we can test 19 libs now!!!
This commit is contained in:
295
src/includes/3thparty/tsl/array_growth_policy.h
Normal file
295
src/includes/3thparty/tsl/array_growth_policy.h
Normal file
@@ -0,0 +1,295 @@
|
||||
/**
|
||||
* MIT License
|
||||
*
|
||||
* Copyright (c) 2017 Tessil
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
* of this software and associated documentation files (the "Software"), to deal
|
||||
* in the Software without restriction, including without limitation the rights
|
||||
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
* copies of the Software, and to permit persons to whom the Software is
|
||||
* furnished to do so, subject to the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice shall be included in all
|
||||
* copies or substantial portions of the Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
* SOFTWARE.
|
||||
*/
|
||||
#ifndef TSL_ARRAY_GROWTH_POLICY_H
|
||||
#define TSL_ARRAY_GROWTH_POLICY_H
|
||||
|
||||
|
||||
#include <algorithm>
|
||||
#include <array>
|
||||
#include <climits>
|
||||
#include <cmath>
|
||||
#include <cstddef>
|
||||
#include <iterator>
|
||||
#include <limits>
|
||||
#include <ratio>
|
||||
#include <stdexcept>
|
||||
|
||||
|
||||
namespace tsl {
|
||||
namespace ah {
|
||||
|
||||
/**
|
||||
* Grow the hash table by a factor of GrowthFactor keeping the bucket count to a power of two. It allows
|
||||
* the table to use a mask operation instead of a modulo operation to map a hash to a bucket.
|
||||
*
|
||||
* GrowthFactor must be a power of two >= 2.
|
||||
*/
|
||||
template<std::size_t GrowthFactor>
|
||||
class power_of_two_growth_policy {
|
||||
public:
|
||||
/**
|
||||
* Called on the hash table creation and on rehash. The number of buckets for the table is passed in parameter.
|
||||
* This number is a minimum, the policy may update this value with a higher value if needed (but not lower).
|
||||
*
|
||||
* If 0 is given, min_bucket_count_in_out must still be 0 after the policy creation and
|
||||
* bucket_for_hash must always return 0 in this case.
|
||||
*/
|
||||
explicit power_of_two_growth_policy(std::size_t& min_bucket_count_in_out) {
|
||||
if(min_bucket_count_in_out > max_bucket_count()) {
|
||||
throw std::length_error("The hash table exceeds its maxmimum size.");
|
||||
}
|
||||
|
||||
if(min_bucket_count_in_out > 0) {
|
||||
min_bucket_count_in_out = round_up_to_power_of_two(min_bucket_count_in_out);
|
||||
m_mask = min_bucket_count_in_out - 1;
|
||||
}
|
||||
else {
|
||||
m_mask = 0;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Return the bucket [0, bucket_count()) to which the hash belongs.
|
||||
* If bucket_count() is 0, it must always return 0.
|
||||
*/
|
||||
std::size_t bucket_for_hash(std::size_t hash) const noexcept {
|
||||
return hash & m_mask;
|
||||
}
|
||||
|
||||
/**
|
||||
* Return the number of buckets that should be used on next growth.
|
||||
*/
|
||||
std::size_t next_bucket_count() const {
|
||||
if((m_mask + 1) > max_bucket_count() / GrowthFactor) {
|
||||
throw std::length_error("The hash table exceeds its maxmimum size.");
|
||||
}
|
||||
|
||||
return (m_mask + 1) * GrowthFactor;
|
||||
}
|
||||
|
||||
/**
|
||||
* Return the maximum number of buckets supported by the policy.
|
||||
*/
|
||||
std::size_t max_bucket_count() const {
|
||||
// Largest power of two.
|
||||
return (std::numeric_limits<std::size_t>::max() / 2) + 1;
|
||||
}
|
||||
|
||||
/**
|
||||
* Reset the growth policy as if it was created with a bucket count of 0.
|
||||
* After a clear, the policy must always return 0 when bucket_for_hash is called.
|
||||
*/
|
||||
void clear() noexcept {
|
||||
m_mask = 0;
|
||||
}
|
||||
|
||||
private:
|
||||
static std::size_t round_up_to_power_of_two(std::size_t value) {
|
||||
if(is_power_of_two(value)) {
|
||||
return value;
|
||||
}
|
||||
|
||||
if(value == 0) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
--value;
|
||||
for(std::size_t i = 1; i < sizeof(std::size_t) * CHAR_BIT; i *= 2) {
|
||||
value |= value >> i;
|
||||
}
|
||||
|
||||
return value + 1;
|
||||
}
|
||||
|
||||
static constexpr bool is_power_of_two(std::size_t value) {
|
||||
return value != 0 && (value & (value - 1)) == 0;
|
||||
}
|
||||
|
||||
protected:
|
||||
static_assert(is_power_of_two(GrowthFactor) && GrowthFactor >= 2, "GrowthFactor must be a power of two >= 2.");
|
||||
|
||||
std::size_t m_mask;
|
||||
};
|
||||
|
||||
|
||||
/**
|
||||
* Grow the hash table by GrowthFactor::num / GrowthFactor::den and use a modulo to map a hash
|
||||
* to a bucket. Slower but it can be useful if you want a slower growth.
