zYjyiWCIyqyrFjx/QuRwihE7mjEZooKSmhoCAfoy0axRrJoUOH9S5JCKETCRqhiX379gFgsEVjtEWTn3+agoICnasSQuhBgkZoYteuXRgMJoz2GIyhsdXbhBDBR4JG+J2qqmzZshVDSBMUgxGDNRKj2c7WrVv1Lk0IoQMJGuF3+/fvJz//NKbwFgAoioIhrBnbd+yQGQKECEISNMLvVq5ciWIwYQpPrN5mjmiFx+1m7dq1OlYmhNCDBI3wq9LSUtasWYOpUUsUo6V6u8EWjdEezZKlS2XlTSGCjASN8KulS5fidrsxR7U9Z7uiKJgj23Li+HG2b9+uU3VCCD1I0Ai/KSsrY9GixZjCm2G0Rf5qvymiJUZLGB9//Inc1QgRROokaIqKirjnnnsYMmQII0eO5IEHHqCwsBCo6vI6atQohgwZwl133XXOWAst9gntLFiwgIqKciyNO513v6IYMMd05PDhQ2zatKmOqxNC6KVOgkZRFO6++24yMjJYunQpzZs3Z+bMmfh8Ph577DGmTp1KRkYGKSkpzJw5E0CTfUI7eXl5LF68GFNEK4y2qAt+X9X+SN5++x3cbncdViiE0EudBE1kZCS9evWqfn311VeTk5NDVlYWVquVlJQUAMaPH8+KFSsANNkntPP222/j9YG1yVXV29zFR3AXHznn+xTFgKVJF06dymPJkiV1XaYQQgd1/ozG5/PxySefkJ6eTm5uLgkJCdX7oqOj8fl8FBcXa7JPaGPPnj1s2rQJc3QHDObQ6u3ukh9wl/zwq+83hcVjCkvkk0/mSrOmEEGgzmdvfvrppwkJCeH3v/89X375ZV2fvsaysrL0LqFB8Hq9vP76GxgsoVhiOtT4fdbYrpT/sJyXX36ZG264QcMKhRB6q9OgefHFFzl27BhvvPEGBoOB+Ph4cnJyqvcXFhZiMBiIjIzUZF9tJCcnY7VaL+OnDQ5LliwhP/80tmb9UAw1/9/JYAnDHN2ePXv2cOutt9KxY0cNqxRCaM3lcl3wA3qdNZ29/PLLZGVlMXv2bCyWqoF8ycnJOJ1OduzYAcDcuXMZOnSoZvuEf5WVlfHRRx9jCo3FFJZ48Tf8gqVxR4zmEOa8+SY+n0+DCoUQ9UGd3NEcPHiQf/3rX7Rq1Yrx48cD0KxZM2bPns2MGTOYNm0aLpeLxMREXnrpJQAMBoPf9wn/+vTTTykvdxByRSqKotT6/YrBhLlxMocPbWPDhg2kpaVpUKUQQm+KKiPnznH29k+azn5bUVERd02aBCGJ2BN6n/d7yo+tAiCk5XUXPI6q+qg4upLY6FD++c/ZGI1GTeoVQmjrt66dMjOAuCSLFy/G4/ZgvcDgzJo6O4gzJydbBnEKEaAkaEStuVwuvli+HFN4MwyW8Ms+nim8GUZrOEuWLPVDdUKI+kaCRtTapk2bqCgvxxzVxi/HUxQDpogr2bfve44fP+6XYwoh6g8JGlFr69evx2gJxRjS1G/HNEVcAcCGDRv8dkwhRP0gQSNqxeVysWvXbgyhCZfU0+xCDCYbppDGbN26zW/HFELUDxI0olYOHjyI212JKTTO78c2hMTyww+HZblnIQKMBI2olUOHDgFgsEf7/dhGWzSqqnLkyJGLf7MQosGQoBG1cuLECYxmGwaT3e/HNvy0WNqPP/7o92MLIfQjQSNq5dSpU2AK0eTYiskOikJ+fr4mxxdC6EOCRtRKQWEhitH/dzNQ1c3ZaLZTVFSkyfGFEPqQoBG14ihzgNGs2fEVgxmHw6HZ8YUQdU+CRtSK01mBYtAuaFTFREVFhWbHF0LUPQkaUStutxsUDf+3UQxV5xBCBAwJGlErHo8HRdOgMeJyVWp3fCFEnZOgETXm8/mqFihTNJzKXzHg8Xi0O74Qos5J0Igaqw4AP04980uKNJ0JEXAkaESNnQ0AReM7GgkaIQKLBI2oscrKn56daBg0imLEVSnPaIT23G43J0+e1LuMoCBBI2rsbLdjxWDS7iQGEy6XU7vjC/GTf/zjH9xzzz0y5VEdkKARNVY9vkXDcTSKwYzL6URVVc3OIQTAzp07gZ+mVRKakqARNXZ2+n5Fw5kBMJrx+Xy4XC7tziEEVH+YOXPmjM6VBD4JGlFjZWVlAChGi2bnUAxVxy4tLdXsHEIAqKoPgMLCQp0rCXwSNKLGzn7y0zRojBI0QnterxeHo+oOXZrOtCdBI2rsv0Fj1ewciqnq2CUlJZqdQ4j8/Hy8Xi8AJ0/m6lxN4JOgETVWXFyMwWjWtNeZwWgDJGiEtrKzswEItxjIPnFC52oCnwSNqLHi4mIMJpum51B+Or60mwstnfgpXDrEWDmdX4DTKV3qtSRBI2qsoKAA1aht0GCoumOSxc+Elo4fP47dbKRVhAVVVavvcIQ2JGhEjZ06dRpFo2Wcz1IUBaMlhNOnT2t6HhHcTpw4TmO7gcYhVc3AEjTakqARNeL1eikoyMdgDtX8XKoxhJMn8zQ/jwheOdk5RNuMRNurplPKycnRuaLAJkEjaiQvLw+fz4fBEqb5uQyWMHJycmR2AKEJt9tNYVERUTYjZoNCuNUkXZw1JkEjauT48eMAGKwRmp/LYImgoqJcOgQITZx9/hdurbr8hVsUCgoK9Cwp4EnQiBo5fPgwoGCwNNL8XAZbxM/OKYR/nZ3hIsRUdfmzGxUZIKwxCRpRI99//z0mW4S285z9xGiLBkVh3759mp9LBJ+zXZnNxqoF/CxGBefZCWOFJuosaF588UXS09Np3749Bw4cqN6enp7O0KFDGT16NKNHj2b9+vXV+3bt2sWoUaMYMmQId9111zm3t5e6T9ReZWUle/fuRbE3qZPzKQYTRls0u3btrpPzieBy9tnf2YufolQtUy60U2dBc9111/HRRx+RmJj4q32vvfYaixcvZvHixaSmpgJV//CPPfYYU6dOJSMjg5SUFGbOnHlZ+8SlycrKorKyElNYfJ2d0xgaz6FDBykuLq6zc4rgYDRW9TTz/tTXxKf+d5vQRp0FTUpKCvHxNb9QZWVlYbVaSUlJAWD8+PGsWLHisvaJS7Nu3ToMRjPGkKZ1dk5TeCKqqrJx48Y6O6cIDhZL1cStHl9V0ri9KlabxgORg1y9eEbz6KOPMnLkSKZPn149cWNubi4JCQnV3xMdHY3P56O4uPiS94naq6ioYP2GDRjDmmu7suYvGG1RGG1RrPzyyzo7pwgOISFVg46dP93SuLxq9Tahjbq7clzARx99RHx8PJWVlTz77LM89dRT9aKpKysrS+8S6oUtW7ZQ6XIREn9lnZ/bFHEFPxz+hoULF9KiRYs6P78ITGdXiq1wVz2XqfCqeDwevv76az3LCmg1DhpVVZk/fz7Lli2jqKiIpUuXsn37dk6fPs2wYcMuuYCzzWkWi4UJEyZw3333VW//+WjdwsJCDAYDkZGRl7yvNpKTk7FatZsOvyFwu9289o9/YAppgtHeuM7Pb468EnfBd3z77beMGTOmzs8vApOqqhgNBso9PwWNW6Vly5Z0795d58oaNpfLdcEP6DVuOnv11VdZsGAB48aNIze3av2GuLg43nrrrUsurLy8vLr/uqqqfPHFFyQlJQFVF3qn08mOHTsAmDt3LkOHDr2sfaJ2MjIyKCwowBzTUZfzKwYTpqh2bN++Xbo6C79RFIXw8HDK3SpeVaXc7aVRI+3HhwWzGt/RLFy4kIULFxIdHc306dMBaNasWfWI8Yt55plnWLlyJfn5+dx5551ERkbyxhtv8OCDD+L1evH5fLRu3Zpp06YBYDAYmDFjBtOmTcPlcpGYmMhLL710WftEzTkcDj766GNMobEYQ+N0q8MS3R5v8SHeeuvfvPTSDBRF0a0WETgiIyNwlOZR/lPzWW1bPETt1DhovF4voaFVEyqe/WN3OBw1foj25JNP8uSTT/5q+6JFiy74nm7durF06VK/7hM18+GHH1JWVkpIqz66XtwVgwlT42T279/O6tWrSU9P160WETgiIqMoKMzF8VPQRERoP7VSMKtx01n//v15/vnnqaysBKqaul599VUGDBigWXFCHwcPHuTzzz/HHNUWoz1a73IwR1yJKaQxb775VnWvRCEuR2RkJOUecFTKHU1dqHHQTJkyhdOnT9O9e3dKS0vp2rUrOTk5PProo1rWJ+qY2+3m73//OwaTDWuTqy75OKqq4nNX4HOdobLo0GXNxKwoCpbYFBwOB3PmzLnk4whxVkREBA63t7rpTO5otFXjprOwsDBmz55NQUEB2dnZxMfH06RJ3UxJIurOp59+yo8//oi9WRqK0XLJx3EXH0J1V01e6Dq5A1CxRLW95OMZbZGYY5JYu3Yt/fr1o3fv3pd8LCEaNWqEy+PjzE93NNIZQFs1vqO5/vrrAYiJiaFz587VIXPDDTdoU5moc/v372f+/PmYIlphCk+4+Bt+g6c05zdfXwpL444YbVG89o9/yABccVnCw8MBKKzwAlUfpIV2ahw0x44d+9U2VVU5ceKEXwsS+nA6ncyc+TcUkx1bbLfLP6Dq+e3Xl0BRjFjje1FWWsasWbNkYTRxyc52YipxebHbbDLXmcYu2nT2+OOPA1Vt92e/Pis7O5s2bdpoU5moU//+9785eTIXe4sBl9VkpjWjLRJLk85s3bqVL7/8ksGDB+tdkmiAbD/NbVbu9mGxyDxnWrto0Px86o9fTgPSrVs3GQwZALZt28aKFSswR3fAFBqrdzkXZY5uj9eRy7/mzCE5Ofmcue2EqImzdzAeHxjNcjejtYsGzQMPPABAly5dqqfwF4GjuLiYv7/6KkZb1GX1MqtLiqJgje9FxdEVzJz5N156aYY0fYha8XiqmnLNRnB5L79ZV/y2Gvc6S01NpbKykiNHjlBUVHRO+3ifPn00KU5oS1VVXnvtNcrKHNhbDUYxNJyLtcEcgiU2hYMHNzFv3jxuueUWvUsSDYjD4QAgwmokr7gcVVVl1gkN1ThoduzYwR//+EcqKyspKysjLCwMh8NBXFwcq1at0rJGoZGVK1eyfft2rLFdMVob3jgCc6MWeEqzmTt3Lt27d6ddu3Z6lyQaiPz8fADiw8zszXdRUlIigzY1VONeZ88//zx3330327ZtIzQ0lG3btnHfffcxYcIELesTGsnNzWXOm29iCo3FHNVwL9C2uO4oJhszZ/6tei