{
"cells": [
{
"cell_type": "code",
"execution_count": 43,
"metadata": {},
"outputs": [],
"source": [
"import seaborn as sns\n",
"import pandas as pd\n",
"import numpy as np\n",
"from matplotlib import pyplot as plt\n",
"from sklearn import linear_model\n",
"import statsmodels.api as sm\n",
"import statsmodels.formula.api as smf\n",
"from sklearn import metrics\n",
"\n",
"sns.set()\n",
"sns.set(style=\"whitegrid\")\n",
"tips = sns.load_dataset(\"tips\")\n",
"plt.rcParams[\"figure.figsize\"] = (8,5)"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {},
"outputs": [],
"source": [
"\n",
"def precision_stats(model, y, X):\n",
" pred_y = model.predict(X)\n",
" coefficients = model.coef_\n",
" intercept = model.intercept_\n",
" MSE = metrics.mean_squared_error(y,pred_y)\n",
" # these 3 are all the saem\n",
" score = model.score(X,y)\n",
" explained_var = metrics.explained_variance_score(y, pred_y)\n",
" R2 = metrics.r2_score(y, pred_y)\n",
" # residuals\n",
" res = y - pred_y \n",
" print(\"Residuals info\", res.describe())\n",
" \n",
" print(\"coefficients:\", coefficients)\n",
" print(\"intercept\", intercept)\n",
" \n",
" print(\"MSE\", MSE)\n",
" print(\"explained variance\", explained_var)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Unnamed: 0 | \n",
" crim | \n",
" zn | \n",
" indus | \n",
" chas | \n",
" nox | \n",
" rm | \n",
" age | \n",
" dis | \n",
" rad | \n",
" tax | \n",
" ptratio | \n",
" black | \n",
" lstat | \n",
" medv | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 1 | \n",
" 0.00632 | \n",
" 18.0 | \n",
" 2.31 | \n",
" 0 | \n",
" 0.538 | \n",
" 6.575 | \n",
" 65.2 | \n",
" 4.0900 | \n",
" 1 | \n",
" 296 | \n",
" 15.3 | \n",
" 396.90 | \n",
" 4.98 | \n",
" 24.0 | \n",
"
\n",
" \n",
" 1 | \n",
" 2 | \n",
" 0.02731 | \n",
" 0.0 | \n",
" 7.07 | \n",
" 0 | \n",
" 0.469 | \n",
" 6.421 | \n",
" 78.9 | \n",
" 4.9671 | \n",
" 2 | \n",
" 242 | \n",
" 17.8 | \n",
" 396.90 | \n",
" 9.14 | \n",
" 21.6 | \n",
"
\n",
" \n",
" 2 | \n",
" 3 | \n",
" 0.02729 | \n",
" 0.0 | \n",
" 7.07 | \n",
" 0 | \n",
" 0.469 | \n",
" 7.185 | \n",
" 61.1 | \n",
" 4.9671 | \n",
" 2 | \n",
" 242 | \n",
" 17.8 | \n",
" 392.83 | \n",
" 4.03 | \n",
" 34.7 | \n",
"
\n",
" \n",
" 3 | \n",
" 4 | \n",
" 0.03237 | \n",
" 0.0 | \n",
" 2.18 | \n",
" 0 | \n",
" 0.458 | \n",
" 6.998 | \n",
" 45.8 | \n",
" 6.0622 | \n",
" 3 | \n",
" 222 | \n",
" 18.7 | \n",
" 394.63 | \n",
" 2.94 | \n",
" 33.4 | \n",
"
\n",
" \n",
" 4 | \n",
" 5 | \n",
" 0.06905 | \n",
" 0.0 | \n",
" 2.18 | \n",
" 0 | \n",
" 0.458 | \n",
" 7.147 | \n",
" 54.2 | \n",
" 6.0622 | \n",
" 3 | \n",
" 222 | \n",
" 18.7 | \n",
" 396.90 | \n",
" 5.33 | \n",
" 36.2 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Unnamed: 0 crim zn indus chas nox rm age dis rad \\\n",
"0 1 0.00632 18.0 2.31 0 0.538 6.575 65.2 4.0900 1 \n",
"1 2 0.02731 0.0 7.07 0 0.469 6.421 78.9 4.9671 2 \n",
"2 3 0.02729 0.0 7.07 0 0.469 7.185 61.1 4.9671 2 \n",
"3 4 0.03237 0.0 2.18 0 0.458 6.998 45.8 6.0622 3 \n",
"4 5 0.06905 0.0 2.18 0 0.458 7.147 54.2 6.0622 3 \n",
"\n",
" tax ptratio black lstat medv \n",
"0 296 15.3 396.90 4.98 24.0 \n",
"1 242 17.8 396.90 9.14 21.6 \n",
"2 242 17.8 392.83 4.03 34.7 \n",
"3 222 18.7 394.63 2.94 33.4 \n",
"4 222 18.7 396.90 5.33 36.2 "
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"Boston = pd.read_csv(\"../../datasets/Boston.csv\")\n",
"Boston.head()"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Residuals info count 5.060000e+02\n",
"mean -4.437382e-15\n",
"std 6.209603e+00\n",
"min -1.516745e+01\n",
"25% -3.989612e+00\n",
"50% -1.318186e+00\n",
"75% 2.033701e+00\n",
"max 2.450013e+01\n",
"Name: medv, dtype: float64\n",
"coefficients: [-0.95004935]\n",
"intercept 34.5538408793831\n",
"MSE 38.48296722989415\n",
"explained variance 0.5441462975864798\n"
]
}
],
"source": [
"# "
]
},
{
"cell_type": "code",
"execution_count": 65,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" OLS Regression Results \n",
"==============================================================================\n",
"Dep. Variable: medv R-squared: 0.544\n",
"Model: OLS Adj. R-squared: 0.543\n",
"Method: Least Squares F-statistic: 601.6\n",
"Date: Sat, 28 Mar 2020 Prob (F-statistic): 5.08e-88\n",
"Time: 09:39:54 Log-Likelihood: -1641.5\n",
"No. Observations: 506 AIC: 3287.\n",
"Df Residuals: 504 BIC: 3295.\n",
"Df Model: 1 \n",
"Covariance Type: nonrobust \n",
"==============================================================================\n",
" coef std err t P>|t| [0.025 0.975]\n",
"------------------------------------------------------------------------------\n",
"Intercept 34.5538 0.563 61.415 0.000 33.448 35.659\n",
"lstat -0.9500 0.039 -24.528 0.000 -1.026 -0.874\n",
"==============================================================================\n",
"Omnibus: 137.043 Durbin-Watson: 0.892\n",
"Prob(Omnibus): 0.000 Jarque-Bera (JB): 291.373\n",
"Skew: 1.453 Prob(JB): 5.36e-64\n",
"Kurtosis: 5.319 Cond. No. 29.7\n",
"==============================================================================\n",
"\n",
"Warnings:\n",
"[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.\n"
]
}
],
"source": [
"results = smf.ols('medv ~ lstat', data=Boston).fit()\n",
"print(results.summary())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": []
},
{
"cell_type": "code",
"execution_count": 66,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" 0 | \n",
" 1 | \n",
"
\n",
" \n",
" \n",
" \n",
" Intercept | \n",
" 33.448457 | \n",
" 35.659225 | \n",
"
\n",
" \n",
" lstat | \n",
" -1.026148 | \n",
" -0.873951 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" 0 1\n",
"Intercept 33.448457 35.659225\n",
"lstat -1.026148 -0.873951"