|
||||
*/
|
||||
template<class GrowthFactor = std::ratio<3, 2>>
|
||||
class mod_growth_policy {
|
||||
public:
|
||||
explicit mod_growth_policy(std::size_t& min_bucket_count_in_out) {
|
||||
if(min_bucket_count_in_out > max_bucket_count()) {
|
||||
throw std::length_error("The hash table exceeds its maxmimum size.");
|
||||
}
|
||||
|
||||
if(min_bucket_count_in_out > 0) {
|
||||
m_mod = min_bucket_count_in_out;
|
||||
}
|
||||
else {
|
||||
m_mod = 1;
|
||||
}
|
||||
}
|
||||
|
||||
std::size_t bucket_for_hash(std::size_t hash) const noexcept {
|
||||
return hash % m_mod;
|
||||
}
|
||||
|
||||
std::size_t next_bucket_count() const {
|
||||
if(m_mod == max_bucket_count()) {
|
||||
throw std::length_error("The hash table exceeds its maxmimum size.");
|
||||
}
|
||||
|
||||
const double next_bucket_count = std::ceil(double(m_mod) * REHASH_SIZE_MULTIPLICATION_FACTOR);
|
||||
if(!std::isnormal(next_bucket_count)) {
|
||||
throw std::length_error("The hash table exceeds its maxmimum size.");
|
||||
}
|
||||
|
||||
if(next_bucket_count > double(max_bucket_count())) {
|
||||
return max_bucket_count();
|
||||
}
|
||||
else {
|
||||
return std::size_t(next_bucket_count);
|
||||
}
|
||||
}
|
||||
|
||||
std::size_t max_bucket_count() const {
|
||||
return MAX_BUCKET_COUNT;
|
||||
}
|
||||
|
||||
void clear() noexcept {
|
||||
m_mod = 1;
|
||||
}
|
||||
|
||||
private:
|
||||
static constexpr double REHASH_SIZE_MULTIPLICATION_FACTOR = 1.0 * GrowthFactor::num / GrowthFactor::den;
|
||||
static const std::size_t MAX_BUCKET_COUNT =
|
||||
std::size_t(double(
|
||||
std::numeric_limits<std::size_t>::max() / REHASH_SIZE_MULTIPLICATION_FACTOR
|
||||
));
|
||||
|
||||
static_assert(REHASH_SIZE_MULTIPLICATION_FACTOR >= 1.1, "Growth factor should be >= 1.1.");
|
||||
|
||||
std::size_t m_mod;
|
||||
};
|
||||
|
||||
|
||||
|
||||
namespace detail {
|
||||
|
||||
static constexpr const std::array<std::size_t, 40> PRIMES = {{
|
||||
1ul, 5ul, 17ul, 29ul, 37ul, 53ul, 67ul, 79ul, 97ul, 131ul, 193ul, 257ul, 389ul, 521ul, 769ul, 1031ul,
|
||||
1543ul, 2053ul, 3079ul, 6151ul, 12289ul, 24593ul, 49157ul, 98317ul, 196613ul, 393241ul, 786433ul,
|
||||
1572869ul, 3145739ul, 6291469ul, 12582917ul, 25165843ul, 50331653ul, 100663319ul, 201326611ul,
|
||||
402653189ul, 805306457ul, 1610612741ul, 3221225473ul, 4294967291ul
|
||||
}};
|
||||
|
||||
template<unsigned int IPrime>
|
||||
static constexpr std::size_t mod(std::size_t hash) { return hash % PRIMES[IPrime]; }
|
||||
|
||||
// MOD_PRIME[iprime](hash) returns hash % PRIMES[iprime]. This table allows for faster modulo as the
|
||||
// compiler can optimize the modulo code better with a constant known at the compilation.
|
||||
static constexpr const std::array<std::size_t(*)(std::size_t), 40> MOD_PRIME = {{
|
||||
&mod<0>, &mod<1>, &mod<2>, &mod<3>, &mod<4>, &mod<5>, &mod<6>, &mod<7>, &mod<8>, &mod<9>, &mod<10>,
|
||||
&mod<11>, &mod<12>, &mod<13>, &mod<14>, &mod<15>, &mod<16>, &mod<17>, &mod<18>, &mod<19>, &mod<20>,
|
||||
&mod<21>, &mod<22>, &mod<23>, &mod<24>, &mod<25>, &mod<26>, &mod<27>, &mod<28>, &mod<29>, &mod<30>,
|
||||
&mod<31>, &mod<32>, &mod<33>, &mod<34>, &mod<35>, &mod<36>, &mod<37> , &mod<38>, &mod<39>
|
||||
}};
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* Grow the hash table by using prime numbers as bucket count. Slower than tsl::ah::power_of_two_growth_policy in
|
||||
* general but will probably distribute the values around better in the buckets with a poor hash function.
|
||||
*
|
||||
* To allow the compiler to optimize the modulo operation, a lookup table is used with constant primes numbers.
|
||||
*
|
||||
* With a switch the code would look like:
|
||||
* \code
|
||||
* switch(iprime) { // iprime is the current prime of the hash table
|
||||
* case 0: hash % 5ul;
|
||||
* break;
|
||||
* case 1: hash % 17ul;
|
||||
* break;
|
||||
* case 2: hash % 29ul;
|
||||
* break;
|
||||
* ...
|
||||
* }
|
||||
* \endcode
|
||||
*
|
||||
* Due to the constant variable in the modulo the compiler is able to optimize the operation
|
||||
* by a series of multiplications, substractions and shifts.
|
||||
*
|
||||
* The 'hash % 5' could become something like 'hash - (hash * 0xCCCCCCCD) >> 34) * 5' in a 64 bits environement.
|
||||
*/
|
||||
class prime_growth_policy {
|
||||
public:
|
||||
explicit prime_growth_policy(std::size_t& min_bucket_count_in_out) {
|
||||
auto it_prime = std::lower_bound(detail::PRIMES.begin(),
|
||||
detail::PRIMES.end(), min_bucket_count_in_out);
|
||||
if(it_prime == detail::PRIMES.end()) {
|
||||
throw std::length_error("The hash table exceeds its maxmimum size.");
|
||||
}
|
||||
|
||||
m_iprime = static_cast<unsigned int>(std::distance(detail::PRIMES.begin(), it_prime));
|
||||
if(min_bucket_count_in_out > 0) {
|
||||
min_bucket_count_in_out = *it_prime;
|
||||
}
|
||||
else {
|
||||
min_bucket_count_in_out = 0;
|
||||
}
|
||||
}
|
||||
|
||||
std::size_t bucket_for_hash(std::size_t hash) const noexcept {
|
||||
return detail::MOD_PRIME[m_iprime](hash);
|
||||
}
|
||||
|
||||
std::size_t next_bucket_count() const {
|
||||
if(m_iprime + 1 >= detail::PRIMES.size()) {
|
||||
throw std::length_error("The hash table exceeds its maxmimum size.");
|
||||
}
|
||||
|
||||
return detail::PRIMES[m_iprime + 1];
|
||||
}
|
||||
|
||||
std::size_t max_bucket_count() const {
|
||||
return detail::PRIMES.back();
|
||||
}
|
||||
|
||||
void clear() noexcept {
|
||||
m_iprime = 0;
|
||||
}
|
||||
|
||||
private:
|
||||
unsigned int m_iprime;
|
||||
|
||||
static_assert(std::numeric_limits<decltype(m_iprime)>::max() >= detail::PRIMES.size(),
|
||||
"The type of m_iprime is not big enough.");
|
||||
};
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
1772
src/includes/3thparty/tsl/array_hash.h
Normal file
1772
src/includes/3thparty/tsl/array_hash.h
Normal file
File diff suppressed because it is too large
Load Diff
863
src/includes/3thparty/tsl/array_map.h
Normal file
863
src/includes/3thparty/tsl/array_map.h
Normal file
@@ -0,0 +1,863 @@
|
||||
/**
|
||||
* MIT License
|
||||
*
|
||||
* Copyright (c) 2017 Tessil
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
* of this software and associated documentation files (the "Software"), to deal
|
||||
* in the Software without restriction, including without limitation the rights
|
||||
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
* copies of the Software, and to permit persons to whom the Software is
|
||||
* furnished to do so, subject to the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice shall be included in all
|
||||
* copies or substantial portions of the Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
* SOFTWARE.