14IS7mxx9/JMpuJj6s6rP2+XrVCv+pcdAcPXqU22+//Zxtf/jDH3j33Xf9XZPQmNfr5eWXX8HjUbHG92zQTQaK0YIlrhe5uTm89957epcjGgBVVfkuK4vEMAOJYWYUYO/evXqXFdBqHDTh4eGUlVWN9G7SpAmHDh3izJkzlJeXa1ac0MaiRYvYt+97LLHdMJhD9S7nsp29K1u2bBm7du3SuxxRzx05coTCoiKuiLRgNxuIDzezffs2vcsKaDUOmkGDBrF27VoAxo4dy+23384NN9zAkCFDNCtO+N/Ro0f54IMPMYU3w9Sopd7l+I21aWeM1ka88ve/Vz/oFeJ81q1bh0GBDtFV42c6xlg5ePDQOQsmCv+qcWeA//u//6v+etKkSXTp0gWHw0FaWpomhQn/c7vdvPzyy2AwYY1LadBNZr+kGExY43tReOwr5syZw0MPPaR3SaIeqqys5MuVK2kXbSXUUvU5u3NTG5nHHGRkZHDnnXfqXGFgqvEdzTPPPHPO65SUFPr3789zzz3n96KENubNm8eRI0cwx6ZgMAXeaGijPQZLdBKZmZls3bpV73JEPbR69WrOlJbSM95eva2R1UiHGAsrli+XRwEaqXHQ/Oc//znv9iVLlvitGKGdQ4cOMW/ePEwRrTCHN9O7HM1YmnSqnnhT1q4RP+f1evlswXziw81cEXnuNEt9m4VSXlHBF198oVN1ge2iTWcLFiwAqv6Rzn591vHjx6XveQPgdrt55ZVXUIw2/0yYWY9VTbzZk9KjXzJnzhxZL0lUW7t2Lbkn8xiXFPGrZuPEcDNtoqz857PPGDZsWI1XDhY1c9GgWbx4MVB1sTr7NVRNA9K4cWNefPFF7aoTfjFv3jy/rDHTUBhtUZhjOrJ27VrS0tLo2bOn3iUJnXk8Hj7+6CPiw8x0iLGe93uubRnKW7sKWbZsGTfffHMdVxjYLho0H3zwAQCvvPKKPGBtgI4dO1a1xkyjlpe9xkxDYmmchLfsBLNmzeaNN5LlE2qQW7VqFXmnTjGhU+QFO8E0CzfTLtrKf/7zGcOHDyc0tOF3/a8vavyMZuLEidXdRr1eL5999hmLFi3C5/NpVpy4PD6fr2rdFsWENbar3uXUKUUxYo3rQVFRYfWHJRGc3G43n86dS2K4mbZRv31HP6BlKA5HuTx79rMaB83kyZOrp2l4+eWXefvtt3nnnXd44YUXNCtOXJ61a9eyb98+LE26BGQvs4sx2mMwR7Xh888/5+jRo3qXI3SSmZnJ6fx8rm0RetEu/fFhZtrHWFm8aJH0QPOjWk1Bk5SUBMDSpUt58803ee+996SXRj3ldDp5+513MNqjMUVcoXc5urE2vgrFaOHNN9/UuxShg7M9zRLCzbS5yN3MWf2bh+IoL+fzzz/XuLrgUeOgMRgMuN1u9u/fT3h4OAkJCTRq1EhGYddTy5cvp7ioCEvTrgE1MLO2FJMVc0xH9uzZw7fffqt3OaKObd68mdyTefRrFlLjv4OEcDOtoywsWbyYyspKjSsMDjUOmtTUVP73f/+X6dOnM2zYMKBqbEZsbP1fkTHYuFwuFnz2GabQWEwhTfQuR3fmyNYYzXY++eQTvUsRdUhVVf7zn8+Itpsu2NPsQq5JDKG4pKR62i1xeWocNM899xzXXnstN954I/feey8ARUVFPPjgg5oVJy7N5s2bOVNSgjkmSbcaVK8bm83GqFGjsNlsqF63brUoBhPGyHZ8++23HD9+XLc6RN3av38/Bw8eoneCHUMt7+qvjLQQG2Zm0aKF5yzyKC5NjYPmgw8+YNy4cYwdO7Z62dxevXpx6tQpzYoTl2blypUYrWEYQ/S721R9bgYPHsw999zDoEGDUH36BQ2AOfIKUBRZpC+ILF26FJvJQJfY83eE2ZVXwa68ivPuUxSFXvF2fvzxOFlZWVqWGRRqHDSzZ88+7/bXX3/db8WIy+dwOMjKysIY1kLXZzOKwczKlSuZM2cOX375JYrBrFstAAaTDWNILFu2yBxowaC4uJiNGzfSpakNq/H8l7mdeRXsvEDQAFzVxIbdbGT58uValRk0Ljpgc/PmzUDVmIwtW7accxt54sQJGdRUz3z33XeoqooxVN9nZ4rRjLO8mKVLlwJgDAnXtR6oWrcmO3s3hYWFREdH612O0FBmZiZer5eUn02eWVtmo0KXJlY2bdpESUkJERENb7nz+uKiQXN2eQCXy8Wf//zn6u2KotCkSROefPJJ7aoTtXZ2rJPRHqNzJfWPwVb1Ozl27JgETQBTVZWVGRm0aGShSUiNV0I5r25xdrbklLN69Wquv/56P1UYfC76r5CZmQnA448/zowZMzQvSFye06dPYzTbUAyX9wcWiAzmqmlo5LliYDtw4ADZOTmMatvoso/VNNREYriFVau+kqC5DDV+RiMh0zA4HA7dn4fUV2cnFJUR34FtzZo1mIwKHRvXrkvzhXRuYuXo0WPVrQWi9mr8sbd///4XfLi8Zs0af9UjLlNVj0DpjnlePz1fPNtrUgQej8fDurVraRdlwWaq8efo35TcxEbGkVJWr17NHXfc4ZdjBpsaB81LL710