]
},
"execution_count": 66,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"results.conf_int()"
]
},
{
"cell_type": "code",
"execution_count": 69,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 69,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAfUAAAFCCAYAAADoh0TcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOydeXgU9f3H3zt7J9kkm4QA4VTOCEFDIFwBLAhSK6LSlqgtgkQsYKG2WM5yKBAQqoJVPDgUi8a2/CxyFAVTFTkSCKGQiIAc4UoIJJvNJtl75vfHMpM9Zje7yW4uPq/n8ZHsMfOdCcz7+7klHMdxIAiCIAiixcM09QIIgiAIgggOJOoEQRAE0UogUScIgiCIVgKJOkEQBEG0Elq0qHMcB7PZDMr1IwiCIO4G6tI9WSOvJ6iYzWYUFhaiZ8+eUCgUTb0cgiAIgggpFosF586dQ58+faBSqTzeb9GibrVaAQDnzp1r4pUQBEEQRONhtVpbn6jL5XLhz3379m3ClYSWgoICur4WDF1fy4aur+XSGq+Nt9Sd9c+ZFi3qEolE+LNSqWzClYQeur6WDV1fy4aur+XSWq/NWf+cadGJcgRBEARB1EKiThAEQRCtBBJ1giAIgmglkKgTBEEQRCuBRJ0gCIIgWgkk6gRBEATRSmi0krZRo0ZBoVAI5QVz587F8OHDcfLkSSxZsgRmsxkdOnTA2rVrERsb21jLEmBZDvpqM1iWA8ty4DhALmcQFa4Ew4iXDrAsh8oaMywWFizHQcpIwDASWKwsZFIJFHIGYUo5KqrMsNk5yKQSaDUqyGSM3+cGgPiErijV1UAu872eYFy/1cbW6zy+vt/QYxMEQRD+0ah16hs2bEDPnj2Fn1mWxcsvv4zMzEwMGDAA77zzDtatW4fMzMzGXBZYlkNRSSW27zuD8cO7YcNn+SjVGRGvVWPxc4PQpV2khwixLIcbt6tQXmnC+qzaz89JT8a2PWegM5iw6LlU3GZNWPVhrvD+gimp6NouUhB2X+dePn0IrDYWK7bk1bmeYFz/ii059TqPr+8DaNCxCYIgCP9pUvd7QUEBlEolBgwYAABIT0/Hvn37Gn0d+mozVmzJweiBXQRRBYBSnRErtuRAX20W/U5JWbUg6Pzn12flY+KoHijVGVGurxV0/v3MD3OhM5j8OndJWbUghnWtJxjXX9/z+Pp+Q49NEARB+E+jWupz584Fx3FISUnBH//4RxQXFyMhIUF4PyYmBizLoqKiAtHR0QEdOy8vr97ratuhG0p1RmjC5IL48JTqjKiuNuHiuUKP76gUMtHPa8Ic7fu8vW+zs8J6fZ3b2/fF1tMQ+DXU9zy+vs//ua5jN+T31xKg62vZ0PW1XFrztYnRaKK+fft2tG/fHhaLBStXrsQrr7yCMWPGBO34KSkp9f6uzmBCvFYNQ40V8Vq1iwjFa9UID1d5HF9nMKFEVyH6eUONY9CMyWITfV8mZYTj+Tq3t++Lrach8Guo73l8fZ//s69j5+XlBfV6mht0fS0bur6WS2u8NrPZjIKCAq/vN5r7vX379gAAhUKBp59+GidOnED79u1x48YN4TPl5eVgGCZgK72hRIUrsfi5Qfj6WBFmT0pGvFYNAEL8l09Yc/9Ou9hwzEl3/fyc9GTsyD6PeK0aMVEqLJyS6vL+gimp0GpUfp27XWw4Fj83yK/1BOP663seX99v6LEJgiAI/2kUS72mpgZ2ux0ajQYcx2Hv3r1ITExE3759YTKZcPz4cQwYMABZWVkYN25cYyzJBYaRoEu7SMz61QNgWQ6rZ6WBA3xmajOMBAlxEYgIkyNzZppL9vuffpMCGVOb/b56VhpsLAcZ45n9Xte5AWDZtBQoVWqv62lodjm/hnVzRtTrGHV9vyHHJgiCIPynUUS9rKwMv//972G328GyLLp164alS5eCYRi89tprWLp0qUtJW1PA3BHcQL8THVH3d2Kj1ILoGowWD1Gr69ylNy57dSE1NHPd3zU05PsNPTZBEAThH40i6p06dcK///1v0ff69++PXbt2NcYymgRn0dVqVEgf2xMJcRFQKWWIjmi4xeotu3zdnBEkpARBEHcZLXqeekuAF12tRoXfPpLoVw18IFhtrGh2udXGNnTpBEEQRAuD2sSGGF50J47q4XcNfCDIZYyQhMYTr3XE3wmCIIi7C3ryhxhedL3VwDfUoqbscoIgCIKH3O8hhhfdMr1RtF67oRZ1QzPXCYIgiNYDWeohhhfdHp2isXBqakgsaj67PF4bBq1GRYJOEARxl0KWeiPAMBJERaigCVOSRU0QBEGEDBL1RoTqtQmCIIhQQqLeiNBccYIgCCKUkKg3EsHq/EYQBEEQ3qBEuUaC5ooTBEEQoYYs9Qbir0udOr8RBEEQoYZEvQEE4lLnm9AEu06dIAiCIHhIURpAIC516vxGEARBhBqy1BuAvy513kUfrnLMVmfuzF2n7HeCIAgimJCoNwB/XOqU9U4QBEE0FuR+bwD+uNQp650gCIJoLMhSbwD+DFPx5qI3W+wo1dVQExqCIAgiaJCoN5C6Wr96c9FfKzVg+aYccscTBEEQQYPc7yFGzEU/Jz0ZWV+dA0DueIIgCCJ4kKUeYtxd9ADw2rbjOHtFJ3yGmtAQBEEQwYBEPUj46izn7KLXGUzQGUwu36UmNARBEEQwIFEPAt7K1jrFa2AwWlyEnnfHu3+WmtAQBEEQDYVEPQjoq83Yvu8MMiYkQRMmh6HGKvy8aOMhj/r0ujLmCYIgCKI+kKgHAZblMH54N2z4LF8Q8NmTklFtsnrUp6+bMwJajcpnxjxBEARB1AcK5AYBluUEQQccAr7hs3zIpVKXzzXHhDiW5aAzmFCqq4HOYALLck29JIIgCKKekKUeBDgOog1mpFIgc+YwGGqs2JF9HjqDqVklxFELW4IgiNYFiXoQkMvFG8wU364WGszMSU9GTKSqWSXEeWthy4cICIIgiJZF8zEbWzD+NJhZn5WPMJW8WVnA/k6ZIwiCIFoGZKkHAYaRoFO8BqtnpcHGcpBKJHjtY88GMzZ78xJLf6bMEQRBEC0HenoHAZblcLXUgPlvf4/pqw7gys3KFtFgxp8pcwRBEETLgSz1IOAem8766hzmpCdjfVZ+s24w48+UOYIgCKLlQKLuJ77awLrHps9e0WHbnjPInJUGAM1aLOuaMkcQBEG0HEjU/aCu0i+x2DRfvkaCSRAEQTQWzSvI20zxVvrFj0sNRmyamsAQBEEQDYUsdT+oq/SrobFpagJDEARBBAOy1P2Ad687457Nzsem47Vh0GpUAYlxXZ4AgiAIgvAHEnU/CHXpFzWBIQiCIIIBud/9INSlX9QEhiAIgggGpBp+0hD3el1QExiCIAgiGDS6pf63v/0Nb731Fnbt2oWePXvi5MmTWLJkCcxmMzp06IC1a9ciNja2sZfVpFATGIIgCCIYNKqlXlhYiJMnT6JDhw4AAJZl8fLLL2PJkiX48ssvMWDAAKxbt64xl9RsCKUnwF+orI4gCKJl02iibrFY8Morr2DZsmXCawUFBVAqlRgwYAAAID09Hfv27WusJRFO8GV1c9d/h2kr9mPu+u9QVFJJwk4QBNGCaDT3+/r16/HYY4+hY8eOwmvFxcVISEgQfo6JiQHLsqioqEB0dHRAx8/LywvaWpsjob6++ISuWLElz6Osbtm0FJTeuBzScwP0+2vp0PW1bFrz9bXmaxOjUUQ9Pz8fBQUFmDt3bsjOkZKSErJjNzV5eXkhv75SXY1oWZ1SpQ75uRvj+poSur6WDV1fy6U1XpvZbEZBQYHX9xvF/X7s2DFcuHABo0ePxqhRo1BSUoJp06ahqKgIN27cED5XXl4OhmECttKJhuNPgx2CIAiiedMoT+zp06fj+++/R3Z2NrKzs9GuXTts3rwZGRkZMJlMOH78OAAgKysL48aNa4wlNTnNLSmNyuoIgiBaPk3afIZhGLz22mtYunSpS0lba6c59nqnsjqCIIiWT5OIenZ2tvDn/v37Y9euXU2xjCbDW6/3dXNGNOmoVpqtThAE0bKhgGkTQL3eCYIgiFBAvd+bgLp6vbMsB321WXCDq8PCmmqpBEEQRAuCRD1IuAuxr3g0n5TmHlOPCleKxtvnT04By3IU3yYIgiB8QqIeBAJNfPOVlKYzmDzi7au35TV5vJ0gCIJo/lBMPQh4S3wz1Ji9lq156/XuLd5uttibvOyNIAiCaN6QpR4ExIRYq1Hhtt6EVVtzAypbc4+39+qsRfrYnrDZWJTqahAXpYaMGsIQBEEQIpA6BAGxbmzpY3sKgg7UWu/6arPPYzk3genVWYvJv0jExh2nMOO1bCzaeAhXbtKQFYIgCEIcEvUgINaNLSEuol5la3y8PXNWGl56uj/WZ+W7bAxWbs2tc2NAEARB3J2Q+70BOGe8x0QqsXb2CNjsjsQ3joPPsjVfMIwEchmD2xXGZlHPHkhmP0EQBNF0kKjXk7oy3lmW81q25g9R4UqYLXbRjYHkzvkbQ1gb2tKWNgQEQRCNB7nf64m3jHfeNe5ctrZ58RismzMioN7uDCNBXJQai6amurj1Z09Kxnufn0JRSf1i6/4OkuE/d1tv9HmddZ2rqKQSc9d/h2kr9mPu+u/qvW6CIAiibshSryf+tHptaC91mYxB1/ZRWDljKMorzdBXWfDx3jM4e0WHSzcqA65d99fqdv7cS0/1r3cIoLn2uCcIgmitkKVeTxpr/jjDSGCz2jDvb99j1Ye5OHtFB6B+sfW6vAtinzPUWOt9ndTjniAIonEhUa8nwZ4/7uwWL680QV9V6yKXShGUDYS/Iuv8uR3Z5zF7UnK9rrOxNj4EQRCEA3K/15Ngzh8X7ff+7EBIAFRUmRGvVWP59CFY+v6RgJPunBPVJPAvI9+5Ac7ZKzp8vPcMZkzsh47xGigVUr+v01ePe4IgCCL4kKiL4G/GdrDmj4u5xVd/dAwZE5KwaedpzElPRud2Grz+hxEwW1mwLAeFXOrXdThvFgb1aYsFU1KR+WGuT5F1F2OdwYTYKDXitWEBbVqCufEhCIIg6oZE3Y2GlnD5c3z3DYPVKu4W14TJUaozYn1WPlbPSkOV0RrQutw3CzmFNwEAq2elgQO8imwwxThYGx+CIAiibii46Ya/yWT1wVuJl0QiHjM31FiFNdhYLuB1icXQcwpvggM8Bsm4423gDEEQBNF8IVF3I5QZ2942DJDAIxlt9qRk7Mg+L/wslUgCXpe3RDWW5ahWnCAIohVCou5GKDO2vW0YOA7YdfACMiYkYe3s4Vg+fSh2HbyAs1d0iNeqseDZAVAqAl9XVLhStHnNpp2nqX88QRBEK4Ri6m6EMmPbfawq4BBapZzBM+MSXRLaMiYkYfoT/SCXMSi+dgmaDr0DXhfDSBAVoUTGhCRowuQw1FiF5jXTn6BacYIgiNYGiboboczY9rZh0IQpoQlTej3nxZqaeq+LYSTYtPN0vQbLBBPqAU8QBBF6SNRFCFXGdl3CXNc567Ou5