|
||||
*/
|
||||
#ifndef TSL_ARRAY_MAP_H
|
||||
#define TSL_ARRAY_MAP_H
|
||||
|
||||
#include <cstddef>
|
||||
#include <cstdint>
|
||||
#include <initializer_list>
|
||||
#include <iterator>
|
||||
#include <string>
|
||||
#include <type_traits>
|
||||
#include <utility>
|
||||
#include "array_hash.h"
|
||||
|
||||
namespace tsl {
|
||||
|
||||
|
||||
/**
|
||||
* Implementation of a cache-conscious string hash map.
|
||||
*
|
||||
* The map stores the strings as `const CharT*`. If `StoreNullTerminator` is true,
|
||||
* the strings are stored with the a null-terminator (the `key()` method of the iterators
|
||||
* will return a pointer to this null-terminated string). Otherwise the null character
|
||||
* is not stored (which allow an economy of 1 byte per string).
|
||||
*
|
||||
* The value `T` must be either nothrow move-constructible, copy-constuctible or both.
|
||||
*
|
||||
* The size of a key string is limited to `std::numeric_limits<KeySizeT>::max() - 1`.
|
||||
* That is 65 535 characters by default, but can be raised with the `KeySizeT` template parameter.
|
||||
* See `max_key_size()` for an easy access to this limit.
|
||||
*
|
||||
* The number of elements in the map is limited to `std::numeric_limits<IndexSizeT>::max()`.
|
||||
* That is 4 294 967 296 elements, but can be raised with the `IndexSizeT` template parameter.
|
||||
* See `max_size()` for an easy access to this limit.
|
||||
*
|
||||
* Iterators invalidation:
|
||||
* - clear, operator=: always invalidate the iterators.
|
||||
* - insert, emplace, operator[]: always invalidate the iterators.
|
||||
* - erase: always invalidate the iterators.
|
||||
* - shrink_to_fit: always invalidate the iterators.
|
||||
*/
|
||||
template<class CharT,
|
||||
class T,
|
||||
class Hash = tsl::ah::str_hash<CharT>,
|
||||
class KeyEqual = tsl::ah::str_equal<CharT>,
|
||||
bool StoreNullTerminator = true,
|
||||
class KeySizeT = std::uint16_t,
|
||||
class IndexSizeT = std::uint32_t,
|
||||
class GrowthPolicy = tsl::ah::power_of_two_growth_policy<2>>
|
||||
class array_map {
|
||||
private:
|
||||
template<typename U>
|
||||
using is_iterator = tsl::detail_array_hash::is_iterator<U>;
|
||||
|
||||
using ht = tsl::detail_array_hash::array_hash<CharT, T, Hash, KeyEqual, StoreNullTerminator,
|
||||
KeySizeT, IndexSizeT, GrowthPolicy>;
|
||||
|
||||
public:
|
||||
using char_type = typename ht::char_type;
|
||||
using mapped_type = T;
|
||||
using key_size_type = typename ht::key_size_type;
|
||||
using index_size_type = typename ht::index_size_type;
|
||||
using size_type = typename ht::size_type;
|
||||
using hasher = typename ht::hasher;
|
||||
using key_equal = typename ht::key_equal;
|
||||
using iterator = typename ht::iterator;
|
||||
using const_iterator = typename ht::const_iterator;
|
||||
|
||||
public:
|
||||
array_map(): array_map(ht::DEFAULT_INIT_BUCKET_COUNT) {
|
||||
}
|
||||
|
||||
explicit array_map(size_type bucket_count,
|
||||
const Hash& hash = Hash()): m_ht(bucket_count, hash, ht::DEFAULT_MAX_LOAD_FACTOR)
|
||||
{
|
||||
}
|
||||
|
||||
template<class InputIt, typename std::enable_if<is_iterator<InputIt>::value>::type* = nullptr>
|
||||
array_map(InputIt first, InputIt last,
|
||||
size_type bucket_count = ht::DEFAULT_INIT_BUCKET_COUNT,
|
||||
const Hash& hash = Hash()): array_map(bucket_count, hash)
|
||||
{
|
||||
insert(first, last);
|
||||
}
|
||||
|
||||
|
||||
|
||||
#ifdef TSL_AH_HAS_STRING_VIEW
|
||||
array_map(std::initializer_list<std::pair<std::basic_string_view<CharT>, T>> init,
|
||||
size_type bucket_count = ht::DEFAULT_INIT_BUCKET_COUNT,
|
||||
const Hash& hash = Hash()): array_map(bucket_count, hash)
|
||||
{
|
||||
insert(init);
|
||||
}
|
||||
#else
|
||||
array_map(std::initializer_list<std::pair<const CharT*, T>> init,
|
||||
size_type bucket_count = ht::DEFAULT_INIT_BUCKET_COUNT,
|
||||
const Hash& hash = Hash()): array_map(bucket_count, hash)
|
||||
{
|
||||
insert(init);
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
|
||||
#ifdef TSL_AH_HAS_STRING_VIEW
|
||||
array_map& operator=(std::initializer_list<std::pair<std::basic_string_view<CharT>, T>> ilist) {
|
||||
clear();
|
||||
|
||||
reserve(ilist.size());
|
||||
insert(ilist);
|
||||
|
||||
return *this;
|
||||
}
|
||||
#else
|
||||
array_map& operator=(std::initializer_list<std::pair<const CharT*, T>> ilist) {
|
||||
clear();
|
||||
|
||||
reserve(ilist.size());
|
||||
insert(ilist);
|
||||
|
||||
return *this;
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
|
||||
/*
|
||||
* Iterators
|
||||
*/
|
||||
iterator begin() noexcept { return m_ht.begin(); }
|
||||
const_iterator begin() const noexcept { return m_ht.begin(); }
|
||||
const_iterator cbegin() const noexcept { return m_ht.cbegin(); }
|
||||
|
||||
iterator end() noexcept { return m_ht.end(); }
|
||||
const_iterator end() const noexcept { return m_ht.end(); }
|
||||
const_iterator cend() const noexcept { return m_ht.cend(); }
|
||||
|
||||
|
||||
|
||||
/*
|
||||
* Capacity
|
||||
*/
|
||||
bool empty() const noexcept { return m_ht.empty(); }
|
||||
size_type size() const noexcept { return m_ht.size(); }
|
||||
size_type max_size() const noexcept { return m_ht.max_size(); }
|
||||