zuvTp0/z/vvvVw/e/C0vvvgiGRkZZGdns3TpUtq1awfAkSNHeOKJJyguLiYyMpIXX3yRVq1aabYvGISGhuLzVKKqalDPCHA+qtcFQFhYmM6VCK18/fXXnCktpUtz/62TFWox0CbKyurMTG677Tb5oHIJahz5PXv2POe/4cOHM2vWrAuuvPlz1113HR999BGJiYnnbJ82bRoTJkwgIyODCRMmMHXqVE33BYO4uDh83srqi6r4L5+7DKj6HYnAtGL5csKtphrPa1ZTV8faKCwqYseOHX49brC4rHtLi8XCiRMnLvp9KSkpxMfHn7OtoKCAvXv3MmLECABGjBjB3r17KSws1GRfsGjZsiUAPmeRzpXUP96ffifNmzfXuRKhhaNHj7Lj66/pFmvFaPDv3Xz7GCsRNhOfLVggMwVcgho3nb366qvnvHY6ndUrGF6K3NxcYmNjq29DjUYjTZs2JTc3F1VV/b4vWLqzdujQAYPBiLf8FKaw+Iu/IYh4y0/RokULwsP1H9Mj/EtVVd57912sJgO9Evy/yJ1RUeiXaOfzffvYunUrvXv39vs5AlmNg+bkyZPnvLbb7dx5552MHj3a70XVBw152olmzRLJzsuBpl30LqXeUL2V+MpPk3BVT77++mu9yxF+tmvXLnZ8/TVDrgwjxOyfTgC/1DXOzvaTTl577VUqKytlsHot1ChoPB4PKSkpbNq0qfohe/fu3Rk9ejRm86V1pY2PjycvLw+v14vRaMTr9XLq1Cni4+NRVdXv+2orOTkZq9U/3SPrWm5uLv/617/wOosx2vz3ULQh85Rmo6o+xo4dS4cOHfQuR/jR/v37+XzZMlpGWDS5mznLZFC4vm04b+8p4ovPP+fpZ5655OtfIHK5XBf8gH7R6C8tLWX8+PH87W9/w2w207FjR8xmMy+//DLjx4+ntLT0koqKiYkhKSmJZcuWAbBs2TKSkpKIjo7WZF8w6du3L0ajEXfxD3qXUm94Sg4TGxdH+/bt9S5F+NHevXuZ+pe/EGaGmztE1HqW5tpKCDczqm043+3dy9NPPYXT6dT0fIFCUS/yZGv69Onk5OTw97//nZCQ/35acDgcPPTQQyQkJDB9+vTfPMkzzzzDypUryc/PJyoqisjISD7//HMOHz7ME088wZkzZ2jUqBEvvvgiV155JYAm+2ribCo35DsagJkzZ7J+wyZCWo9CMdb9p67yY6vwlp+ufm0MaUJIy+vqvA4Ab0Uh5UdXcvfddwdsU28wyszMZPasWYSb4bZOEUTaatft+J09VZ2E7uxc+w+i35ysYOmhM7S+sjVPTJki63Lx29fOiwZNv379mDdvHgkJCb/ad+LECcaPH8+GDRv8W7GOAiVoDh48yMMPP4ylyVVYG3eq8/PXp6CpOLEes6eIt9/+t4yhCQAOh4O33nqLr776ipYRFm7q0IgwS+3HtlxO0ADsK3Cy6EAZRouV+x94gH79+gX12LXfunZetOmsrKzsgmkdFxdHWVmZf6oUftW2bVt69OiBp2g/qjd4l6P1VhTgKc1mzJjrJWQaOFVV2bhxI/fdey+rVn1Fv+Yh3H5V5CWFjD90iLHxh6sjiTC6mTFjBk8//ZTMo3cBFw2a5s2bs2XLlvPu27x5s4xJqMduu+02VK8b1+k9epeiC1VVceV9Q3ijRtJk1sAdPHiQP0+ZwgsvvIDV4+DuLtEMbBWOUec7iGi7iUldohh8RRi7vvmGeydP5r333sPhcOhaV31z0aC58847+dOf/kRGRgY+nw+oWptmxYoVTJkyReb+qceuuOIKhg8fjrvoEN6KOh60qph++3UdcBf/gLeigLsnTTrn+aJoOI4cOcLzzz/Pww8/zJGD+xjWOpx7ukSRGF5/ensZFYVrmoVyf7dokqJNLFiwgHvuvpv58+fLBK4/uehf/w033EBxcTFPPPEEjzzyCJGRkRQXF2M2m7n//vsZO3ZsXdQpLtGtt97Kho0bKT25FXvLQXW2fIApPAGvI/ec13XJV1mG+/QuOnXqxIABA+r03OLy7du3jwULFrB161asJgNpzUO5plmI3ybK1EKkzcgN7SPonRhC5tEy3n//fT77bAGjR1/PsGHDgnrhtIt2BjirrKyMnTt3UlRURFRUFF27dg3INu9A6Qzwczt37mTq1KmYo9pii+teJ+dUVRXH4c/B58bS5CrMka3r7EGpqvqo+HE1Zl8Zs2fPomnTpnVyXnF5vF4vmzdvZtHChew/cAC72UiveBu9EkOwaxAwl9sZ4GKyS92sO+5gf4ELs9lMeno6o0ePDtjHDb917azxx9uwsDBSU1P9XpzQXteuXRk9ejSLFy/GaI/BHNFK83MqioLBbAfsWKLaaH6+n3Pl7cJbfpqHHn1UQqYBKCwsJCMjgxUrllNYWES03cSw1uFcHWvHYmy4vbgSw83c0jGS0+UetmSXs+qrlWRkZND5qqR5omAAAB5tSURBVKsYNnw4vXr1wmQKjgUKg+OnFNxxxx0cPHiI7/ftwGBphNEemINY3SVHcBcdYOTIkfTv31/vcsQFeL1edu7cycqVK9m2dSten4/WUVYGd4ygXbRV