lArHuqKAoIgCMIBiXoDaS4WqLAOKwuJxLEBkEklsLNAuEqO1bPSwDASh0u+kddIPeAJgiAaBxL1BhCoBcp/fvu+Mxg9sAuiIhQwW+yIi1JD5uQOd98oqMPCAl7HnycPgM3G4fVP8hpsHTd040I94AmCIBoHEvUGEKgFqq82Y/u+Mxg/vBs2fJYviO2iqamIjVLBbGWhlDMorzS7toydnOJzfrrYOgzVFmzccarB1nEwXOfeEgSpBzxBEERwoadqAwjUArXaWIwe2EUQdP7zK7fm4vzVCkxbsR/nr1Z4tozdlieUoInNQxdbh0ohC4p1HIxmPMEefkMQBEGIQ5a6E/85fAkHT97A6IGdkPZAByjr6K/uywIVc1nLZQyiIhSiYqtSOH4VvsRYzGpeODUV2gilxzpMFltQrONguM6pBzxBEETjQJa6Ex3baqAzmPBmVj6mLP8SH+w8jWulBq+f92aBatQK0XawGrUCMZEqny1hfc0vF7OaV23NxfVb1VgwxbXJjCZcgT8+ndIg65hlOUgArHkxDQunpKJXZ63LegKB2s4SBEGEHrLUnUjqFod3/jwKBRfLsO/wZew9dAlffHcR/brHYdyQrhjct72LmDGMBJ3iNVg9Kw02OweZ1CFcBqPFa6w9LsoRQ1+5tXZS2pz0ZGzbcwaAY375nPRkrM+qjbnPn5yCqHAlbuuNolazRAJkffWjMKhFgtrs97WzR8BmZ4XX9NVmv6xkMa/A7EnJ2HXwAp4Zl0iuc4IgiGYIibobEokESd3ikNQtDhUGM/bnFmHf0SK89vFxREcoMWZQZzw8uCvaxoSBZTlcLTV4JJFFhou72K02FjIZg67towRXtEzKoMZkhc5gAgDoDCbERKoEMeY7yjFMrFd3v6HGipzCm5j+hGNQizP1TXQT8wps+MwxLS42Sk2WNkEQRDOERN0H0RolfjW6Jyb+rAfyz5XiP4cvY0f2efwr+zxSerfF8AcS8Pf/nMGtCocg8xb56llpouIrkzLQGUxCXDnujjhGR3jvJgcAxYCQFOdu5c+elIyP957xcInzMX2zxY4yvRFajQqlOqPfWfBe+9QDJOgEQRDNFBJ1P2AYCVJ6t0VK77a4pTPiq5wifJVzGcfP3PT4LC987l3cFk1Nhc1mx5WbBmR9dQ46g8nFYuYF1j3BTqNWQB4ej7nrvxP6wq+cMQwcx+H6rSp8vPeMcCzeJe7Ndc73ffcn0Y3K0AiCIFoeJOoB0karxjPjemPSmJ74b95VvLvjFCxOAhkdoYDULdubZTls2nkaOYU3XQTW2WJmWQ4VVWaYzDbcuF0lCP+iqan47MB5QVxzCm/i0o1KrJ09At06RuPPkwd4WPfeXOcZE5Kw6sNcv8S5ObSXJQiCIAKDRL2eyKQMRg/ojO4do7HsgyMorzRDIgEqqixY8M4hjBvcFaMHdoJcxghWNuApsN5K1XjhX7k1FxkTkpBTWOsVKNUZYbOzHvFzHm+uc02Y3G9xbs5laM2lNS9BEERzg0S9AfDC9+YfHxTc2YUXy/Dl0SJs3V2Ij/9zBgMS430KrATAbb3Rp2UdFaFw+X5dlrY313l8TBjWzRnhtwiGarBNQ2juw2HENhwEQRCNBYl6A3EXvviUMPwspROKSiqx7/BlfH38qsd34rVqmCw2LJiSivc+P4XHR3b3KfyR4bXNZfyxtL25zuNaQdZ6cx4O423DUVfvfoIgiGBBoh4iurSLxAtP9sNvH0nEv7+9gH9+fQ42OwcAuLdDFCSQIOurH5FTeBOjB3YRtaxNFhtmT0rGjuxzyJiQ5BD5mLA6xbmxXOdN4QZvzsNhvG04lk1LaeKVEQRxt0CiHmLCVHKkj+mFnw/tivNXdPju5HUcPV2CowUlwmeOnLqOFb8bCp3BDH2VBV8fK8JTY3vDbLVhyxc/4OwVHQ4cu4p4rRrr5oxokOu8LiH2V6ibyg3enLPyvW04JBLf7YYJgiCCRaOJ+syZM3Ht2jUwDIOwsDD85S9/QWJiIi5duoT58+ejoqIC0dHRWLNmDbp27dpYy2oUeIFN7dMeqX3ao8poxd5DF/HJl2dhZzkcKSjB0cISGM12xGvVmDd5II79UILEe2KFpjTByD6vS4gDEeqmcoM356x8bxsOjrM34aoIgribaDRRX7NmDTQaDQDgwIEDWLhwIT7//HMsXboUTz/9NCZMmICdO3diyZIl2LZtW2Mtq0mIUMvxy1E9MSCxLU6eu4VPvjoLk9nx4C/VGbF80xH87sn7sevgBayelQaz2YLwcFWD3dsVVeJCvHb2CMREqgIS6qZyg4uFFjRqRbPIhve24TBU3ADaxzb6egiCuPtoNFHnBR0AqqqqIJFIUFZWhh9++AFbt24FADz66KN49dVXUV5ejpiYmMZaWkioy43NMBJ0bR+FMJUcW3f/4PLdymor3v7nSQxOag+LlcXN6xeQktLwuKzFahcVYovVsaEIRKib0g3u3qwnGGGAYOQHeMtlyC/+KaDjEARB1JdGjakvWrQIhw4dAsdx2LRpE4qLi9G2bVtIpY6Yo1QqRXx8PIqLiwMW9by8vFAsuV6ow8IgD4/H6m15LkNZrNWlMNbUuHw2PqGrhzhGRyjQNSEK/z1+FV8fu4pu7ZS4WHoMA/vdA5lUBo6zw1Dheay66Ni1l6gQS8AhLy9PdC3xWjXMJiPy8s54XOP8ySke11h87RIuBrguoP6/v/iErlixJU80Oa30xmW/jhHI76u+NKe/n6GArq9l05qvrzVfmxgSjuO4xj7pv//9b+zZswdz5szBvHnzsGfPHuG9Rx55BGvXrkWfPn3qPI7ZbEZBQQEABMWSDRY6g8ml4QwAIcnN3Y1ts7EoulmJVSL93J9/oi/yz97C7oM/QV9tAyMBWA6IjVJhacbggK1RfZUJRSUGYQLcoD5tMfXRvpBKJVAqpNCoFaIDarydJ1jZ73l5efX+/ZXqajBtxX6P1zcvHuO1OY87gfy+6kNDrq8lQNfXsmnN19car43Xvb59+0Kp9MwlapLs98cffxxLlixBu3btcPPmTdjtdkilUtjtdpSWlqJ9+/ZNsayg4a8bm5/y9umXPyJjQhKiIhSI1ihRWW3Bc4/1QYxGhV+P7onB98Vi8XvHoK+2AADK9A4Rmp2ejOH3d/BbSDVhSsREWjFjYj9ERyjBAVjy/mEXAe8Ur/FwHwNwGUTDi3dzaE4TjDBAcy6TIwiCCIRGqQOqrq5GcXGx8HN2djaioqIQGxuLxMRE7N69GwCwe/duJCYmtvh4Oi80zogJDZ+YllN4E6s+zMWWLwpxu8KItR8fx7y/fY/5b3+PopJKqFVKQdB5LDYW6/6eh4yV+/HhnkIUFevBsr6dLgwjQUJcBLp1jEZkhBKrPzrm4bY2GC3QalSI14YJgl1UUom567/DtBX7MXf9dygqqazzXGKwLAedwYRSXY0wda6h8Mlp/P2uTza8v78vgiCI5k6jWOpGoxFz5syB0WgEwzCIiorCu+++C4lEgmXLlmH+/Pl45513EBkZiTVr1jTGkkIGy3LgOODVF4a6DGYRExp3C3HiqB6CaxyoFdpVM4d5WKNtolV44sHu2Lr7B+zI/gk7sn9C/17x+OWoHrjvnhhU1lhcssMNRouLpX1bb/TLOg0kI96XO95XQltDCEajneZcJkcQBBEIjSLqcXFx+Mc//iH6Xrdu3fDPf/6zMZYRcsSEa+HUVMRFqaAJ8xQad9exJkwuKrT6KgtmT0rGhs/yXY776Zc/uohw/rlSnDhbirYxYag2WlFltCJeq8aCKalC9zpBsCKUHhuFQX3aQgJHnJoXx0BCCb6y0H1tDhpKQ8MAzXl4DUEQRCCQfzGIiAnXqq25YDmICoS769hksYm6gcv0JnyTdxVLM4bg3XmjsDRjCCLDFS6T2wCA44Cp4/ugTG9EldEqrOGVTUcxakBn4ecVW3IgZeBy7kF92iJ9bG/Mf/t7Fze7Uh5YKMFdtCuqzNAZTDCZxcvpmkvcmt8Y8GEHEnSCIFoiJOpBJNCEK2cLcfPiMejZORqLpqa6xIcXTU3FmUu38WBKJ0dTmjXZWL7pCGw2VlRshya1F3rM8+gMZny0t7YWvlRnhNnKupz7hSf6IfPDXA9RtrPwK2bt7dpNZhvmrv8Ol4srGzVuHYr4PUEQRHOHer8HkfpkYvMWIu++/sQpEz4mUoXYSBV+PvQeLH73sIvgbv6iAIumpmKlUync4ucGQSGXeqwhIkzusrFQK6UoKat2SYYr1dWIirLNzvrlmvZ27TduV6FUZ8SO7PMeIYRQxa2b+3hWgiCIUEGiHkQaknDl7L7m3ep8rTRr93Rd5xTexIyJ94uWn7mvYcGUVHz65Rnc0hmhUkhhtbFYtPEwenSKxsj+HTG4bzuoFJ6bAX5D4k/MWuzaF05NxcZ/nQIAnL2iw8d7zyBjQhK6JkQiTCmFnXXMko9P6AqW5YImuM15PGtLh+bFE0TzhkQ9iDQk4cqX655lbaKC601sxXqjv/jrZOFnjgU+//Yn7Dp4EeevVmDzFwX4Wf+OmPXL+/H2v/5XL0ta7NolEggDaQCHsG/aeRp//cMIlFeaQ2ZJU915aKB58QTR/KGYepCpb8KVr1ppQ0WpENfu1VmLpRmD8OoLQ8FxEI0Vu69BJmNcfpYwwOFTN2C/812OA7LzrmHpB0cRG6XGjIn9sPrFtIBF1v28EgBz0pNd4vFz0pNhs7GilrS+2uz3uXxBdecNw1s+gjcPiCY6vimXSxCEE2SpNxN8ue4v1tSgd69IvP6HEbitN7m0lK2PhStmyQLA2NTOOHD8Ks5cLkfWV0qMHdQFYwd38bvdqjtmK4ttexwud02YHIYaK7btOYM/PZMSUkua6s7rj698BJoXTxDNHxL1ZoK7+1py5zV9tRnqsDDHvHMOgqADtZbS638YAZaD16Yv7jFQb0ltA+5rh69yryAqQoEu7SPxj6/P4Z9fn0NKYlv8fEhX9O/dFtIANg9yGQOdwYRVH+YCAHp11iJ9bE9IGUlIJ7xR3Xn98ZWPQPPiCaL547eoHzhwACNHjoRcLg/leu5qGEaCqHClh6U0f3IKWJYTtZS0GpVX6x2AqNXVKV7jYcnyQ2QAQF9lwaxf3o/yShMOnbqBg/nX8coPOYiLVuPnQ7piTGpnaCNrR5966yLnbDFrNSpM/kUi1mflQ6tRYU56stA9LxSWdCj60gdrgE1zxlc+QlyUmubFE0Qzx29Rf+utt7Bw4UKMGTMG48ePx+DBg0O5rrsWMUtp9bY8r5ZS+tieotY736lt+z5X9/f2fWcw61cPCJas2WLHtVIDPt57Bmev6AA4rK9rpQYs35SDeK0aS6YNwvVbVfgq5wo+/s8ZfPLljxic1B7jBndBZLjCo6yODwe4W8wL3v4epTpHe9pte85gxsR+6BivgdViQoe2zbvc7G4pk/NVlknz4gmi+eO3v3Pnzp345JNPEBcXh8WLF2PEiBFYvXq1MPqUCA6+LCWx4SUJcRE+suY5jB/eDZt2nsaCdw5h087TGD+8m1A+xie1xUaphSx1Ppkt66tzwrEyPzqGfj3aYOWMYXh3/miMH34vThFZS18AACAASURBVJ2/hb+8dwR/fPM7jw2Fc8Kbs8XsvM6zV3RYvikHDCNB6Y3LzV4Yvbmlg5Xc11yoa0AOdd4jiOZNQDH17t2746WXXsJLL72EkydPYsOGDfjVr36FM2fOhGp9dx2BWkocB6+ft9lYodkL4BCiDZ/lY/WsNOGz7scEgNe2HResdv57/Hsd2kRg2mN98ZufJ+I/hy9h8xeFLusv1RlhsXrGWIMxIrUpuVvK5CgfgSBaNgE/UYuLi7Fp0yYsW7YMBQUFePLJJ0OxrrsWMUtp/uQUr5ZSdIR3y4rjICpE7kVwzsfkk9ucERNfpVyKkf07epSOAcArm3Lwn8OXUGOy+ryulpSRfjeVyZE1ThAtF78t9e3bt2P37t348ccfMXLkSLz44osYMWIEFApFKNd31yFmKRVfuwSG8Z6IFBOpROasNLAsB4VciugIh2UllwduHQdSDub+2bhoFUYP7IzcwhK8s+MUtu4uxMj+nfDzIV1xb4eoFm0BUpkcQRAtAb9F/ZtvvsGkSZMwZswYhIeHh3JNdz3umdsXa2pEP+cteSs6wiE0UeFKLJ8+BCVl1VApZDBZbGgXG+5TiAJxv3r77DMP98b5qxX4z+HLyD52BfuOXEa3DlEY2b8jhvZrjzbRYS1GzHnILU0QREvAb1H/4IMPQrkOog7Eyqnck7e0GhWqaqy4WV4DqVQClYKB1cZi445TLqJfV2kWX1rHf0ZfbfYp7GKlYz07a9GzsxZTH70PO775CTu/vYALuwod1ntyRzwytAtiox3u/pbSZjQUZXIEQRDBxKeov/zyy5BI6rZEXnvttaAtqDURrLpmdViYuEWuUQrlaizHQSGTYu3fj9cOcnk2FVn7f3RJlNu+7wyeeri3R117p3gNDEYLrDYWSjkTtN7sNpbD9VID/vzbAbhdYcShUzfwbf41fHPiGgAgMlyOJdMGo0xvFDYTZP0SBEHUD59ZPl26dEHnzp3RuXNnaDQaHDhwAHa7He3atQPLsvj6668RGRnZWGttUfCu8bnrv8O0Ffsxd/13KCqpDHiuN8tyiInvBKPZhowJSejVWSuIc3mlSShXUytlqDJa8NJT/bFwSiq0GhUyP8rFo2n3uhxv9MAuonXtt/VGYa3nr1YErXzLZmfx+Mju2PxFAT7YWYDbFUYsfHYgnvxZdwBAZbUVL791EO9/fhovvf5Nve5RqKCZ7ARBtDR8Wuovvvii8Odp06bh/fffx4ABA4TXjh8/jo0bN4ZudS2YYIz/FIuZ853fnMX5oYGdwEgkLm52/nNxUa4Z21ERCtGM+PJKk/B6RJj4Z/wt33L2UEgAvPHpCZf78MHOAmTOTMP//dfRtITjgCMFxeA4YO767zDzl/fjwZROLi1pfXk9QtHprT7NZu6GjnMEQTRv/I6pnzx5Evfff7/La/fffz/y8/ODvqjWQDDqmsU2BrsOXsDsScmQMkDGhCTkFhZj4qieWPr+YY969BkT+7lkwMdr1YiKUIpmxFusdiyckoo20SqEq+X1ril3F8ONfx4leh/sbO19iNeq8euHeuFv/zwJi43Fm1n5+Pu+H/Hw4C6OlrQalVeBBcRb4Ta001ugmzJfmwCCIIjGwu8i2/vuuw+vv/46TCZHDbPJZMIbb7yBxMTEkC2uJdPQumaW5WC22F0EsVdnLcYP74blm47gjU/zIZdJ8MvRPSFl4CE0pToj2sWGQ2cwI2NCEt6dNwozJvZDtcmC2ZNcx6EunJKKhDbh+PpYEW5VmLD5iwKPzyyamuqRNS/mnnYXQ8md4S3u98H5z7MnJWN/ThEAoE20CrMnPYBO8RHYvu9HPLdiP17ZfBT/O38L0x7rK4Qf+HBAqDq9Bbopu1s6zhEE0bzx21LPzMzE3LlzMWDAAERGRqKyshJ9+/bF2rVrQ7m+FktD6pp5q69Mb3SxmCeO6oENnzkGovz2kUShWxzf2nXbHtf+7TIpAxkjgVwmQVmlCcs35SBz5jDsOngBr/7OMY+9+HYVNu44BZ3BhJee6g+VQooKgwUcx2HZ80PAMBKU6Y2IinB1JXuzTCPDa133vTprAQ5CWV3WV+egM5gwJz0ZCrkUmxeNActx2LTzNM5e0blYt2NSu+B6aRX+mX0O2cevIu/HUkgZCcakdobNzuLCdb0gsL7a5NbXHR5oB7y7peMc0fKgsNDdhd+i3rFjR2RlZaG4uBilpaVo06YNEhISQrm2Fk196pr5f3xmix1leiMO/e8GXnqqvxCT5uPhGROSPNq/rs9yuNv5ISwLp6Ri76GL+Pzbi4jXqvHSU/0xqE9baCNVGD2wCyoMZvx1e56LEL3x6QmsmjlMmKbmvGGQSV0FvUxvFLVMM2emIV6rFjYeS+6EBeK1asx/NhVWmw1SKYONO/6HWb96AFHhSjz78x6Y/kQ/j3sUppbh9E+3wd3JT7OzHPYdLYKUkUCpkOJskQ733RMjKr4yKdMgt3ygm7KW3gaXaJ3cLYOIiFoCeuLodDrk5OQgNzcXCQkJuHnzJkpKSkK1thZPIO02nbPln191ABt3nMKDKZ0gkzGYMbEfMmcOQ4RagXitGpowuahV2DYmHGteTMOK3w3Ftyeu4vNvLwrvvfHpCUx9tC/e+OQEVn2YC42XZDgAgqDzr63PyoeddV3nrQqj6PcrqsyYPSkZ6WN7emw8Vn+Uiwi1Eh98XoCcwpt1WrFi1i8ADOrbDgDw2sfHsfjdwxiR3BFx0Y7wA//QkjJosDuc79T3wcKHsHb2CI8HoXP4gbvjkWiJbXApy7/1QmGhuw+/LfXc3Fz8/ve/R9++fXHixAk8//zzKCoqwpYtW/Duu++Gco13BWL/+DZ8lo9lzw/ByxsOAnC4s2dPSobJYhO1CpUKKSLDw2GxshiR3BEPpXZFjdkKXaUZO7LPAxIgWqPAwimpUHhpIcuynKhY2+6oOr/OjAlJot8v05uwI/s85qQnix6nstosuNqVct6adngMBvVpi+cfTwLHOTZEChmDpRmDoFLIYKixYkf2eegMJjzzcCJulRtx/loFZFIG/8o+D4VciuEPdMBDqZ3QpV0kbuvFNx11bSRYlkNFlRkmsw03blcJIQPnTn3858QsoLW/Hw6zjYXszoausa2hQF2tZMm1bigsdPfht6ivWrUKb775JoYMGYKBAwcCcGS/nzp1KmSLu5tgWc5l7vmO7PM4e0UH5k6iWanOiLNXdPh47xk899h9WDglFas+dG0go5AzqDbaUKY3QaFgsHzTERcXukrB4KmxvbHqw1xoNSrMSU/2cLMzjLjYy6SOQS8ms13Iup89Kdklrr9oaio++fJHnL2iw7XSKtHjGGqswnrtbK013auzFo+P7I6F7xwSBD59bG+XMr056clQKqTY8Fk+zl+rQLxWjeXTh6BMb8S+I0X4Nv8aDp68ju6dojEyuQPaRKtwq8Lkcn4A0BlMomLnq4TQPfPdmwXkHAJp7Oz3+gh0MEovieYLhYXuPvwW9evXr2PIkCEAIHSZk8vlsNs9x2wSgcGyHPRVZmzaedpFTHYdvACVQuoi4DqDCTY7h/05FzFjYj8kxEVApZCixmzDn+7MNucFUKtRoVRnFFzoy6cPEY5TqjNi254zmDGxH9rFhoPjALmcgUTCucTxeWGoMVmx9P0jLuv7Ju8qMiYkITZKhWiNEnIZg6cf7o1LNyoFa91507BoaiqiIpRYOWMYFHIpbE5WxMRRPVzq2UcP7ILMD12b5KzPyseffztAsPTnPTsALOuYM58+piceH3kvjhaU4Ju8a9j8RSHUSinUSimMZrtwT17bdhzRGgUyJiSBkTiG3vAC781bkjEhCas+zHWxbrxZQCqFTPgzL46NRX0Emiy51g0NIrr78FvUu3XrhoMHD2L48OHCa4cPH0bPnj1DsrC7CX21GSvdurxt+CwfmTPTYLdzUMs5vP6HETCa7bilM4IDh9EDO8NQY8WWXQV44Yl+guDy31+fVStG/GsSicTlAX72ig5ZX53DjIn9XKz+ec8OwKqZaSjTG9EmWg2FnMEf72wYnNeXMSEJXx8rQvrY3ljw9veChb1yxjAwjARKOYO1s0fAZmchkzKw2Oy4dEMvDJfp3E4jWBHueQLe8gYiwhR44w8jUGO2wWJhMe9v37tsNM4WleNPz/RHjcmGfUcu49CpGwAAlVKGv/3jf4gIk2P88G5YtPGQ8L2FU1MRF6WC1SoucJowuYd1480CMtRYXb5bn4Y99c1Q9iXQOoNJ9NhkybVuaBDR3Yff/3Lnz5+PuXPnYt68eTCZTFiyZAnmz5+Pl19+OZTruyvw9jC+rTdi2sr9+MsHx1BeaYZcxmDhxkNYtPEwPtz9AwDg8ZHdYbOLx8E1YXLh53itGnKpZ+18+tiegqDz31vz0XGwLAt9lQUMI4HZi9h1bR+J6U/0c7GocwpvYtHGQ46HR4QKMZGOREEpA5SW12DjjlNY8M4hbNxxCrd0Jvxl2iAXtzyP+8/8NZTrTVApZYjXhnl0qtvwWT5GD+yClVtz0SE+AnN/MwAfLnkYvxrdA1dKDCguq8a10iqPNrmrtubiSkkVWI4TPafJYvOwbsTmw89JT3bkLjjf8wAa9jS0pbC33ggsy3k9dkufc0/UTSAJu0TLx29Rf+CBB/DFF1+ge/fumDhxIjp27IgdO3agX79+oVzfXYG3h7G+ygKg1o3Ksg7R6dVZi98+kij0fb9+yyD6fYYBFk5JFTLijxbc8GgqkxAXISrYZXpHX3l9lVlIquvVWYuFU1KROXMYlmYMwq2KGtz2kgXvbKGyLAezlfXIqn/9kzwo5VJkTEhCm2gVFk5JFdb29bEizH92oMtaX3qqPxQKBkvfP+L1vLyFz58/KkKJ8cPvRZs72fH3dohCjdnm8T1tpBJ7D13EoqmpLudcODUVPTpFe8SleQto7ewR+GDhQ1g9Kw3aSCV0BpPwXX/FMVgZymICvWhqqhDWETu2syW3efEYrJvjmeVPEETLwW/3u8FgwL/+9S/88MMPqKmpQVFREY4ePQoA2LJlS8gWeDcgFvfiE7R4tBoVOACvvjAUdpbDR3sKhQd11lfnPOLXy54fDKuNxV931sbG500eiBM/3kTGhCRERSjQJloNqdS7G7lUZ8TKrbnInJmGJRmDoK+yuJzjT8+kwGZnfbpveSvUaLaJijAgEUTn+Ql9sGrmMNhsLOwscPLcTbzywlAYaizQVZrBchxe2+aYQsdb8mLrHtSnLSQASnU1kMsYaNQK/GXaYKzYkoMJI7qhpKwaZfraBDpGAmR9dRZJ3dsgKkLp1VXp7iLXqBXQV9UKsnPoIRA3Z7Di2mKuVpblkFN40+exaaQsQbQe/Bb1OXPmwG63Y8yYMVAqyTUXTNwfxhIA731+SugO16uzFpN/kSjErXnRrzBYcPaKDmev6LBtzxm88sJQ6CpNMNRYUWGw4M0sV/f0mm3HsHz6ULz56QmcvaLD5sVjEB3hfUPRq7MWE0f1gI1lIWOk+OK7Cy7H++v2PPz+1w94ZMEvfm4QGIlDVCWAzxI4uUyCV58fCKVKBX2VWch+561MqVSCtR87hHzNi2nC93dkn/c477zJA/H9yWtIH9sb853uFT9adt2cEWBZDn95bpAQcogKV6BtTBi+zb+O705exwM92mBkSkc80KONh6C7Z5bz2f7OoYdLNyr9zhznNwn8vahPXFssFu98bp3B1Gxj5tTpjCCCT0ADXY4ePQqFQhHK9dy1OFtLLMvhmXGJuHSjEqU6I9LH9vRwXTtnZQOOh/eVEoPwc+bMYaLWX2W1GRNH9cCmnachlzEuGwqzxY5rpQbBQ+DeitZ5I8EfTyZl8O9vf8LqWWngAEgAcByH81crkPXVOTz3WB+U6oyiIvzSU/3x7v+dwqSHekCllngkC67cmou1s0e4bHbcy/tmTOyHtjHhuFZahehIJcYP7yYIOn8c9wxwmVSCGRP7CfXvuYXFeGxENxRcvI1D/7uB/HO3EK1R4sH+HfHEg90RE6kSdZGv3JqLpRlDXO6JVqO6Y3nXCEIlhvMmQay80B/XfV0lbCzLgeMc3h33mvumjplTfTxBhAa/RT0lJQUXL15E7969Q7keAp6Wu81mFxXoqAjHBsu59zuPtwY1+ioLoiIULg92fkPBshyMZht0BpPQilarUQn18yaLDZN/kYhFGw8LxzNZbHhmXCK0GhWulho8LH6L1VFOxosw7/qPUCuw4bN8nL2iw6UblVjxu9pNCO8h0ITJYbOxiItWCyLl7FXQGUyQy6RYn5UPncEkZNqL3SvHcJxad3xslBrb953Bo2n3YuKoHigpq8al65VQKaR4ZOg92Hv4Ev797QXs+v4ihiUlYHBSO9HjVhkt+O0jicJGyN2jsvi5QVCHhXn8jp03CaW62vLCjvEaKBVSv6xWXyVsUeFKD9Hks/w1YU1vEVN9PEGEBr9FffXq1Xj++edx//33IzY21uU957nrRHBwttyvFpeJCnSbaDU2Lx4DmZRBjcnqkqTVLjYci6amCtavc+37C0/0Q2yU2uPB7ryZMJntooNjFjybil6dtdAZTFg0NRWxUSqEKeUoN5hcHtIOi9WODvEazH92IFZ/dAxnr+iwaedpwWJ3tvj5Jjti53S24Lq0i8SaF9NgtrIovl2Fj/eeEYbESBkAEM8RuKUzYuHGQ0LDmpgopdCIxz3s8N+8q/j9r5Px7v/9Dym92+Lw6WJ8d/I6pIwEdqeMdH6TtGnnaWRMSIJcJvHwqKzYkoNl01I8fr/ucfSzV3RYvikHmxeP8VvUfMXixURz1dZcrJszoskFHaD6eIIIFX6L+htvvIGSkhJ07NgRVVVVwut8IxoidBgqSkUbSDgLc7RIghfLclg5YxjKK02wWO2QyyR4bnxfSKXe46n8ZkIHk2j/9syPHIlzMhmD6AjHOS6XVMJirfUm8Nn5/HcH9WmLV6YPhcFoQZhSjm17CwVBB4BBfdpCJpVgwbOpqKgyeZzT2YJjGAlYDnjjkxOYOKoHpjx6Hww1VmzbcwZ/njwACjkj2imPg0OMtRoVyitNKCmrFrrV8edxDmlowuQorzTj1w/1xK8f6omjBcU4kHsFRSUGSCTA/T3a4OFBXaBSMNBqVOiaEHknOc9TqCQSqcd9DkZ9uK9jNHfRpPp4gggNfov6nj178OWXXyI+Pj6U6yFEMNbUoHevWne8TMpAygC39UaXBCN3C89h/YZBrZTitt4k1Gf7E7+MCld6LXeDxLGJ0FebYTLbUWEwQSGXCpb27EnJqDJakDEhCTuyzwsJZEszhuDzb85j/PBuQr7AEyPvxcj+nfDntw5Cq1HhD156xjuLkVzmaFm7I/u84KZPH9sTSjkDo9mObXvOuLTc3bbnDKY8eh8AR+e69Vn5eOmp/qLn0UYqsTRjEKIiHP+XySSY91ZtY51nH03E/pyrOHq6GCfP3YJMKsEv0u4BAw4KhUxUqDjOs+tiMDp9+TqGvtrcrEWTOp0RRGjwW9Q7deoEmczvjxNBxjnuHUiCEW/Zujdc8RW/5LOSZV7K3aSMBJeL9S6u/Zee6o/F0wbBUG1x6TnPu7TPXtGhymjBgymd8E3eVfzpmf6Iiw4Dx3FCxnupzoirXnrGy5y8C1HhSiyfPgTllSaP5LLIcAV0BpOQMMh/n+/0xtexeyuJ06gVQrZ9vFaNPz6dIrTbzSm8iXFDuuLCtQrwTnibncPOby/iyyNF+FlKJzw3vg+27Cp0WZOh4gbQPtYj27tTvAav/2EEzFbH7HeF3NOir+vvhLduYRq1AgumpAqNgeK1aiyYkgqNunkkulKnM4IIDX5v2ydMmICZM2di9+7dOHLkiMt/daHT6fD888/j4Ycfxvjx4/Hiiy+ivLwcgCOr/rHHHsPDDz+M5557DmVlZfW/mruA+jQqCcQV69zd7LWPj2NOumuzmjnpybh60+CRqf7GpycglzKiWfoTR/UQ4s8bPsvHmEGdoZDLsODt73HrjpjzjW3aRKswb/JAj3M6RwwYRoIwlVw0fs2ynMeaF0xJRXyMCu/OH4020WrEa9VCNr5Lo5kpqfjy6CVkTEhC5sxhyJiQhM+/cXgDeFQKmce9BIAHerbBgWNXsHrbcUSGKzD10T549YUh6BSvgbGmRrRrXEl5NcorzVjw9vd4ftUBvLwh8E5y3rqFGYwWZH31o8u1ZH31IwxGi9/HDjXU6Ywggo/fpvf27dsBAK+//rrL6xKJBF9//bXP70okEmRkZGDQoEEAgDVr1mDdunVYsWIFXn75ZWRmZmLAgAF45513sG7dOmRmZgZ6HXcN9YmVBhK/9JaV3SFeg+ulBsGVLRo7hnhMOSpCgXmTB+L9zx1NZuKiwrDgne8Fi3lQn7YYP7ybSwx+xe+GQl/taDrDx8udsXm5D2WVJkRGKLDs+SFgJI6/exIGuKUzYtXWYy7lY3xJXLvYcOgqzYjWKJCS2M6jjC9cVfvPxGSxYVCfthg9sIvg3v/6WBEeG94NUx5NxL4jRdh18BJ+ulaID/cU4mf9OyLlXpnoZkwsrr9iSw5e/8MIsBwa3Ac+p/CmR+OZ6U80j5h6MKF6d4KoxW9Rz87OrvdJoqOjBUEHHC1nP/30UxQUFECpVGLAAMcDOz09HaNHjyZR90F9EowCiV96y8p+f+FDWL4pBwB8dJGTir4eoVbAYrUJ09VYrrZX/Y7s8/jDU/2x9P3Dwmt8DJ5PWnO/PpblhD7t7ucymW2w2VihL/yaF4dBE6YUrHp+o7Ls+SEw1Figr7LgzU8dmfjv/HmUR5IeP9OeP35stBrpY3u7uLXnPzsQapUMjESCw6eKhQx5jgOy864hOw9IPFbpsQnhrX7nEj6W41CmN7mENupTv90cE9FCIb5U704QrjT6v3CWZfHpp59i1KhRKC4uRkJCgvBeTEwMWJZFRUVFYy+rxVCfARyB9Pf21odedqfkjD+emFterWQcrm6n1+c/OxAHci+jymgVysmkjARrXkzDwimpAIAqo0XU6uano7lfn77aLJTGOZ9r3uSBYBiJIOi9OmsRrlZ4eBDOXtFBX2XGli8KAQBTHnXMpzdbxfsByGQMNi8ag9d+PxwKqdRjJOzqj46BYwGdwSzqmn8srStKdTUer/NWv3Mff4vV7hHaWLElB2V6Y0BueX//nrAsB53BhFJdDXQGU8BDZPwlWENr3AlW33yCaC00eubbq6++irCwMPzmN7/B/v37g3bcvLy8oB2rOeJ8feqwMCyblgKJRAqOs8NQcQP5xT8F5TzqsDDMn5yCzw6cx+iBXRAVoYBWo4SpRof5k1OwelseGIkEH+7+wSPD/OXf9BfiuPzrn+0/i6mP9gXLscicORiV1a5z2ec/m4pwlXjWeJtoFZZNS/G4vrYduiGn8CYqDBbhXDY7i6gIBcJtMiHrfvIvEqGvMgsNcJyPzzCORjHOiXavTB8qug5wHBiZBKW6GnCceIiBkQD6Kovo98cN7oghPeW4cFuObf/5ERarwwX++TcXMCK5A9ZnncCtCkePAbGYfanOiFsVRlQYjLBWl8JY47lB8Pa79PX3RB0WBnl4PFZvy6v9fUxOCegcPHX9+4tP6IoVW/I8xHfZtBSU3rgc0Lmcaduhm+j9qq424eK5QpfX1WFh0ETHO90P/6/zbnq+tDZa87WJ0aiivmbNGhQVFeHdd98FwzBo3749bty4IbxfXl4OhmEQHR0d8LFTUjwbfLQW8vLyfF9f+1jv79UDm43F0w/39nAB35OgEbKVxTLMOUhE47i/HN0Taz8+jtWz0pD50VE3KzcXf3qmPxY8m4rMj5zON3UQ2mjDwTARHtfH9zM/e0WHVR/mCr3xnfvGz5s8ENEaBa6UGHDofzc8WtTGRKqFmer8WrbuLhAa5Ti71v+6/QTSx/bExh2nvPawZznHZDn+PFqNCuljeyIhLgJgrbgvMRH3ARie3AnXSw04cOwKjv1wE6d+uu1ybd6y8vkmN/XtuMayHPQR4S6ub321GXPXf+f6+9iWF/A56vz7CcccADHxlStUSE7uX29Xubfe9uHhKpc18Z6CZZtd3fS9e9Xtpvfn+loyrfn6WuO1mc1mFBQUeH2/0dzvr7/+OgoKCvD2228L/eP79u0Lk8mE48ePAwCysrIwbty4xloS4QWD0SLqAjYYLdBqVIiLUou6dvladWfitWroKh1uaZudg1ajEsa3LpySeqdMD8ja/yOWPT8EmTOHYcbEfpDJvT9o3V3LYr3x12w7hgvXKrFxxymhjI7PBH/1haGoqPJ0lecU3oQEcMkYl8DhructaLGs+TnpyZDLGTwzLhG7Dl7AnPRk/O7Jfti44xReWP01/vLBMRSVVAIAJBLgzax8DO6bAJVCiicf7O4S537rH/l4NK12VCyfrLcj+7xLQiTLctBXOdzmJWXVKK/07jr35foONOmyvngL61wrNTTIDe9vmIHc9MTdQqNY6ufPn8d7772Hrl27Ij09HQDQsWNHvP3223jttdewdOlSmM1mdOjQAWvXrm2MJRE+sNpYl57vhhordmSfFx723mqMAbgk5A3q0xZTHu2LKqMFSzMGQaWUeri856Qng+Uc40EfH9kdC945BMDxcOaHxLgnVbmf35s48TXpzp3i4rVqZExIEs7hbuHdqqj1QDh/lreg3XvYx0WpoVAwiAxzdNfLmJDkmAT33mEPAeHXy6/tVoUJhRfLsDRjMF7/JA/llWZUGa3YsqsQbWPC8MufdUePztFCnT+f6MayHEoramCotrh4FRY/NwgxkUqYra6JaN4EbfWstEZLpvM1XlhnMNXbA+FvvXtz77BHEMGiUUS9R48eOHv2rOh7/fv3x65duxpjGYSfKOWMqPgq5bUPe28zuLu0i3QMVrHZoa+2CFnt8VpH33j38a3rs/Lx+18/4NIghs8Gt9pZlJbXYPf3F/HMuESX5D7n8+sMyGZ17gAAIABJREFUJtEyM/54zkl3znPq3V3y858diM/2O/6e8tfMD8nZkX1eKIXje9gvfm6QMGwGcFiDizYe8tqtjhcd/lqdNwm/e/J+REUoEBkux7q/5+HC9Ur8678/QSaVoG+3OMyc2A8P9GwDjVoBQ40ZdhsnCDp//BVbcjBjYj8s35TjkgXuTdBsdkcb4U07TyOn8GZIu7rx4ps5Kw2l5TUw1FiFzQqABomrP/Pgm2M1AEGEAmoRR3hgZ+HiztZqVLBY7TCa7WA5k89SJIaRICbS0V/dXXQyP8pFxoQkl5h7qc4IhVwqCKh733i+W932fWcw61cPCF31nEujIlRy0TKzvYcuAXA8vONjwrB6VprLnHq+Tj2hTQRu3KrC3kOX8GjavZjyaB/oKs1QKBhhSI7OYII2UonVs9LuzJd1lKzpq83C/eDF01tcnGU5aNSOCXnb953BS0/1xxt3Zttv2nkai