size_type max_key_size() const noexcept { return m_ht.max_key_size(); }
|
||||
void shrink_to_fit() { m_ht.shrink_to_fit(); }
|
||||
|
||||
|
||||
|
||||
/*
|
||||
* Modifiers
|
||||
*/
|
||||
void clear() noexcept { m_ht.clear(); }
|
||||
|
||||
|
||||
|
||||
#ifdef TSL_AH_HAS_STRING_VIEW
|
||||
std::pair<iterator, bool> insert(const std::basic_string_view<CharT>& key, const T& value) {
|
||||
return m_ht.emplace(key.data(), key.size(), value);
|
||||
}
|
||||
#else
|
||||
std::pair<iterator, bool> insert(const CharT* key, const T& value) {
|
||||
return m_ht.emplace(key, std::char_traits<CharT>::length(key), value);
|
||||
}
|
||||
|
||||
std::pair<iterator, bool> insert(const std::basic_string<CharT>& key, const T& value) {
|
||||
return m_ht.emplace(key.data(), key.size(), value);
|
||||
}
|
||||
#endif
|
||||
std::pair<iterator, bool> insert_ks(const CharT* key, size_type key_size, const T& value) {
|
||||
return m_ht.emplace(key, key_size, value);
|
||||
}
|
||||
|
||||
|
||||
|
||||
#ifdef TSL_AH_HAS_STRING_VIEW
|
||||
std::pair<iterator, bool> insert(const std::basic_string_view<CharT>& key, T&& value) {
|
||||
return m_ht.emplace(key.data(), key.size(), std::move(value));
|
||||
}
|
||||
#else
|
||||
std::pair<iterator, bool> insert(const CharT* key, T&& value) {
|
||||
return m_ht.emplace(key, std::char_traits<CharT>::length(key), std::move(value));
|
||||
}
|
||||
|
||||
std::pair<iterator, bool> insert(const std::basic_string<CharT>& key, T&& value) {
|
||||
return m_ht.emplace(key.data(), key.size(), std::move(value));
|
||||
}
|
||||
#endif
|
||||
std::pair<iterator, bool> insert_ks(const CharT* key, size_type key_size, T&& value) {
|
||||
return m_ht.emplace(key, key_size, std::move(value));
|
||||
}
|
||||
|
||||
|
||||
|
||||
template<class InputIt, typename std::enable_if<is_iterator<InputIt>::value>::type* = nullptr>
|
||||
void insert(InputIt first, InputIt last) {
|
||||
if(std::is_base_of<std::forward_iterator_tag,
|
||||
typename std::iterator_traits<InputIt>::iterator_category>::value)
|
||||
{
|
||||
const auto nb_elements_insert = std::distance(first, last);
|
||||
const std::size_t nb_free_buckets = std::size_t(float(bucket_count())*max_load_factor()) - size();
|
||||
|
||||
if(nb_elements_insert > 0 && nb_free_buckets < std::size_t(nb_elements_insert)) {
|
||||
reserve(size() + std::size_t(nb_elements_insert));
|
||||
}
|
||||
}
|
||||
|
||||
for(auto it = first; it != last; ++it) {
|
||||
insert_pair(*it);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
#ifdef TSL_AH_HAS_STRING_VIEW
|
||||
void insert(std::initializer_list<std::pair<std::basic_string_view<CharT>, T>> ilist) {
|
||||
insert(ilist.begin(), ilist.end());
|
||||
}
|
||||
#else
|
||||
void insert(std::initializer_list<std::pair<const CharT*, T>> ilist) {
|
||||
insert(ilist.begin(), ilist.end());
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
|
||||
#ifdef TSL_AH_HAS_STRING_VIEW
|
||||
template<class M>
|
||||
std::pair<iterator, bool> insert_or_assign(const std::basic_string_view<CharT>& key, M&& obj) {
|
||||
return m_ht.insert_or_assign(key.data(), key.size(), std::forward<M>(obj));
|
||||
}
|
||||
#else
|
||||
template<class M>
|
||||
std::pair<iterator, bool> insert_or_assign(const CharT* key, M&& obj) {
|
||||
return m_ht.insert_or_assign(key, std::char_traits<CharT>::length(key), std::forward<M>(obj));
|
||||
}
|
||||
|
||||
template<class M>
|
||||
std::pair<iterator, bool> insert_or_assign(const std::basic_string<CharT>& key, M&& obj) {
|
||||
return m_ht.insert_or_assign(key.data(), key.size(), std::forward<M>(obj));
|
||||
}
|
||||
#endif
|
||||
template<class M>
|
||||
std::pair<iterator, bool> insert_or_assign_ks(const CharT* key, size_type key_size, M&& obj) {
|
||||
return m_ht.insert_or_assign(key, key_size, std::forward<M>(obj));
|
||||
}
|
||||
|
||||
|
||||
|
||||
#ifdef TSL_AH_HAS_STRING_VIEW
|
||||
template<class... Args>
|
||||
std::pair<iterator, bool> emplace(const std::basic_string_view<CharT>& key, Args&&... args) {
|
||||
return m_ht.emplace(key.data(), key.size(), std::forward<Args>(args)...);
|
||||
}
|
||||
#else
|
||||
template<class... Args>
|
||||
std::pair<iterator, bool> emplace(const CharT* key, Args&&... args) {
|
||||
return m_ht.emplace(key, std::char_traits<CharT>::length(key), std::forward<Args>(args)...);
|
||||
}
|
||||
|
||||
template<class... Args>
|
||||
std::pair<iterator, bool> emplace(const std::basic_string<CharT>& key, Args&&... args) {
|
||||
return m_ht.emplace(key.data(), key.size(), std::forward<Args>(args)...);
|
||||
}
|
||||
#endif
|
||||
template<class... Args>
|
||||
std::pair<iterator, bool> emplace_ks(const CharT* key, size_type key_size, Args&&... args) {
|
||||
return m_ht.emplace(key, key_size, std::forward<Args>(args)...);
|
||||
}
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Erase has an amortized O(1) runtime complexity, but even if it removes the key immediatly,
|
||||
* it doesn't do the same for the associated value T.
|
||||
*
|
||||
* T will only be removed when the ratio between the size of the map and
|
||||
* the size of the map + the number of deleted values still stored is low enough.
|
||||
*
|
||||
* To force the deletion you can call shrink_to_fit.