84GXdalJiImRbRuR3jKMb/Iq+Prg97zwwrdERUYycNAgBg0adEmzlzQkEjRBwmQy8cQTf+Khhx6mOHs9thbXYbAEVtOnx5GHK3c7ycnJ3HXXXXqXI84jJyeHzMxMvvrySwoKCwmxGOkZbyMl3k6MPbAvR6EWA6nNQ+nbLISDhZXsOFnBggXzmT9/PsnJyQwaNIhrrrkGm82md6l+F9j/suIcUVFR/PWv03nsscdxZq/H3jwdxRQYz6G8zmJc2RtJSEzg//7v/4KmSaIhKC0tZcOGDaxatYr9+/ejAK2jLKR3iKB9jBWTn6f0r+8MikL7GCvtY6yUuLzszqtg5+F9vJKVxT//OZu+ffuRnp7OVVddhcFQfzs/1Ib8NQaZli1b8pe/PMnUqVOpOLEOe/NrdZmixp98laW4TqylUaNQnvrrXwOyk0pD43Q62b59O2vWrOHrr7/G6/XSNNTMoCvCuKqJjUZWWaUSIMJqJK1FGP2ah/LjGTd7TjnZuG4NmZmZREdFkda/P/3796d167rrTKMFCZogdNVVV/HEE0/w3HPP4cxej61ZWp11e/Y3n9uB8/ha7FYTzz37rDz815Hb7Wbnzp2sW7eOLVs243JV0shqomeclc5NbcSFmhr0xVJLBkWhVYSFVhEWfnelyv5CF9+eLmfpksUsWrSIhPh40vr3JzU1lRYtWuhdbq3VuHtzsAjE7s0XsnbtWmb+7W+YQmKxNUtFMfj3U2b5sVUAms1x5nOX4zy+GovBy3PPPUubNnXbu01ULSGye/du1q9fz+ZNmyivqMBuNpIUY6FzExstIsz18sG+qqr8Y0c+Lq/KtS3DSImz18sQrHD7+L7AxbennRwtqURVoUXz5qT170+/fv1ITEzUu8RqfuneLAJP//79cbvdvPrqqzizN2BL7Of3sNGKz1OB8/gazIqbp59+RkKmDnk8Hvbs2cOGDRvYvGkTZQ4HNpORDjFmOl0ZyZWRFr8vpexvO3IrKHRWzXTy+aFSUKGHhmvZXCq72UC3ODvd4uyUVnr5Pt/Fd/l5fPjhh3z44Ydc0aoVqWlp9O3b97wTH9cXEjRBbuDAgXg8HmbPno0zexO2ZtegKPU7bHweJ87jazDiYvr0v8oaM3XA6/Xy3XffsX79ejZu2EBpWRlWk4H20RY6tYykdZSlQT3U31/o+tXr+hg0PxduMdIzIYSeCSGUuLzszXeyNz+H999/n/fff58rr7yC/v2vpV+/fvWuCVmCRjB06FC8Xi9vvPEGzuzN2BKvQVHqZ28X1ePCeXwNBm8F0/86nU6d6n4JhGChqiqHDx9m9erVrFu7luKSEsxGA+2jzXRqHkGbaCvmBhQuP+f2qb/5ur6LsBrpkxhKn8RQip1VofPd6Wzeeecd3nnnHTq0b8+1AwbQr1+/ejH1jQSNAGD48OF4PB7eeustnDlbsSX0rndt1qrXjfPEWhRPGdOmT+eqq67Su6SAVFBQQGZmJpmrVnEiOxujQaFtlIWBHaoGUzbk0fqBKNJm5JpmoVzTLJTCCg/f5bvIyv6BN97Yz5tz5pDSowfp6en06NFDt6WnJWhEtdGjR+Nyufjggw9wGcxY47rXm7BRfR6cJ9bhcxXz5JNP0qVLF71LCig+n4/du3fzxRdfsG3bNnw+Hy0iLIxoE06nxjbs5vp5hyvOFW03kdrcRGrzUE6Wudl9ysm3u3awdetWIiMaMXjIUIYMGVLnTWsSNOIcN998M+Xl5Xz22WcoJhvWJsl6l4Sq+nDmbMZTkc/jjz1Gjx499C4pYHi9XtavX8/cuZ+QnZ1DiMVInwQb3ePsRAf4SP1AFxdmJi6sauzSoaJKduRWMH/ePObPn0+/fn255ZYJdTbBp/yfJH5l4sSJFBUVkZmZiWKyY4lqrVstqqriOvkNntJsJk+eLBO7+tGOHTv491tvcSI7m9hQMze0b0THxrYG9VBfXJxBUWgXbaVdtJVip5ftueVs3bSJDRs2kpaWxqRJk4iKitK0Bgka8SuKovDggw9SXFzMzp1fY7CEYQo9/3LeWnMXHcBdfIixY8cyYsQIXWoING63m3fffZclS5bQOMTMTR0iSGocWBNZivOLtBkZdEU41zQLZdMJBxs3rGfXzp08/MgjdOvWTbPzSsOrOC+TycTjjz9OQkICrpxN+CrL6rwGT9lJXHm76NWrF7fffnudnz9QzZ49myVLltArwc7krlF0amKTkAkyoWYDg66oWq3U6q1g+vTp7N27V7PzSdCICwoNDWXatKlYzUZcOZtQfd46O7fPXY4rdwvNmjfjkUceCZjJBfW2d+9eVq1aRb/mIfyudaMG2z1Z+EdsqIlJnSOJsBqZNesfaDVRjPz1it8UHx/PQw/9EU9FIa5Tu+vknKrqw5WzBZNR5c9TpmC32+vkvMEgLy8PgC5Ng/t36vL4sNlsjBo1CpvNhsvj07sk3VhNBjrEWDiVd0qzc0jQiIvq06cPI0aMwF10AI8jT/PzuQsP4Ck/xf3/7/8F7LK3ejk7IePGEw7NPr02BE6PyuDBg7nnnnsYNGgQTk/w/i5KXF6y8l20aNFCs+EMEjSiRiZOnEhcXDyVJ7eh+tyancfrOkNl/rf06tWLAQMGaHaeYNW6dWvGjRvHrjwnCw+cwRmkn+RtJoWVK1cyZ84cvvzyS2ym4GxC/PFMJe9+W4xXMfPQww9rdh4JGlEjNpuNhx9+CG+lA9fp7zQ5h6qqVObtwG6zcf/999ebwaKBZsKECYwfP55vT7t4Y2cRe/OdQXd3YzUZcDqdLF26FKfTidUUXJfCcrePjB9KeWdPEeawKJ56+mlNWw+C67crLktSUhKDBg3CU3QAr6vE78f3nPkRj+MUd9wxUfN+/cHMYDBw6623MmPGDMJiYpn3fQlv7S7icJEr6AIn2Li8PtYfd/DajgK25FQwaNBg/jFrFh06dND0vDKORtTKxIkT2bBhI5WndmNvnua346o+L+78PVxxxRUMHjzYb8cVF9ahQwdmzZ7N6tWr+ejDD/ggq5BmjSz0a2anXbSMqwkk5W4f23LK2ZrrpMLtpUePFG6/fSKtWrWqk/NL0IhaiYiIYNy4m3n33XfxOPL8NpDTXXQAb6WDSZMmYTTW72UKAonRaGTgwIGkpaWxatUqPlswn7l7T9M01EzfZnaSG9vq/doy4sLOuLxszi7n6zwnlR4fvXr14qabbqrzpTUkaEStjRw5ksWLl3Am/1uMIU0v+1mK6nXjLtxH165dZbJMnVgsFn73u98xePBg1q1bx4L581i4/wSrfyynb4KdrnF2mZqmASlyell/3MHuU05UFFJTU7npppto2bKlLvVI0Ihas1gsjB8/jtdffx2v4ySmsPjLOl5l0QF8Hhe///3v/VShuFRGo5EBAwbQv39/duzYwbxPP+XzAwfYkF1BWjM7V8fa5Q6nHit2ell33MGuPCdGo5EhQ3/HmDFjiIuL07UuCRpxSQYNGsSnn86jpOD7ywoa1efBU3SQbt26065dOz9WKC6HwWCgZ8+e9OjRg507d/LRhx+y9OBBtuY6GXpFKFdGWS9+EFFnKr0qG0842HiiHAwGfjdsGDfddBMxMTF6lwZI0IhLZDabGTv2Bt5880285fkYQxpf0nHcxYfxeZyMG3eznysU/qAoCt26daNr165s2bKFf7/1Ju9nnSa5iY3hrcNlnZp64GhxJYsOlVJc4aFfv77ceeddspTz+aSnp2OxWLBaqz4lPfroo6SmprJr1y6mTp2Ky+UiMTGRl156qTqhL3Wf8J/Bgwfz8Sef4Cr8HntI7afvV1UfnqIDJCUl0bFjRw0qFP6iKAp9+vShe/fufPbZZ3w6dy7HS4u4oV04LSMsepdXa7+c460hzvnmU1Uyj5Wx8Xg5cXGxPP6X/623q87Wm48jr732GosXL2bx4sWkpqbi8/l47LHHmDp1KhkZGaSkpDBz5kyAS94n/MtmszFyxAg8pdl4XWdq/X7PmR/xVjq48cYbNahOaMFisXDLLbfw0syZhEQ15v2sYnbnVehdVq21j7b+5uv6zuX1MXdvCRuOlzNw0CBefe0f9TZkoB4FzS9lZWVhtVpJSUkBYPz48axYseKy9gn/GzFiBCaTCXfh/lq9T1VV3EUHSEhIrP63Eg1H27ZtefnlV+jUKZmFB86wOduhd0m1khJvJ9pmINSsMLxNOCnxDWeSUafHxwdZJRwsquTee+/lf/7nf+r9xLP1JmgeffRRRo4cyfTp0zlz5gy5ubkkJCRU74+Ojsbn81FcXHzJ+4T/RUREkJ6ejufMUXweV43f5y0/jbeikDFjrpclABqosLAwpv/1r1zTpw8ZP5Sx8UTDCRtFUQi3GmkcYqJHfEiDme6owl0VMrkOL1OmTGH48OF6l1Qj9eIZzUcffUR8fDyVlZU8++yzPPXUUwwaNEjXmrKysnQ9f0PSpk0bVq5cibv4ENbGnWr0Hnfhfmw2OxEREXz99dcaVyi0dN3AgZScOcOX332HT4XU5qF6lxSQyt0+Psgq5lSFl5tvHofFYmkwfzv1Imji46u6x1osFiZMmMB9993H7bffTk5OTvX3FBYWYjAYiIyMJD4+/pL21UZycnJ15wRxcZs3b2ZP1j7UmA4oym+P7PdVluEpy+aGm2+mT58+dVSh0FL37t155ZWXWbV2HWWVXoZcGS5T2PhRYYWHj/ae4UylypNP/qVeNje7XK4LfkDXvc2ivLyc0tJSoKrd/osvviApKYnk5GScTic7duwAYO7cuQwdOhTgkvcJ7YwaNQqvuwLPmRMX/d7KooMYDAaGDRtWB5WJumA0Gnn44Ue4/vrr2ZpTwQdZxZS46m5F1kC2N9/Jm7uLcSkWnn7mmXoZMhej+x1NQUEBDz74IF6vF5/PR+vWrZk2bRoGg4EZM2Ywbdq0c7opA5e8T2inW7duxMXFk198EHPEhae5UH0evGeO0LdvX+lyHmAMBgOTJk2iRYsW/OuNN3hjZxGDWoVydaxN7m4uQWmll6+OlLH7lJPWra/k8cf/dM7z54ZEUWVe8HOcvf2TprPaW7x4MW+99RYhVwzBaIui/NgqAEJaXlf9PZXFh3HlbueFF16gU6eaPc8RDU9OTg6vvPwy+/bvJy7MzKBWoVwZaalXD93f2VMIwJ2do3Wu5Fwur4+