6am4sPdP+DCdYervks7DdrFhiO3sERoSfvEg90xakAnVFaLVwyoFDLhz7x3wJugXS6uFM47Y+L9YBhJSGu8GUYCuYwRqhOc1xJqcaW2tMTdAok64YHz+FIxkfWnDtjbCFR+XCxPvFaNuCgVzFa7y8hX583AG5+eQMaEJMHV7l6XvHLGMNEys4wJSTj1022HRR3liLk6z6nnR7fWGK1CDf6BY1cFT8G9MQ7LEoBLiMFbXTQvnjuyz2Pe5IFYs63WNT57UjI27TyNF57oh3CVHL97sh+sLCvMdTdZbJDLGVQYaju+PTPOUerm3JL2n1+fxxcHL2JgYltoNUroDLUxYWdvB38frDZWyIEQc32X6hxz4Rtr5GlTiSu1pSXuFkjUCQ+cLbuJo3r4nJrmzzF44rVqRIUrhdf5B7rdbsVHe37EKy8MBTjx+HhUhAJyGSMaHy6vNIl+p2tCpDBbnH94i7mA+Ta2/DF4y3nljGFoE+06olbnNmLW+X44CxYjgUtOAu9qfvJnRsz72/eCez/rq3OC5yBeqxbc50Btn3rAsbl68mfdoa8y43/nb+HIaUeTG5lUApudQ5toR6e8/x6/ioVTUqEJk8NksUEpZ1wEzWyxw2JlYbHaMHFUD+zIPo+zV3SNFltuSnH1x03f3KHuebXQvRCHRJ3wwFmcnIWFx58EI28WmSZchsxZacIAk+gIJW6U6pFTeBOjB3aBXCYR3QzERKoQFa7Ebb3RYz3e6sNVCqnLQ5x/CLAsB5PFJgiac7ycX+uiqamIE5k5X1fCVVSEEitnDAPDSJC1/6xLqIEvTeO/sz6rNoGPfy0hLkK4FpPFhnit+Iz5+c8OxD+/PocyvQllehOqTTb8N+8q+naLxaadp13veZhScK1frnQdxDN7UjJ2HbzgMjAn1LQGcW0KqHteLXQvvEOiTnjgbk3VJ8HIl0UWGe76WY6zC27r55/oi3nPDkBllUVwS7eNDRMEVswD8PWxIiyamupRV+/s0hV7CPBx/GiNAm1jwgQxVsoZQQjd8eaBkAAek+sWTElFQlw4Eu+Ju5MEp8SO7HPC9/gEPufjqJQy4Z4p5QwWPzcIZXqjh7fkg3+fxtKMIVifdQJlehP63huL/x6/hgO5V12O7+xV0VebPUoVN3yWj1emD0UjajpRT7xVMTRW6KQ5QffCOyTqhCjOo17rGwP11yIzVJQK59h3+DJ+MexeYdAJfz5eYMU8AM+MS0SneI1Pl67zQ4CPmcukDP48eQDMVptL4xreuhVD7Pxz0pNRXFbtUSuf9dWPeOrh3i5z7GdPSsbVm1VCiZrJYgNQW18dHeG6bk2YEmqleJe5KqMFk39xH3YdvIBZv3oAZXoTXnrjW4/P3bhVDa1G5dXLYDBaIJc3jqq3ZJdpIGsPxXVSWV4tdC+8Q6JO+KQxYqDGmhr07lV7jgVvf+91B+5rPb42EHwNeZtoFVgOLklsc9KThZnpde343ePT13xMrhs9sIvHHHu+Zp4viYuJVGLz4jFe7yvDSKBUiA/K4bvMrZwxTNhkuX8OABa8/T36947H8Ac6oE20SmhJy3++qsaCtjFhPu9dMASqJbtMA1l7qK6TyvJqoXvhHboDRJ00xtxrZ1Guawce6Hoc3dccQ2BuVZgEQeePvT4r32Vmel07fv78chkDq43DlEfvQ2S4EoP6tHX5XFSEQvRa7rmTwNelXSSiIuq+DrGuac5d5hhGIsTM3T+3fPpgTBrTE5duVOLNrHxYbZwwSpbf0LSLDffqeQnmIJaW3NUtkLWH6jrrM8yptUL3wjtkqRPNilDswJ1jyd4S/9xj23Wdz3mj4BxDByA0ctFqlKLXIg0wUYz3DqyelYZbFUboqyweXeacP+fuxejfqy3Sx/RC7g8l2Hv4Mk6euwVGIkHHthoYqs1IaBOBUl2NaD5BMGOXLdllGsjaQ3WdVJZXC90L75CoEw0i2LHDUNQxOz9kvTWGcY9t13U+saSzzA9zsTRjCB4f2R02Owuzze6RVf/SU/4PL3G/t1qNClVGK/66Pc/rvfEWhpBKGQxJSsCQpAQU367Gl0cvY3/uFZz4sRRSRgI7yyEuSoWXnu6PmEgrEuIiXBrqOFNfgWrJLtNA1h7K6wxW5YDz3634hK5gWa7FCSJVUYhDok7Um1DEDgPZgXvbULi/rpTXPmT5gSzuzXTqim27403sKqvNWPDOISyckoq3NuW49NA3WWxgGPh1b7zdW+eEQJmUgUwK3L4za50vEazr+O3jwjHl0T54ZNg9eOmNb1BZ7WhYc1tvwiubc/D02F54MKUjYiLVPgWKv89tO3SDzuC70yDQsru6BbL25n6dLTm3gagbEnWi3oSqrMSfHbgv0btaavB4ffn0IVj6/hGcvaLDroMXsHz6UNSYrIgMdwxlkQVoRXkTO76jG+/mL9UZXUbUvjd/tF8P97ruLctyuHG7CuWVJhdPQKAPZ17QecwWO7bu/gFf5hRhfNq9GJncUbzfgFoRsDC0ZJdpIGtv7tdJ5WCtm+bv9yKaLU0ZI/X2YPLW8S1MJcfqWWlY82IaRg/sgjc/PYE/rf8OizYegsFo8XUqUcQSdRZMScXXx4oAQGgc4wxfh+7Pw72ue6uvNqNEpIwukIQssXGobaJVeGz4PVDKpXjv89OYuuIr7Dp4EbN+dT82Lx4jJPgZjJZ6JYM1RtJlqAhk7f5+lmU56AyOEbo6g/fxucGkJec2EHVDljpRb5oyRupr8pj4644H1ry/fe/xXn0eZo7BNUqhd7uhxoo931/EuCFdMeUXfVBuMGHub1Kw7u+u8e/oiLqtdJblIIH4aFjJnfetNlaY8V7f6/FWcx8TqcK0x5Jw4XoF9h0pwrf517A/9wq6d4rGz4d0xYgHOpAw1IE/uSZN5QZvybkNRN2QqBP1piljh94eTDKpeJtZmZSBRCIulPV9mJmtrNCnnefAsav4YOFD6NAmAjVmq+vAFj/Owz/ot+874xH7nz0pGe99fgrPjEtETKQSHCd+Pf62fOXdxGtnj4DFagfDSCCRAFLG8f0enbTo0UmL58b3wTd5V7H3yGW89Y+T2PJFAYb2S0BMpBLlla4DZQK5ly25EY0v/BXrpnKDN/eYP9EwSNSJetOUsUNvDyatRiVqfdaYrGgXEx7Uh5m3jYVSIQUALHv/qMd7dT2wnR/0FQYLlmYMQZXR4lLGdulGJf76hxFIaBOOBc+mIvOjXJdrlUkdg2f434lGrYDBaPH6O5IyQLXJ6tL5zlmEwtVy/CLtXjwy7B78cKkc+45cxn/zrsFmZ+/U6rNoE60K6F625mQtf8W6qbwd7v9uzSYjOrRt+fedcECiTjSIhpaVsCyH+ISuKNXVBLQp8LWhcHeLb9tzBjqDSYgH17UJ8deC9GXxiA2e8eeBzXe+46e7Waw2j5CBVqNCmd6EVVtzodWoMGNiP7SLDcftCiP+e/wqHh1+ryDQg/q09Zg1z4snANy4XQWOcyTIZUxIEobciImQRCJBn3tj0efeWGRM6IsDuVew9/AllOqMMFns+CbvGsYO6oIwtazOe9eak7X8FeumdIM7/7vNyzuDTu1jQ35OonEgUSeajFprLa9e1pq3DYWYWxxwPGz9aSfrrwXpa2NRnwe2WEObeZMHYlCfti7T3tLH9hREu1RnxPJNOYjXqpExIQnD7k9waU07emAXj1nzvHgyEnhkz/Nz1usaxxoVocTEUT3wxIPd8a+9h/HTbTn+/d0F/N83P0EhY2C5Y73/Zdpg0XvXmmPy/v7uyQ1OhALKjCCajFC10xTL6vYlqM4ZyGV6Y0Br8pblXJ82lmINbdZsO4Zpj/V1OU5CXISoIEZFKO50h6t9z9foXLOV9cie3/BZvjBf3p/7pa82o+//t3fvcVGW6f/APzPDnDkOOJxhlAQRVBAEAcUkU3EprXa/mZuWm7mV2WG3NjqppabkrtW+fpbf0s3cdbVvW6uJB/CQVoqIoCliaMpREOR8HA4z8/uDZpwjDjDDMzNc778KxuG6n2ee55r7fu77ukMkeOPJOHzwUjLEAid0/5qYbzfJkb7lR5RUNRu8x0DPkT0x99xrfynUXllg6WFwJmbYE+ZQT50wxlq9tYH0gPR75hnPT7NITNo37PZ2OcRiwV0fLZg6Hhw2W2c0wNQEOQ8XAZQqlc7vehXGt85lASZXCrg588w+XlIPIdKXxECpVMFZxEO7vFfn9R3yXrz84UnEjfdBaqIM0aFSnTr1jthLHeiadms+bhjq3AVbn8xo6/ExgZI6YYy1nikO5KaqP1rQ3NZtsZjUN+wbVy8jJiZG53fGbkZOHBMz+n8tEav9b/UT4guPRqOmoR2ZP97Aa0umaDat4XHZBqVqX1wYjZaObjS2yI3+vVHuQnj+un+9fsz1zZ3o7OrVef6+cWc+/vpistHz6enKR+JEP/xwoQq5l2/BWyLCnKnBuD8u2KYLtAyVrZQwHcrcBVufzGjr8TGFs2bNmjVMBzFYCoUCtbW1AAA/Pz+Go7Ge6upqh2wfn8vBpLGjkP9zDdrlvZqL0lsiBos1tIuSxWJByHeCWMiFkO9k8v1aO7qxO7tY8/+1DR1Y/tAEFF6vs1hMTc3NcBK4oLWjG929CnA5bJTXtOKtraexO7sYp36qwqSxoyASOCFcJtH52y8ujIariIfWzh509yrA53I0Pd2kiX5InOiHiDFe2JNdjMnjpPji4BUolUo899soJEf7w0XEx6f/vYTHU8MxL1GGyJC+1yZH++N8cS0emD7GoK2+v9Z916a+ga76NAf7vr+B4rIGLH9oAm7WtqG8phVp08ZA4iIwOJ+rlk1FSmwQHkwOQbCvK27VtyM7txz7f7iOypo2SCUijPZ1hZDPHfI5VypVaGrr0hxnPpdj9D3NfZ0aE9ffQGM0Rf/zDQDt8l6kTRsDsbBvEyNT7Wtq68JbW09rvhC0y3uR/3MNZkwOgJDPfH/QWHwNLZ0YP9oT7fK+60Xe2Y5Ro0YxFqOlzqM2dd6TSqVwcjI8D8yfGTJiqXvUa56KAV8gZKS3pt+7VJeR3bhiGlS//n4oMSmVKnDFUrzy0fea3sT6Z5OM9p7WP5uEnQeu6Mx+33ngCv7wYARe+38/GvREPN2EOhu8qKvYHc2rQEVNGx5JGQt3Zz7cXXg6Mbm78KBSAjMmB+Jvu/KxYcU0zbEYyGx17b3huU7su46QRIZ4IizYA7cbO3DqYjWOn6vA9xduIkDqjNQEGVJiA+Es4hn8bXOPszm9Nnvo3VkyxqGMhtn6ZEb9+MKCPPDA9BCkb/nR4NEQE+eWqc+a/c9KIXaNzWahtqqUsbKhxiY1/X5uODzdhBaJqbm9Cxt35uskw4YWudGbJZvNQmOrHO/tOIvXPz6F93acRWOrHM1t3ZrX7Dp8BfXNnZpJauoNXnasmg2ZryvW/jERq5fFAwC27bsENoeFhbPHYdu+S3j941PYtu8SHr0/DFlnSsBm961n77vx999WUzd4N2ce0pfEwEXIQ2OrHHXNfa/xchNq3k9/T/bN/y7A/XFB+Pzt2XhpYTTEQi4+21eIJ97Jwod7CnC1vBEq1cAmczW3d+G7c+VYvSwBW19LweplCfjuXLnBBEcm93Q3d8KaJWMcyr7jtj6ZUT++R1LGaoo1AX3HbePO/GE5t8Yw9VmjnjoZ0axdQMdYMjT13J7PZRt9Vv7Pg1cAGO+JmNrE5o2lcfByE0ChBDbsOKV7o/siD8vmT4Di12fzA7nBG3v+3tJUg4paJ5M9Eu2bW1iQBx5PHQcuh43W9m7EhksxMyYQJVXNOHymDCfyK3AsrwJj/N2QmiAb0FDv9OgAvLMt504v7YkpBq/RrwOgnhdg7d7nQHptPT2W6yEP5fNt65MZ9eNzc+bZ1MgCUyMdlNTJiGfNSU3GkuGxvDK8uTROs3xNfbMUC/qGnjesmAalUgUnDgtbv7mI4vJGAMZ7Iuv+kYsNK6YZ9Aje+/ws/vpiMnoVpnvYXA4bUqmo381G1JP5nDhszU532jF7ugkhl7tizXbTk7HUN7ewIA88mTYeH+wu0Jm0J3HtwWg/N6z47SQsTRuPkwWVOHi6FFv+8xP+sf8y7o0JQGqCDKP93Ewe555eJTZ+kWfw5WXDimma6np8LtugDsALj0Zj/w/Xrd77NHfCmlKpMljBAAythzzYz7et7zanH5+p/RKYGllgqrgQJXVCrMhNzEf6khjNELx6eF97X3R1KVdjW8Y+mRaBkqqWu/ZETP3c1I3F3ZmvqSNvrLdoqme5+aVkdPXo3uBZLE6/PRJ1DI+kjNUkdPVrPtpzHs8+MhFiIRceLgKIBFykJo7G3AQZissacSinFEfPluPQ6VKEyySYmyDDtEl+4HE5Ol86VKq+SnvacdQ2dkKhUOL1X0c2Vi+LxydfXzSYF7D+2SSr9z7N7bU1t/d96dCv+//m0jhGesi2MovfFO34jK0KSV8Sw9jIAlMjHZTUCbEiNpuFnvZao70d7Zul/paxHi4CdHb1QCwQYd0zSXDisExuSKNQmO7ZGbuxvLZkCr46dhW5l2tQUtWis0e7OkmyAOw6fMVoz1LqIdJpo0ql6LdHoo6hs6vXaGIT8JwMkhuLxcI4mQTjZBIsmx+JY3kVOJxTgg92F+DTvZcwbZIfYsOl+GxvoU6vf+eBK5qRDamHUGctvqld7dhsltV7n+b22np6lci9XIOm1m6dxwRuzrbTQ7ZVxkYWqitLwGYzUwKXqZEOSuqEWFlnR8ddezvaPbmwIA88/VAkuroVeP3jO8/P31meYPSZ+39PXDPo2al7BNo3Fnm3AqVVLfj0v5c0iU/dWzTWM3/h0Wg0tXYbvFZfa1Ntvz0SdQz1zZ1GE9vddrBzEfGwYEYIHpg2GkfzyvHZ3kIcyS1H1pkyzWu0e/3qsrmvPxmHb767difOjh7GhmfN7bWpk39xeSPe23FWE+NfX0y2eoyOQP/L8o2ODgajYWakg5I6ITZAuyf3SMpYtLZ3GwwVr/40B5tfSsbGFdNwu6lTZ+e21o5uk8vw1DeWxla55nmymjqp9bdkTTu5KJUqgyVCnR0dGBfWf49EvQTP1P7t5gxJtnR04/+OXkVXjwJvPDkF7+3I0/l9bWMnBHwuPn1jFpzYLPB5bFz8pU7z+6+PXzMoxKNOrNauTGZur83WJ6cR20dJnRAboH0zdxH1FQUxNlTc1aOEl976dO1leP0losHsKufm3Dd5T91z37bvElb8LmpIE6+092/nc9lwEZmXQHWfS7MMet0A8MbHPyI23BupCTJEhUp12tvYKofEVYBNLyRrto1VJ0v9UYp3lidAJOD2ldn1k1lkrbM5vTZbn5xGbB8ldWIS1VUePvo38/JbLSaHigd74x/MrnLOQh42PJeE1o4ezajA8od0h+CFItGAdraTuA5uOFI7xq+PGz5yeO63k3D5ej2yz5Yhr6gGnm4CzJka3LeyQMgFn8uGQgmdhK6uDaA/n6GhRW4w03+4CtRYasiWrt+RiZI6McoeKm/ZC6FIpFlWZc7mHkqlCt09CpNDxerXuon5mpt2c3uX2YndWMIw1ot/c2kcdh68rLPtq7Fn0C7u0n6XtFmKdozqyn/rn03SfClxEfIgcRXgREEFAKClvRv/zirGl0euYmqkL6LDRuHLI8W43STX+Tzrz0x/JGWswe519rbXO12/IxcldWLUUDaCIHcYKxN7t5srm82Cn5czXERczZp1HpcDd60Z0Ja+aRvrxbsIefj93HDNkjpTz3f7W9Jmyd7i3UYo1D3u201yAH3D9RJXPmLH++DUT1U4dbFKJz7151l/lKK/7WrtBV2/I5dt1PsjNsfW6z7bC2NlYs0pFclms+Dm3LdPu4+nGBJX3RKu1ihBqb83vJMT26z9vtVL2rRJPYRw4rB1ysO+8tH3KLvVMqT9vE3tXw8Y/8w2tHRh5uQAvG6kulxtYyeulDbAVcTTKaWqrqGv3x5bKY9qDrp+Ry77+ZSSYWXrdZ9tSX81va11cx2um3Z/SVRNvaRNv744hw2jXzzqmjs1x8nceujmMPWZbe3oQYfcMFGzAGzYkYeXPjiJohv1WPvHRGx/636MDXQfdL10W0HX78hFw+/EKFpaY567DYNbq1QkUyUojTG1pM3UjPrahg58sLsA7yxPQE+v0mKPEIx9Zl94NBon8iswMzYQ6U/EYeMXd0rzvvp4DEqrW3EopxRb/3sJQj4HMyYHIjVBBpnvnfZ0yTvh721fz6Lp+h25KKkTo2hpjXnu9uzSWJlYS9xcbe2mbWwCnqkvHq0dPaht7MSt+naDtfjqY6c9CXAws/u7uhWorG3FifwK3BsTiI/2nIeHiwDPPjIRfl7OEPCd4O7MxziZJ+ZMDca1iiYcOl2K4+cqcDinFGFBHn0laaP8cPnGFQT6MlOVTNtA5ifQ9TtyUVInJtl63WdbcLdh8P7KxA4Fm81CoNQFG1dMQ69SBadfz5Ut3bRN9ZzVu86ZKts6lEmA2isIOrt6kTTJT7PsrbaxU1Nt7q8vJmvei8ViITTIA6FBHnjqwQgcz+9L7B99eR7bvi3EhCA+pAGtCPR2GdRxsMRkwcEcE7p+R6ZhSeoZGRnIysrCzZs3sX//foSGhgIASkpKkJ6ejqamJri7uyMjIwMymWw4QiLEIswZBjdWJnaoN3qlUmV0AxhbWrJkrOesXusO3JmQZlDLXqka8sxt9d8W8o1/cTA198BZxMOD00PwwLQxKLxRj8OnS/HjxZs48/5xTAjxQmqCDFMn+Jr9mMNSqxSGczY7rW+3b8PyAO6+++7Drl274O/vr/Pz1atXY9GiRcjKysKiRYuwatWq4QiHEItR90YHMqlKfaMfyqxwa8x+twbtiXaebkI0tvYtN5N6COHjKTY4di8ujEZDi9wikwDZbBb4PM6gJoyxWCxMCPHCq4tj8acFvnjiN+NR29iB9/91Dn9Ym40vDhThVn37XWOw1HkaromRlvhsEmYNS089NjbW4Gf19fUoKirC559/DgBIS0vD2rVr0dDQAIlEMhxhETJkg3l2aYlel70tWTJ1nADo9OR3HriCR1LGWmwSoCXmHjgLOJiRNBYP33sPzl+txaHTpfjmu2v4+vg1RIR4YtaUICRH+YPL5Rj8W0udp+GaGEnr2+0fY8/Uq6ur4e3tDQ6n70LgcDiQSqWorq6mpE7sykCfXVriRj+Qm7ytDKeaOk59+6B34J1tuQBgtATsYCcB6n+ZcOKwwWEDdc2dAz4WbDYLMeO8ER0qxYVrtcjYeQ6F1+tReL0eOzKLkJoow5ypwfB0uzMyYKlkPFwTI+3tyyIx5DAT5fLz85kOwaqoffZNu31SP5nRG32XvBP5+VfMej+hSGQwqz59SQyqK0t0tpsUikTgiqUGr+tpr0WnBbelHOr50z4mxeWN+OfBK30z1Uc5Q9HThdamKpyv/mVIf2Mox0L//G356id0yHs1P+uQ92B3djH2HClGmL8AU8Y6Y7QPH2Kx2KzzZG78a56KAYvFgUqlsMgx0W+fJT6btsbR7y36WCqVatgelqSkpGDr1q0IDQ1FfX095syZg9zcXHA4HCgUCsTHxyM7O9vsnnpXVxcKCwsBADExMdYMnVH5+fnUPjum3z5LTZ4ypwfe2CrXlKhVU8/+ttRwqiXO33DUKh/ssdBvX21jB55ad8TgdRueS8K5KzU4crYcLe3d8PUUY25CMGbGBAIsMD5SYop2+xytZrwj3lvUeS8yMhJ8vuFIDWM9dU9PT4SHhyMzMxPz589HZmYmwsPDaeidODxLrSE2Z9ifqeHUgQ75D8e6ams/3/aXOiMyxAu/nzsOpy5W43BOKT7PLMI/D/2MpIl+SE2UYfxoCVgs202OprbHJfZjWJL6unXrkJ2djbq6OixduhTu7u44cOAA1qxZg/T0dHz88cdwdXVFRkbGcIRDCOOGaw0xE5XnBtvbs/YxGa7n21wnDu6dHIDkKH9cLqnHsbxy5FysxsnzlQjycUFqggwzYwIhFnIt2j5Lam7rcpje+kgzrMPvlkbD746B2mc91hpO1e6J95VRlejslmbNIf/BTvwb7LEwdv7uFoP+3xrlLsCsuGCcu1KDaxVN4PM4SI7yx7zE0Rjj78boREb99g3HI5vBGui5d8R7i80OvxNCrM/Sw9pKpQpNbV2Qd/Wiqq4Ne7KvorFVrpMcrTnkP9Rqc8a2lx1MQr3bqIL+0rDbTXIcyyvHX19MRn2THIdySnHyfCWOnC1HkLcLGlvlaO3osYlesa3OgHe05/3WQg9LCHFw5uy0Zg71TfXVv3+PP248hk++vojF88Lh4SLQKahizR3ChlrMRftYuIn5qKhttUqhlf4S4z2B7lj5P1H4YtUcLJkXjpu329Da0aN5zZrPcqxSRMjcHfFsdYc3eym4xDRK6oQQsxi7qf79y/N4JGWsTk9uMFX2zGXJXqQ1k4Q5iVEs5GLG5AAo9JJrQ0sX1m7IOHJfAAAS/ElEQVTPxYmCSvT0KoYcCzCwSnHWPH9DYasjCLaGht8JIWYxdVN1EXF1EpY1Z7JbcuKfNZOEucVijLXHWeiE5rYu/G1XPj7by8OsKUGYkxAMPy/nQcfTX6U4fba6w5stbTdsyyipE0LMYuqmKu/uNUhY1prJbsnKakNNEv1N2jI3MZpqT6DUBYU36nDwdCn2fn8d35z4BdGho5CaKEPceB9wOANLZAP9AjOU82etCoa2tt2wraKkTggxi7Gb6htL4yDiAaM8XIZlBrcle5FDSRLmTNoyJzH2156oUCmiQqWob+7EkbPlyMopxXs78iBxFWB2fDBmxwdjlN4Qv6mEOtgvMANN0NaczGarIwi2hpI6IcQspm6qPxf/DHkPa9hmJQ+2F2ksQQ02SVhy45O7tcfTTYiF94fhdyljkf9zLQ6eLsGXR4vxf0eLMWW8D1ITZYgOlQKAyYQ6mC8wg0nQ1t4Qxhb2iLeVvRRMoaROCDGbsZuqi7sUa7bb9s5e/SWowcTIxKQtDoeNuAgfxEX44FZ9O7Jzy3Aktxy5l2/BWyJCcrQ/vjtXgbpmuSYe7fMwHLsJOvpkNntYVkczDAghQ8JicWz+Rm7pme5ML/vy8RRjybzx+Mfbs/GXxbHwlojw1bFrmoSupn0eBrq0cTAJmunjYm32sKzOMY40IYQxKpXC5m/klu5B2sqyL64TG9Oj/LH+2SRsXJEEIV93T3dnIRfdPYbL4rTXrEv9ZEaXtg0mQdvKcbEWexiJoOF3QsiQtDbV2vysZEsvh7LFSVvhMk9kPD8da7efwe0mOZw4LLR19uDFv53A9Oi+krRjA92hUpl+9q4d/2Cew9vicbEke1hWR0mdEDIknR0dGBdm2zdyayyHsoVJW9rUCfVvL83QnIf6JjmycstwIr8Cx/IqMMbfDTOi/bH/xxuoazL+7F3//QZ6Xm3tuFiSPSyro6ROCBkyW7+RO3oPUk3/PHi4CHBPoDuWpo3HyYJKHDzdtx2sPlNDyLZ+XoebPXyOKKkTQkYEJhMU08ugRAIuUhNHY26CDHlXarDpn+cg777zrN1FxIUdb9g5rGz9i47tPAgghBAHNJC669bGYrEQO84b76+cDi+3vsTEYbPQ2tGDlz84ie3fFuLm7bZhj4tYDvXUCSHEiqxdkGWg1EPIm1/ue/Yu7+xAQ5sSh8+UYf8PN7D35HVMvMcL8xJHIz7SB04DLElLmEVJnRBit5ge1jaHLS6D0h5Czr9xBTExMYgKlaKxRY7s3DIczinFxp15cHPmYXZ8MOZOlUEqETEWLzEfJXVCiF2yh+pegH0sg1Jzc+YjLsIHWWdKAQCdXb34z7Fr+M/xa4gZ5415iTJMHucNjg0dX6LL9j5VhBBiBnuo7gXYV0EW9TG9/etyt+4eJSSufDwwfQyuVzbh3e25ePq9I/jyaDEaW+R3eTfCBOqpE0Lski0OaxtjD8ug1Iwd0/qWLsxPDsHStAjkXr6FQ6dL8K9DP2N3VjGmRvoiNUGGiWO9wGLZXntGIkrqhBC7ZE/D2ra+DEqtv2PqxGEjaaIfkib64ebtNhzOKcWxvHKculgF/1FizE2QISU2CK5iHnMNIDT8TgixT/Y0rG0vzD2m/qOc8dSDkdixag7+tGgyXMV8bP/2Mp58Nwub/52PKyUNtO6dIdRTJ4TYJXsa1rYXAz2mPC4HM2MCMTMmECVVzTicU4rv8ivxXX4lZL6uSE2U4d7JARAJuMPbkBGMkjohxG7Zy7C2PRnsMR3t54ZnH5mEJ9Mi8P35vpK0n3x9EZ/vv4wZkwOQmiBDSIC7FSIm2iipE0IIsRgh3wlzpsowOz4Y1yqacOh0X+8960wZwoI8MDdBhmlRfhDwKP1YAx1VQgghFsdisRAa5IHQIA889WAEjudX4HBOKT768jy2fVuI+2IDMTdBhkBvF6ZDdSiU1AkhhFiVs4iHB6eH4IFpY3D5Rj0O5ZTi4OkSfPvDDUwI8UJqggxTJ/ja5MoFe0NJnRBCyLBgsViIDPFCZIgXmlq7cDSvHIdzSvH+v87B3ZmPWXFBmDM1GD6eYqZDtVuU1AkhhAw7dxc+fpsyFg/few8uXL2NQzkl+Oa7a/j6u2uIDpNiXoIMseHe4NCGMgNCSZ0QQghj2GwWJo+TYvI4KeqaOpGdW4asM2VY9/lZeLkJMHuqDLPjg+DpJmQ6VLtASZ0QQohN8HIXYtGccXh0VijOFtXgcE4p/p31M/YcKUZ8hA9SE2SYNHYU1SLoByV1QgghNoXDYSNhgi8SJviiuq4dWWdKceRsOXIuVcPXU4y5CcG4b0oQ3JypeqA+SuqEEEJslq+XGE+mReD3c8fh9MVqHMopxeeZRfjnoZ+RNNEPqYkyjB8toQ1lfkVJnRBCiM3jOnEwY3IAZkwOQNmtlr6StOcqcPJ8JYJ8XJCaIMPMmECIhSO7JC0ldUIIIXYl2McVf3xoIp6YNx4/XLiJQzml+N//XsKOA0VIjvJHaqIMYwM9mA6TEZTUCSGE2CUB3wn3xwfj/vhg/FLRhEM5pTh5vhJHzpbjngA3jPdnIyKyFwL+yEl1I6elhBBCHNY9ge5YGRiFPzwQgRP5FTiYU4pvc5tx9KcspMT0laQN9nVlOkyro6ROCCHEYYiFXPxm2hjMSxqNvVk5uFHPx+EzZcg8VYLxoyVITZAhaZIfuE4cpkO1CkrqhBBCHA6LxULQKD4emhuDZfMjcSyvb0OZv/27AJ/tK8SsKUGYkxAMPy9npkO1KJtI6iUlJUhPT0dTUxPc3d2RkZEBmUzGdFiEEEIcgJszHw/PvAcLZoTg4i+3cfB0KfZ+fx3fnPgFUaGjkJogQ1yED5wcoCStTST11atXY9GiRZg/fz727duHVatWYefOnUyHRQghxIGw2SxEhUoRFSpFfXMnjpwtR1ZOKTZ8kQeJqwCz44MxOz4YozzstyQt419L6uvrUVRUhLS0NABAWloaioqK0NDQwHBkhBBCHJWnmxAL7w/Dtjfvx9t/iMdoP1d8ebQYy9ZnY90/cnHuSg2UShXTYQ4Y4z316upqeHt7g8Ppm7TA4XAglUpRXV0NiUTCcHSEEEIcGYfDRlyED+IifHCrvh3ZuWU4kluO3Mu3IJWIMHdqMGbFBcHDRcB0qGZhqVQqRr+KFBYW4rXXXsOBAwc0P5s3bx42bdqEiIiIfv9tV1cXCgsLrR0iIYSQEaRXocLPlZ0490s7Smu6wGYD4QFCxI4VQybl20RJ2sjISPD5hrXvGe+p+/r6oqamBgqFAhwOBwqFArW1tfD19R3Q+8TExFgpQubl5+dT++wYtc++Ufvs11DaFh8HPAGgoqYVh8+U4lheBS6X1yFA6ozUBBlSYgPhLOJZNmAz3K0zy/gzdU9PT4SHhyMzMxMAkJmZifDwcBp6J4QQwrhAbxc8PX8Cvlg9By8tjIZYyMVn+wrxxDtZ+HBPAYrLGsDwgLcOxnvqALBmzRqkp6fj448/hqurKzIyMpgOiRBCCNHgczm4b0oQ7psShOuVTTh8pgwn8itwLK8CY/zdkJogw4zJARAyXJLWJpJ6SEgIvvrqK6bDIIQQQu4qJMAdK37rjqVp43GyoBIHT5diy39+wj/2X8a9MQFITZBhtJ8bI7HZRFInhBBC7I1IwEVq4mjMTZChuKwRh3JKcfRsOQ6dLsW4YA+kJo5G0iQ/8LnDV5KW8WfqhBBCiD1jsVgYJ5Pg5ccm44vVc/DUg5Fo7ejGB7sLsPTdLFwtbxy2WKinTgghhFiIi4iHBTNCMD95DC5dr8Ppi9UQ8Iavp05JnRBCCLEwFouFifeMwsR7Rg3r36Xhd0IIIcRBUFInhBBCHAQldUIIIcRBUFInhBBCHAQldUIIIcRBUFInhBBCHAQldUIIIcRBUFInhBBCHAQldUIIIcRB2HVFOe09bLu6uhiMxPqoffaN2mffqH32y9Ha1t3dDQAm93BnqWxpd/cBam1txdWrV5kOgxBCCBlWoaGhcHFxMfi5XSd1pVKJ9vZ2cLlcsFgspsMhhBBCrEqlUqGnpwdisRhstuETdLtO6oQQQgi5gybKEUIIIQ6CkjohhBDiICipE0IIIQ6CkjohhBDiICipE0IIIQ6CkjohhBDiICipE0IIIQ7CrsvElpSUID09HU1NTXB3d0dGRgZkMhnTYVlMSkoKeDwe+Hw+AOCVV17B9OnTGY5q8DIyMpCVlYWbN29i//79CA0NBeA459FU+xzhPDY2NuIvf/kLysvLwePxEBwcjHfffRcSiQQXLlzAqlWr0NXVBX9/f2zatAmenp5Mhzwg/bUvLCwMoaGhmkIf77//PsLCwhiOeOCee+45VFZWgs1mQyQS4e2330Z4eLjDXH+m2ucI19+AqOzY4sWLVXv37lWpVCrV3r17VYsXL2Y4IsuaOXOmqri4mOkwLCYvL09VVVVl0C5HOY+m2ucI57GxsVF15swZzf9v3LhR9frrr6sUCoVq1qxZqry8PJVKpVJt2bJFlZ6ezlSYg2aqfSqVShUaGqpqa2tjKjSLaWlp0fz3kSNHVAsWLFCpVI5z/ZlqnyNcfwNht8Pv9fX1KCoqQlpaGgAgLS0NRUVFaGhoYDgyYkpsbCx8fX11fuZI59FY+xyFu7s74uPjNf8fFRWFqqoqFBYWgs/nIzY2FgCwcOFCHD58mKkwB81U+xyJdp3wtrY2sFgsh7r+jLVvJLLb4ffq6mp4e3uDw+EAADgcDqRSKaqrqyGRSBiOznJeeeUVqFQqxMTE4E9/+hNcXV2ZDsmi6DzaH6VSid27dyMlJQXV1dXw8/PT/E4ikUCpVGqGcu2RdvvUFi9eDIVCgeTkZKxcuRI8Ho/BCAfvzTffxKlTp6BSqbBt2zaHu/7026fmSNff3dhtT30k2LVrF7799lt8/fXXUKlUePfdd5kOiQyCo53HtWvXQiQS4fHHH2c6FKvQb9+JEyfwzTffYNeuXfjll1+wZcsWhiMcvPXr1+PEiRN4+eWX8f777zMdjsUZa5+jXX93Y7dJ3dfXFzU1NVAoFAAAhUKB2tpahxr+VLeFx+Nh0aJFKCgoYDgiy6PzaF8yMjJQVlaGDz/8EGw2G76+vjrD1A0NDWCz2XbbS9dvH3Dn/Dk7O+N3v/udXZ8/tQULFiA3Nxc+Pj4Oef2p29fY2OhQ15857Dape3p6Ijw8HJmZmQCAzMxMhIeH2+WQkTEdHR1obW0F0LfV3sGDBxEeHs5wVJZH59F+bN68GYWFhdiyZYtm+DkyMhJyuRznzp0DAOzZswdz585lMsxBM9a+5uZmyOVyAEBvby+ysrLs8vy1t7ejurpa8//Hjx+Hm5ubw1x/ptrH5/Md5vozl11vvXr9+nWkp6ejpaUFrq6uyMjIwJgxY5gOyyIqKiqwcuVKKBQKKJVKhISE4K233oJUKmU6tEFbt24dsrOzUVdXBw8PD7i7u+PAgQMOcx6NtW/r1q0OcR6vXbuGtLQ0yGQyCAQCAEBAQAC2bNmCgoICrF69WmdJm5eXF8MRD4yp9i1btgyrVq0Ci8VCb28voqOj8cYbb0AsFjMc8cDU1dXhueeeQ2dnJ9hsNtzc3PDaa68hIiLCIa4/U+1zdXV1iOtvIOw6qRNCCCHkDrsdfieEEEKILkrqhBBCiIOgpE4IIYQ4CErqhBBCiIOgpE4IIYQ4CErqhBAAfbvJnT59mukwCCFDQEmdEGKWyspKhIWFobe31+x/Q18UCBlelNQJIYQQB0FJnRCi4+LFi3j44YcxefJkJCYmYsOGDQCg2eBkypQpiI6Oxvnz51FeXo4lS5YgPj4e8fHx+POf/4yWlhYAwKuvvoqqqio888wziI6OxmeffcZYmwgZKaiiHCEEQN9Q+bp16/DRRx/hsccew4IFC9De3o5r164hKioKlZWVuO+++3D58mU4OfXt2lxWVobKykpMmTIFbW1tWLlyJcaPH48333xT5z0TExOZbBohIwb11AkhOpycnFBeXo6GhgaIxWJERUWZfG1wcDCSkpLA4/EgkUiwdOlS5OXlDWO0hBBtTkwHQAixLevXr8ff//53pKamIiAgAM8//zxmzpxp9LV1dXVYv349zp07h/b2dqhUKri6ug5zxIQQNeqpE0J0yGQybN68GTk5OXj66afxwgsvoKOjAywWy+C1mzdvBovFwv79+1FQUIBNmzaBnugRwhxK6oQQHfv27UNDQwPYbLam181msyGRSMBms1FRUaF5bXt7O0QiEVxcXFBTU4Nt27bpvJeXl5fO6wkh1kVJnRCi44cffsBvfvMbREdHY/369fjggw8gEAggFArxzDPP4LHHHkNsbCwuXLiA559/HkVFRYiNjcXy5csxe/Zsnfdavnw5PvnkE8TGxmL79u0MtYiQkYNmvxNCCCEOgnrqhBBCiIOgpE4IIYQ4CErqhBBCiIOgpE4IIYQ4CErqhBBCiIOgpE4IIYQ4CErqhBBCiIOgpE4IIYQ4CErqhBBCiIP4/wMXkgVF/45KAAAAAElFTkSuQmCC\n",
"text/plain": [
"