|
||||
*/
|
||||
iterator erase(const_iterator pos) { return m_ht.erase(pos); }
|
||||
|
||||
/**
|
||||
* @copydoc erase(const_iterator pos)
|
||||
*/
|
||||
iterator erase(const_iterator first, const_iterator last) { return m_ht.erase(first, last); }
|
||||
|
||||
|
||||
|
||||
#ifdef TSL_AH_HAS_STRING_VIEW
|
||||
/**
|
||||
* @copydoc erase(const_iterator pos)
|
||||
*/
|
||||
size_type erase(const std::basic_string_view<CharT>& key) {
|
||||
return m_ht.erase(key.data(), key.size());
|
||||
}
|
||||
#else
|
||||
/**
|
||||
* @copydoc erase(const_iterator pos)
|
||||
*/
|
||||
size_type erase(const CharT* key) {
|
||||
return m_ht.erase(key, std::char_traits<CharT>::length(key));
|
||||
}
|
||||
|
||||
/**
|
||||
* @copydoc erase(const_iterator pos)
|
||||
*/
|
||||
size_type erase(const std::basic_string<CharT>& key) {
|
||||
return m_ht.erase(key.data(), key.size());
|
||||
}
|
||||
#endif
|
||||
/**
|
||||
* @copydoc erase(const_iterator pos)
|
||||
*/
|
||||
size_type erase_ks(const CharT* key, size_type key_size) {
|
||||
return m_ht.erase(key, key_size);
|
||||
}
|
||||
|
||||
|
||||
|
||||
#ifdef TSL_AH_HAS_STRING_VIEW
|
||||
/**
|
||||
* @copydoc erase_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash)
|
||||
*/
|
||||
size_type erase(const std::basic_string_view<CharT>& key, std::size_t precalculated_hash) {
|
||||
return m_ht.erase(key.data(), key.size(), precalculated_hash);
|
||||
}
|
||||
#else
|
||||
/**
|
||||
* @copydoc erase_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash)
|
||||
*/
|
||||
size_type erase(const CharT* key, std::size_t precalculated_hash) {
|
||||
return m_ht.erase(key, std::char_traits<CharT>::length(key), precalculated_hash);
|
||||
}
|
||||
|
||||
/**
|
||||
* @copydoc erase_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash)
|
||||
*/
|
||||
size_type erase(const std::basic_string<CharT>& key, std::size_t precalculated_hash) {
|
||||
return m_ht.erase(key.data(), key.size(), precalculated_hash);
|
||||
}
|
||||
#endif
|
||||
/**
|
||||
* @copydoc erase(const_iterator pos)
|
||||
*
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup to the value if you already have the hash.
|
||||
*/
|
||||
size_type erase_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash) {
|
||||
return m_ht.erase(key, key_size, precalculated_hash);
|
||||
}
|
||||
|
||||
|
||||
|
||||
void swap(array_map& other) { other.m_ht.swap(m_ht); }
|
||||
|
||||
|
||||
|
||||
/*
|
||||
* Lookup
|
||||
*/
|
||||
#ifdef TSL_AH_HAS_STRING_VIEW
|
||||
T& at(const std::basic_string_view<CharT>& key) {
|
||||
return m_ht.at(key.data(), key.size());
|
||||
}
|
||||
|
||||
const T& at(const std::basic_string_view<CharT>& key) const {
|
||||
return m_ht.at(key.data(), key.size());
|
||||
}
|
||||
#else
|
||||
T& at(const CharT* key) {
|
||||
return m_ht.at(key, std::char_traits<CharT>::length(key));
|
||||
}
|
||||
|
||||
const T& at(const CharT* key) const {
|
||||
return m_ht.at(key, std::char_traits<CharT>::length(key));
|
||||
}
|
||||
|
||||
T& at(const std::basic_string<CharT>& key) {
|
||||
return m_ht.at(key.data(), key.size());
|
||||
}
|
||||
|
||||
const T& at(const std::basic_string<CharT>& key) const {
|
||||
return m_ht.at(key.data(), key.size());
|
||||
}
|
||||
#endif
|
||||
T& at_ks(const CharT* key, size_type key_size) {
|
||||
return m_ht.at(key, key_size);
|
||||
}
|
||||
|
||||
const T& at_ks(const CharT* key, size_type key_size) const {
|
||||
return m_ht.at(key, key_size);
|
||||
}
|
||||
|
||||
|
||||
|
||||
#ifdef TSL_AH_HAS_STRING_VIEW
|
||||
/**
|
||||
* @copydoc at_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash)
|
||||
*/
|
||||
T& at(const std::basic_string_view<CharT>& key, std::size_t precalculated_hash) {
|
||||
return m_ht.at(key.data(), key.size(), precalculated_hash);
|
||||
}
|
||||
|
||||
/**
|
||||
* @copydoc at_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash)
|
||||
*/
|
||||
const T& at(const std::basic_string_view<CharT>& key, std::size_t precalculated_hash) const {
|
||||
return m_ht.at(key.data(), key.size(), precalculated_hash);
|
||||
}
|
||||
#else
|
||||
/**
|
||||
* @copydoc at_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash)
|
||||
*/
|
||||
T& at(const CharT* key, std::size_t precalculated_hash) {
|
||||
return m_ht.at(key, std::char_traits<CharT>::length(key), precalculated_hash);
|
||||
}
|
||||
|
||||
/**
|
||||
* @copydoc at_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash)
|
||||
*/
|
||||
const T& at(const CharT* key, std::size_t precalculated_hash) const {
|
||||
return m_ht.at(key, std::char_traits<CharT>::length(key), precalculated_hash);
|
||||
}
|
||||
|
||||
/**
|
||||
* @copydoc at_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash)
|
||||
*/
|
||||
T& at(const std::basic_string<CharT>& key, std::size_t precalculated_hash) {
|
||||
return m_ht.at(key.data(), key.size(), precalculated_hash);
|
||||
}
|
||||
|
||||
/**
|
||||
* @copydoc at_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash)
|
||||
*/
|
||||
const T& at(const std::basic_string<CharT>& key, std::size_t precalculated_hash) const {
|
||||
return m_ht.at(key.data(), key.size(), precalculated_hash);
|
||||
}
|
||||
#endif
|
||||
/**
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup to the value if you already have the hash.
|
||||
*/
|
||||
T& at_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash) {
|
||||
return m_ht.at(key, key_size, precalculated_hash);
|
||||
}
|
||||
|
||||
/**
|
||||
* @copydoc at_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash)
|
||||
*/
|
||||
const T& at_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash) const {
|
||||
return m_ht.at(key, key_size, precalculated_hash);
|
||||
}
|
||||
|
||||
|
||||
|
||||
#ifdef TSL_AH_HAS_STRING_VIEW
|
||||
T& operator[](const std::basic_string_view<CharT>& key) { return m_ht.access_operator(key.data(), key.size()); }
|
||||
#else
|
||||
T& operator[](const CharT* key) { return m_ht.access_operator(key, std::char_traits<CharT>::length(key)); }
|
||||
T& operator[](const std::basic_string<CharT>& key) { return m_ht.access_operator(key.data(), key.size()); }
|
||||
#endif
|
||||
|
||||
|
||||
|
||||
#ifdef TSL_AH_HAS_STRING_VIEW
|
||||
size_type count(const std::basic_string_view<CharT>& key) const {
|
||||
return m_ht.count(key.data(), key.size());
|
||||
}
|
||||
#else
|
||||
size_type count(const CharT* key) const {
|
||||
return m_ht.count(key, std::char_traits<CharT>::length(key));
|
||||
}
|
||||
|
||||
size_type count(const std::basic_string<CharT>& key) const {
|
||||
return m_ht.count(key.data(), key.size());
|
||||
}
|
||||
#endif
|
||||
size_type count_ks(const CharT* key, size_type key_size) const {
|
||||
return m_ht.count(key, key_size);
|
||||
}
|
||||
|
||||
|
||||
|
||||
#ifdef TSL_AH_HAS_STRING_VIEW
|
||||
/**
|
||||
* @copydoc count_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash) const
|
||||
*/
|
||||
size_type count(const std::basic_string_view<CharT>& key, std::size_t precalculated_hash) const {
|
||||
return m_ht.count(key.data(), key.size(), precalculated_hash);
|
||||
}
|
||||
#else
|
||||
/**
|
||||
* @copydoc count_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash) const
|
||||
*/
|
||||
size_type count(const CharT* key, std::size_t precalculated_hash) const {
|
||||
return m_ht.count(key, std::char_traits<CharT>::length(key), precalculated_hash);
|
||||
}
|
||||
|
||||
/**
|
||||
* @copydoc count_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash) const
|
||||
*/
|
||||
size_type count(const std::basic_string<CharT>& key, std::size_t precalculated_hash) const {
|
||||
return m_ht.count(key.data(), key.size(), precalculated_hash);
|
||||
}
|
||||
#endif
|
||||
/**
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup to the value if you already have the hash.
