{ "cells": [ { "cell_type": "code", "execution_count": 59, "metadata": {}, "outputs": [], "source": [ "import seaborn as sns\n", "import pandas as pd\n", "import numpy as np\n", "from matplotlib import pyplot as plt\n", "from sklearn import linear_model\n", "from sklearn.metrics import classification_report as summary\n", "\n", "sns.set()\n", "sns.set(style=\"whitegrid\")\n", "tips = sns.load_dataset(\"tips\")\n", "plt.rcParams[\"figure.figsize\"] = (5,8)" ] }, { "cell_type": "code", "execution_count": 66, "metadata": {}, "outputs": [], "source": [ "Boston = pd.read_csv(\"../../datasets/Boston.csv\")\n" ] }, { "cell_type": "code", "execution_count": 67, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[-0.95004935] 34.5538408793831\n", "0.5441462975864797\n" ] } ], "source": [ "X = np.array(Boston[\"lstat\"]).reshape(-1,1)\n", "y = Boston[\"medv\"]\n", "model = linear_model.LinearRegression()\n", "model.fit(X, y)\n", "print(model.coef_, model.intercept_)\n", "print(model.score(X,y))\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.2" } }, "nbformat": 4, "nbformat_minor": 4 }