t2eVsOFGBF4WxY8dyyy23YDLpfl/wm37r2lm/KxcNSnp6Ou++9x7uosMY489/e+8tPkzz5i1kgGaAS0hIYMZLL7F+/XreeedtPsgqIDHcTL9mIbSPkSUIzsfx01T+236ayr93797ceeedDfYu5uckaITfhIeHk9qvH2vXbUSNvfpX+73OYjwVhQwdOrZefbIV2lAUhbS0NHr37v3TEgQL+PT7U8SEmOkea+XqWDshQT6Fjaqq5JR52JFbTlZ+JW6vj969ejH2xhs1X4ysLknQCL8aOHAgq1evxlP6604B7pIjGI1G+vfvr0NlQi8/X4Jg06ZNLFu6lJXff0/mMQdJMVa6xtlpFWEOqrucCrePrNNOvjnlJLfUjdVqIX3gIEaPHq3pksp6kaARfpWcnEx0dAwlZ348Z7uqqvhKj9O9e3ciIiJ0qk7oyWg0kpqaSmpqKseOHWPFihWsWvUV335bRITNROcmVro0tdE4JDAvS16fyuHiSnblVbC/sBKvT6Vlixbce+swBgwYQEhIiN4laiYw/0WFbgwGA6mp/ViyZCmKLbq6icxbkY/XXU5qau0n3xSBp2XLlkyePJk77riDrVu38tVXX7Fh1y7WH3eQGG6mcxMbnZrYCLM07KY1VVXJLvOw51QF3+VX4qj0Eh4WxrDhg0lPT6d169ZB0YwsQSP8rk+fPixevBi8lSimqt4n3rJsDAYjPXv21Lk6UZ9YrVbS0tJIS0ujoKCAdevWsTozk+U/HCXjSCmtI610bmqjQ4wVs7HhXJCLnF72nKpgz+lKCsrdmE0mevbqzbXXXkv37t0xm816l1inJGiE33Xo0AF7SAgVrko4GzSOk3Ts1DGgmwfE5YmJiWHMmDGMGTOGY8eOsWbNGlZnZvLZ/kKsJgMdYyxcHWunRSNzvbwLcHl8ZOU72X3KxY8llUBVU/Kt6elcc801hIYG79Q8EjTC74xGI1d36cLmLVsB8HlceJ3FdOs6SufKREPRsmVLJk6cyG233UZWVhaZmZls3LCBnXlFxISY6drUSpdYG+GW357uSGuqqvLjGTc786qaxtxeH80SE7l99HX079+/3i1AphcJGqGJTp06sXnzZlSfD2/FaQAZOyNqzWAw0LlzZzp37sy9997Lhg0b+HLlSr76qddax8ZWeiXYaRZet3c5lV6Vb09XsC3XSV6ZG5vVyoDrBjJo0CDat29fL++49CRBIzTRvn17AFSfG19FIYqi0KZNG52rEg2ZzWZj4MCBDBw4kBMnTrB8+XK+/HIlWbuLSAy3kNrcTvtoq6YX+XK3jy3Z5Ww/WTWoslWrljxwx0jS0tLq/ZowepKgEZpo2fKn+c58HryuYhISE2VKH+E3zZo145577uH3v/89mZmZLFq4kLl784gLM9O/eQgdYvwbOBUeHxtPONiW66TS46N3716MHn09nTp1kruXGpCgEZqw2+2YzWbcPi+Kp4xWLevvMrOi4bLb7QwfPpyhQ4eybt06Pp07l0+/z6FVpIXfXRlGbOjl9e7yqSrfnKwg88dyKtxe+vXrx7hx4//7QUrUiASN0IzFYsFd7sLrKguI+ZpE/WU0GhkwYABpaWlkZGTwwfvv86+dRaQ2DyGtRSjGS7jrKKzwsPBAKcfPVNIxKYk/TJ5M69atNag+8EnQCM1YLBYcDgcq0KRJE73LEUHAaDQybNgw+vXrx5tvvsmaNWv4odjNzUmNatVD7bvTTpYcKsVgtvDQQw8xYMAAaSK7DA172K2o134+rbmsPSPqUqNGjXjkkUd47LHHOOWCt3YXc8rhqdF7N51wMH9fCa1at2XWrNmkp6dLyFwmCRqhmZ8HjcxvJvSQlpbGCy+8iGIN5f3viims+G/YdI210zX23J5im044WHmkjL59+/Lcc8/JOBg/kaARmvl50ISHh+tYiQhmbdq04bnnn0cx2/nwuxKcHh8AV8faufpnQbM331kdMo899hgWi0WvkgOOBI3QTPfu3au/DubpN4T+mjdvzl+mTqXY5WPZodJf7S92ellysJS2bdvwyCOPYDTqO+NAoJGgEZrp06dP9dcyx5nQW1JSEuPHjyfrtJPDRa5z9q08UopqMPH4438Kugkv64IEjdCMzWar/lr+eEV9MHbsWGKbNuGrow5UVQUgu9TN3nwXY2+8kbi4OJ0rDEwSNEIzMhOAqG8sFgs33TyO3DI3R0vcAGzOdmC32xg9erTO1QUuCRqhGXmYKuqjAQMGYLfb2H2qAqfHx76CSq67bqA072pIgkZoRoJG1EcWi4U+fa5hf6GbA4UuPD6VtLQ0vcsKaBI0QjPyXEbUV127dqXC7WVzdjmhIXbatWund0kBTYJGaObn42iEqE+SkpIAyC3z0K5de+nOrDEJGqEZ+eMV9VXTpk2xWquadlu2aqVvMUFAgkZoRoJG1FeKomCzVnW/j4+P17mawCdBI4QISk1+msdMZhbXnjSiCyGC0h//+EeysrK4+uqr9S4l4EnQCCGCUsuWLWWlzDoiTWdCCCE0JUEjhBBCUxI0QgghNBWwQXPkyBHGjRvHkCFDGDduHEePHtW7JCGECEoBGzTTpk