|
||||
*/
|
||||
size_type count_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash) const {
|
||||
return m_ht.count(key, key_size, precalculated_hash);
|
||||
}
|
||||
|
||||
|
||||
|
||||
#ifdef TSL_AH_HAS_STRING_VIEW
|
||||
iterator find(const std::basic_string_view<CharT>& key) {
|
||||
return m_ht.find(key.data(), key.size());
|
||||
}
|
||||
|
||||
const_iterator find(const std::basic_string_view<CharT>& key) const {
|
||||
return m_ht.find(key.data(), key.size());
|
||||
}
|
||||
#else
|
||||
iterator find(const CharT* key) {
|
||||
return m_ht.find(key, std::char_traits<CharT>::length(key));
|
||||
}
|
||||
|
||||
const_iterator find(const CharT* key) const {
|
||||
return m_ht.find(key, std::char_traits<CharT>::length(key));
|
||||
}
|
||||
|
||||
iterator find(const std::basic_string<CharT>& key) {
|
||||
return m_ht.find(key.data(), key.size());
|
||||
}
|
||||
|
||||
const_iterator find(const std::basic_string<CharT>& key) const {
|
||||
return m_ht.find(key.data(), key.size());
|
||||
}
|
||||
#endif
|
||||
iterator find_ks(const CharT* key, size_type key_size) {
|
||||
return m_ht.find(key, key_size);
|
||||
}
|
||||
|
||||
const_iterator find_ks(const CharT* key, size_type key_size) const {
|
||||
return m_ht.find(key, key_size);
|
||||
}
|
||||
|
||||
|
||||
|
||||
#ifdef TSL_AH_HAS_STRING_VIEW
|
||||
/**
|
||||
* @copydoc find_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash)
|
||||
*/
|
||||
iterator find(const std::basic_string_view<CharT>& key, std::size_t precalculated_hash) {
|
||||
return m_ht.find(key.data(), key.size(), precalculated_hash);
|
||||
}
|
||||
|
||||
/**
|
||||
* @copydoc find_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash)
|
||||
*/
|
||||
const_iterator find(const std::basic_string_view<CharT>& key, std::size_t precalculated_hash) const {
|
||||
return m_ht.find(key.data(), key.size(), precalculated_hash);
|
||||
}
|
||||
#else
|
||||
/**
|
||||
* @copydoc find_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash)
|
||||
*/
|
||||
iterator find(const CharT* key, std::size_t precalculated_hash) {
|
||||
return m_ht.find(key, std::char_traits<CharT>::length(key), precalculated_hash);
|
||||
}
|
||||
|
||||
/**
|
||||
* @copydoc find_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash)
|
||||
*/
|
||||
const_iterator find(const CharT* key, std::size_t precalculated_hash) const {
|
||||
return m_ht.find(key, std::char_traits<CharT>::length(key), precalculated_hash);
|
||||
}
|
||||
|
||||
/**
|
||||
* @copydoc find_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash)
|
||||
*/
|
||||
iterator find(const std::basic_string<CharT>& key, std::size_t precalculated_hash) {
|
||||
return m_ht.find(key.data(), key.size(), precalculated_hash);
|
||||
}
|
||||
|
||||
/**
|
||||
* @copydoc find_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash)
|
||||
*/
|
||||
const_iterator find(const std::basic_string<CharT>& key, std::size_t precalculated_hash) const {
|
||||
return m_ht.find(key.data(), key.size(), precalculated_hash);
|
||||
}
|
||||
#endif
|
||||
/**
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup to the value if you already have the hash.
|
||||
*/
|
||||
iterator find_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash) {
|
||||
return m_ht.find(key, key_size, precalculated_hash);
|
||||
}
|
||||
|
||||
/**
|
||||
* @copydoc find_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash)
|
||||
*/
|
||||
const_iterator find_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash) const {
|
||||
return m_ht.find(key, key_size, precalculated_hash);
|
||||
}
|
||||
|
||||
|
||||
|
||||
#ifdef TSL_AH_HAS_STRING_VIEW
|
||||
std::pair<iterator, iterator> equal_range(const std::basic_string_view<CharT>& key) {
|
||||
return m_ht.equal_range(key.data(), key.size());
|
||||
}
|
||||
|
||||
std::pair<const_iterator, const_iterator> equal_range(const std::basic_string_view<CharT>& key) const {
|
||||
return m_ht.equal_range(key.data(), key.size());
|
||||
}
|
||||
#else
|
||||
std::pair<iterator, iterator> equal_range(const CharT* key) {
|
||||
return m_ht.equal_range(key, std::char_traits<CharT>::length(key));
|
||||
}
|
||||
|
||||
std::pair<const_iterator, const_iterator> equal_range(const CharT* key) const {
|
||||
return m_ht.equal_range(key, std::char_traits<CharT>::length(key));
|
||||
}
|
||||
|
||||
std::pair<iterator, iterator> equal_range(const std::basic_string<CharT>& key) {
|
||||
return m_ht.equal_range(key.data(), key.size());
|
||||
}
|
||||
|
||||
std::pair<const_iterator, const_iterator> equal_range(const std::basic_string<CharT>& key) const {
|
||||
return m_ht.equal_range(key.data(), key.size());
|
||||
}
|
||||
#endif
|
||||
std::pair<iterator, iterator> equal_range_ks(const CharT* key, size_type key_size) {
|
||||
return m_ht.equal_range(key, key_size);
|
||||
}
|
||||
|
||||
std::pair<const_iterator, const_iterator> equal_range_ks(const CharT* key, size_type key_size) const {
|
||||
return m_ht.equal_range(key, key_size);
|
||||
}
|
||||
|
||||
|
||||
|
||||
#ifdef TSL_AH_HAS_STRING_VIEW
|
||||
/**
|
||||
* @copydoc equal_range_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash)
|
||||
*/
|
||||
std::pair<iterator, iterator> equal_range(const std::basic_string_view<CharT>& key, std::size_t precalculated_hash) {
|
||||
return m_ht.equal_range(key.data(), key.size(), precalculated_hash);
|
||||
}
|
||||
|
||||
/**
|
||||
* @copydoc equal_range_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash)
|
||||
*/
|
||||
std::pair<const_iterator, const_iterator> equal_range(const std::basic_string_view<CharT>& key, std::size_t precalculated_hash) const {
|
||||
return m_ht.equal_range(key.data(), key.size(), precalculated_hash);
|
||||
}
|
||||
#else
|
||||
/**
|
||||
* @copydoc equal_range_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash)
|
||||
*/
|
||||
std::pair<iterator, iterator> equal_range(const CharT* key, std::size_t precalculated_hash) {
|
||||
return m_ht.equal_range(key, std::char_traits<CharT>::length(key), precalculated_hash);
|
||||
}
|
||||
|
||||
/**
|
||||
* @copydoc equal_range_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash)
|
||||
*/
|
||||
std::pair<const_iterator, const_iterator> equal_range(const CharT* key, std::size_t precalculated_hash) const {
|
||||
return m_ht.equal_range(key, std::char_traits<CharT>::length(key), precalculated_hash);
|
||||
}
|
||||
|
||||
/**
|
||||
* @copydoc equal_range_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash)
|
||||
*/
|
||||
std::pair<iterator, iterator> equal_range(const std::basic_string<CharT>& key, std::size_t precalculated_hash) {
|
||||
return m_ht.equal_range(key.data(), key.size(), precalculated_hash);
|
||||
}
|
||||
|
||||
/**
|
||||
* @copydoc equal_range_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash)
|
||||
*/
|
||||
std::pair<const_iterator, const_iterator> equal_range(const std::basic_string<CharT>& key, std::size_t precalculated_hash) const {
|
||||
return m_ht.equal_range(key.data(), key.size(), precalculated_hash);
|
||||
}
|
||||
#endif
|
||||
/**
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup to the value if you already have the hash.
|
||||
*/
|
||||
std::pair<iterator, iterator> equal_range_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash) {
|
||||
return m_ht.equal_range(key, key_size, precalculated_hash);
|
||||
}
|
||||
|
||||
/**
|
||||
* @copydoc equal_range_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash)
|
||||
*/
|
||||
std::pair<const_iterator, const_iterator> equal_range_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash) const {
|
||||
return m_ht.equal_range(key, key_size, precalculated_hash);
|
||||
}
|
||||
|
||||
|
||||
|
||||
/*
|
||||
* Bucket interface
|
||||
*/
|
||||
size_type bucket_count() const { return m_ht.bucket_count(); }
|
||||
size_type max_bucket_count() const { return m_ht.max_bucket_count(); }
|
||||
|
||||
|
||||
/*
|
||||
* Hash policy
|
||||
*/
|
||||
float load_factor() const { return m_ht.load_factor(); }
|
||||
float max_load_factor() const { return m_ht.max_load_factor(); }
|
||||
void max_load_factor(float ml) { m_ht.max_load_factor(ml); }
|
||||
|
||||
void rehash(size_type count) { m_ht.rehash(count); }
|
||||
void reserve(size_type count) { m_ht.reserve(count); }
|
||||
|
||||
|
||||
/*
|
||||
* Observers
|
||||
*/
|
||||
hasher hash_function() const { return m_ht.hash_function(); }
|
||||
key_equal key_eq() const { return m_ht.key_eq(); }
|
||||
|
||||
|
||||
/*
|
||||
* Other
|
||||
*/
|
||||
/**
|
||||
* Return the `const_iterator it` as an `iterator`.
|
||||
*/
|
||||
iterator mutable_iterator(const_iterator it) noexcept { return m_ht.mutable_iterator(it); }
|
||||
|
||||
/**
|
||||
* Serialize the map through the `serializer` parameter.
|
||||
*
|
||||
* The `serializer` parameter must be a function object that supports the following calls:
|
||||
* - `template<typename U> void operator()(const U& value);` where the types `std::uint64_t`, `float` and `T` must be supported for U.
|
||||
* - `void operator()(const CharT* value, std::size_t value_size);`
|
||||
*
|
||||
* The implementation leaves binary compatibilty (endianness, IEEE 754 for floats, ...) of the types it serializes
|
||||
* in the hands of the `Serializer` function object if compatibilty is required.
|
||||
*/
|
||||
template<class Serializer>
|
||||
void serialize(Serializer& serializer) const {
|
||||
m_ht.serialize(serializer);
|
||||
}
|
||||
|
||||
/**
|
||||
* Deserialize a previouly serialized map through the `deserializer` parameter.
|
||||
*
|
||||
* The `deserializer` parameter must be a function object that supports the following calls:
|
||||
* - `template<typename U> U operator()();` where the types `std::uint64_t`, `float` and `T` must be supported for U.
|
||||
* - `void operator()(CharT* value_out, std::size_t value_size);`
|
||||
*
|
||||
* If the deserialized hash map type is hash compatible with the serialized map, the deserialization process can be
|
||||
* sped up by setting `hash_compatible` to true. To be hash compatible, the Hash (take care of the 32-bits vs 64 bits),
|
||||
* KeyEqual, GrowthPolicy, StoreNullTerminator, KeySizeT and IndexSizeT must behave the same than the ones used on the
|
||||
* serialized map. Otherwise the behaviour is undefined with `hash_compatible` sets to true.
|
||||
*
|
||||
* The behaviour is undefined if the type `CharT` and `T` of the `array_map` are not the same as the
|
||||
* types used during serialization.
|
||||
*
|
||||
* The implementation leaves binary compatibilty (endianness, IEEE 754 for floats, size of int, ...) of the types it
|
||||
* deserializes in the hands of the `Deserializer` function object if compatibilty is required.