1jwoQJZGRkMGHCBKZOnap3SUIIEZQCMmgKCgrYu3cvI0aMAGDEiBHs3buXwsJCnSsLPn/4wx8k5IUIcgHZvTk3N5fY2NjqkelGo5GmTZuSm5tLdHS0ztUFl5EjR+pdghBCZwEZNP6QlZWldwlCCBEQAjJo4uPjycvLw+v1YjQa8Xq9nDp1qlZzGiUnJ8sKkUIIUUMul+uCH9AD8hlNTEwMSUlJLFu2DIBly5aRlJQkzWZCCKGDgLyjAZg+fTpPPPEE//znP2nUqBEvvvii3iUJIURQCtigad26NfPnz9e7DCGECHoB2XQmhBCi/gjYO5pLpaoqAJWVlTpXIoQQDcfZa+bZa+jPSdD8gtvtBuDAgQM6VyKEEA2P2+3GZrOds01Rzxc/Qczn8+FwODCbzSiKonc5QgjRIKiqitvtJjQ0FIPh3KcyEjRCCCE0JZ0BhBBCaEqCRgghhKYkaIQQQmhKgkYIIYSmJGiEEEJoSoJGCCGEpiRohBBCaEqCRlyyKVOm8NJLL52z7Y477uDjjz/WqSIhfi09PZ0RI0bg8/nO2Sazf9QdCRpxyf785z+zfPlydu/eDcDcuXNRFIVbbrlF58qEOFd5eTmLFy/Wu4ygJUEjLll4eDhPP/00U6ZM4ciRI7z++us8++yzKIrCggULuPHGGxkzZgwTJ07k6NGjAOzYsYPrr7+e0aNHM2LECL744gt9fwgRFB544AFmzZr1q8lyjx07xsSJExk5ciRjxoxh3bp1OlUY2GRSTXFZ+vbtS48ePbjxxhuZMmUKCQkJbN26la+++oqPP/4Yi8VCZmYmTz75JB9++CFz5sxh8uTJ/O53v0NVVUpLS/X+EUQQSE5OplOnTnzyySdMnDixevujjz7KzTffzE033cShQ4e49dZbWb58uazG62cSNOKyTZo0ieXLl3PjjTcCkJmZyd69e7npppuAqsn2HA4HAL169eKf//wnR48epW/fvnTu3Fm3ukVw+eMf/8jtt99e/f+pqqp8//33jB07FoA2bdqQlJTErl27SE9P17PUgCNBIy6bwWA4Z6ZrVVW5+eabeeCBB371vZMmTWLgwIFs2rSJ6dOnM2DAAB588MG6LFcEqSuvvJL+/fvzzjvv6F1K0JFnNMLvBgwYwKJFi8jLywPA6/WSlZUFwA8//EDLli255ZZbuO2229izZ4+epYog8+CDD/Lxxx/jcDhQFIWkpCQWLlwIwOHDh9m3bx9XX321zlUGHrmjEX7Xp08fHnjgASZPnozP58Pj8TBs2DCSk5N577332LFjB2azGYvFwtSpU/UuVwSRuLg4Ro8ezdtvvw3AzJkzmTp1Ku+++y4mk4kZM2bI8xkNyHo0QgghNCVNZ0IIITQlQSOEEEJTEjRCCCE0JUEjhBBCUxI0QgghNCVBI0Q9cffdd1eP6RAikEj3ZiE0lJ6eTn5+PkajEbvdTlpaGn/5y18IDQ3V7Jy33XYbo0aNqp4CSAi9yR2NEBp744032LlzJwsXLiQrK4vXX3/9nP2qqp6zVooQgUaCRog6EhsbS2pqKgcPHuS2227jlVdeYfz48XTp0oXjx49z2223MX/+fCorK0lJSTlnYa7CwkI6d+5MQUEBJSUlTJ48md69e9OjRw8mT57MyZMnAXjllVfYsWMHTz31FF27duWpp54CqqZXufPOO+nZsydDhgyR5RlEnZKgEaKO5Obmsm7dOpKSkgBYvHgxTz/9NN988w0JCQnV32exWBg0aBCff/559bbly5fTo0cPYmJi8Pl83HDDDaxevZrVq1djtVqrA+Whhx4iJSWFqVOnsnPnTqZOnUp5eTl33XUXI0aMYNOmTbzyyiv89a9/5dChQ3X7CxBBS4JGCI3df//9pKSkMGHCBHr06MG9994LwJgxY2jbti0mkwmz2XzOe0aOHHlO0CxdupSRI0cCEBUVxZAhQ7Db7YSFhXHfffexffv2C55/zZo1JCYmMnbsWEwmEx07dmTIkCGsWLFCg59WiF+TSTWF0Njs2bO55pprfrU9Pj7+gu/p1asXTqeT3bt3ExMTw759+xg4cCAAFRUVPP/886xfv56SkhIAHA4HXq8Xo9H4q2NlZ2ezZ88eUlJSqrd5vV5GjRp1uT+aEDUiQSOETn6+hs8vGY1Ghg4dyrJly2jcuDHXXnstYWFhALz99tscOXKEefPm0aRJE77//nuuv/56LtSBND4+nh49esg6LEI30nQmRD01cuRIli9fztKlSxkxYkT1dofDgdVqpVGjRhQXFzNr1qxz3te4cWOOHz9e/fraa6/l6NGjLFq0CLfbjdvtZs+ePRw+fLjOfhYR3CRohKinunTpgt1u59SpU6SlpVVvnzhxIi6Xi969ezNu3DhSU1PPed/tt99ORkYGPXr04JlnniEsLIx///vffPHFF6SmptKvXz9mzpxJZWVlXf9IIkjJgE0hhBCakjsaIYQQmpKgEUIIoSkJGiGEEJqSoBFCCKEpCRohhBCakqARQgihKQkaIYQQmpKgEUIIoSkJGiGEEJr6/1eSbT+I8kROAAAAAElFTkSuQmCC\n",
"text/plain": [
"