|
||||
*/
|
||||
template<class Deserializer>
|
||||
static array_map deserialize(Deserializer& deserializer, bool hash_compatible = false) {
|
||||
array_map map(0);
|
||||
map.m_ht.deserialize(deserializer, hash_compatible);
|
||||
|
||||
return map;
|
||||
}
|
||||
|
||||
friend bool operator==(const array_map& lhs, const array_map& rhs) {
|
||||
if(lhs.size() != rhs.size()) {
|
||||
return false;
|
||||
}
|
||||
|
||||
for(auto it = lhs.cbegin(); it != lhs.cend(); ++it) {
|
||||
const auto it_element_rhs = rhs.find_ks(it.key(), it.key_size());
|
||||
if(it_element_rhs == rhs.cend() || it.value() != it_element_rhs.value()) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
friend bool operator!=(const array_map& lhs, const array_map& rhs) {
|
||||
return !operator==(lhs, rhs);
|
||||
}
|
||||
|
||||
friend void swap(array_map& lhs, array_map& rhs) {
|
||||
lhs.swap(rhs);
|
||||
}
|
||||
|
||||
private:
|
||||
template<class U, class V>
|
||||
void insert_pair(const std::pair<U, V>& value) {
|
||||
insert(value.first, value.second);
|
||||
}
|
||||
|
||||
template<class U, class V>
|
||||
void insert_pair(std::pair<U, V>&& value) {
|
||||
insert(value.first, std::move(value.second));
|
||||
}
|
||||
|
||||
public:
|
||||
static const size_type MAX_KEY_SIZE = ht::MAX_KEY_SIZE;
|
||||
|
||||
private:
|
||||
ht m_ht;
|
||||
};
|
||||
|
||||
|
||||
/**
|
||||
* Same as
|
||||
* `tsl::array_map<CharT, T, Hash, KeyEqual, StoreNullTerminator, KeySizeT, IndexSizeT, tsl::ah::prime_growth_policy>`.
|
||||
*/
|
||||
template<class CharT,
|
||||
class T,
|
||||
class Hash = tsl::ah::str_hash<CharT>,
|
||||
class KeyEqual = tsl::ah::str_equal<CharT>,
|
||||
bool StoreNullTerminator = true,
|
||||
class KeySizeT = std::uint16_t,
|
||||
class IndexSizeT = std::uint32_t>
|
||||
using array_pg_map = array_map<CharT, T, Hash, KeyEqual, StoreNullTerminator,
|
||||
KeySizeT, IndexSizeT, tsl::ah::prime_growth_policy>;
|
||||
|
||||
} //end namespace tsl
|
||||
|
||||
#endif
|
664
src/includes/3thparty/tsl/array_set.h
Normal file
664
src/includes/3thparty/tsl/array_set.h
Normal file
@@ -0,0 +1,664 @@
|
||||
/**
|
||||
* MIT License
|
||||
*
|
||||
* Copyright (c) 2017 Tessil
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
* of this software and associated documentation files (the "Software"), to deal
|
||||
* in the Software without restriction, including without limitation the rights
|
||||
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
* copies of the Software, and to permit persons to whom the Software is
|
||||
* furnished to do so, subject to the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice shall be included in all
|
||||
* copies or substantial portions of the Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
* SOFTWARE.
|
||||
*/
|
||||
#ifndef TSL_ARRAY_SET_H
|
||||
#define TSL_ARRAY_SET_H
|
||||
|
||||
#include <cstddef>
|
||||
#include <cstdint>
|
||||
#include <initializer_list>
|
||||
#include <iterator>
|
||||
#include <string>
|
||||
#include <type_traits>
|
||||
#include <utility>
|
||||
#include "array_hash.h"
|
||||
|
||||
namespace tsl {
|
||||
|
||||
/**
|
||||
* Implementation of a cache-conscious string hash set.
|
||||
*
|
||||
* The set stores the strings as `const CharT*`. If `StoreNullTerminator` is true,
|
||||
* the strings are stored with the a null-terminator (the `key()` method of the iterators
|
||||
* will return a pointer to this null-terminated string). Otherwise the null character
|
||||
* is not stored (which allow an economy of 1 byte per string).
|
||||
*
|
||||
* The size of a key string is limited to `std::numeric_limits<KeySizeT>::max() - 1`.
|
||||
* That is 65 535 characters by default, but can be raised with the `KeySizeT` template parameter.
|
||||
* See `max_key_size()` for an easy access to this limit.
|
||||
*
|
||||
* The number of elements in the set is limited to `std::numeric_limits<IndexSizeT>::max()`.
|
||||
* That is 4 294 967 296 elements, but can be raised with the `IndexSizeT` template parameter.
|
||||
* See `max_size()` for an easy access to this limit.
|
||||
*
|
||||
* Iterators invalidation:
|
||||
* - clear, operator=: always invalidate the iterators.
|
||||
* - insert, emplace, operator[]: always invalidate the iterators.
|
||||
* - erase: always invalidate the iterators.
|
||||
* - shrink_to_fit: always invalidate the iterators.
|
||||
*/
|
||||
template<class CharT,
|
||||
class Hash = tsl::ah::str_hash<CharT>,
|
||||
class KeyEqual = tsl::ah::str_equal<CharT>,
|
||||
bool StoreNullTerminator = true,
|
||||
class KeySizeT = std::uint16_t,
|
||||
class IndexSizeT = std::uint32_t,
|
||||
class GrowthPolicy = tsl::ah::power_of_two_growth_policy<2>>
|
||||
class array_set {
|
||||
private:
|
||||
template<typename U>
|
||||
using is_iterator = tsl::detail_array_hash::is_iterator<U>;
|
||||
|
||||
using ht = tsl::detail_array_hash::array_hash<CharT, void, Hash, KeyEqual, StoreNullTerminator,
|
||||
KeySizeT, IndexSizeT, GrowthPolicy>;
|
||||
|
||||
public:
|
||||
using char_type = typename ht::char_type;
|
||||
using key_size_type = typename ht::key_size_type;
|
||||
using index_size_type = typename ht::index_size_type;
|
||||
using size_type = typename ht::size_type;
|
||||
using hasher = typename ht::hasher;
|
||||
using key_equal = typename ht::key_equal;
|
||||
using iterator = typename ht::iterator;
|
||||
using const_iterator = typename ht::const_iterator;
|
||||
|
||||
array_set(): array_set(ht::DEFAULT_INIT_BUCKET_COUNT) {
|
||||
}
|
||||
|
||||
explicit array_set(size_type bucket_count,
|
||||
const Hash& hash = Hash()): m_ht(bucket_count, hash, ht::DEFAULT_MAX_LOAD_FACTOR)
|
||||
{
|
||||
}
|
||||
|
||||
template<class InputIt, typename std::enable_if<is_iterator<InputIt>::value>::type* = nullptr>
|
||||
array_set(InputIt first, InputIt last,
|
||||
size_type bucket_count = ht::DEFAULT_INIT_BUCKET_COUNT,
|
||||
const Hash& hash = Hash()): array_set(bucket_count, hash)
|
||||
{
|
||||
insert(first, last);
|
||||
}
|
||||
|
||||
|
||||
#ifdef TSL_AH_HAS_STRING_VIEW
|
||||
array_set(std::initializer_list<std::basic_string_view<CharT>> init,
|
||||
size_type bucket_count = ht::DEFAULT_INIT_BUCKET_COUNT,
|
||||
const Hash& hash = Hash()): array_set(bucket_count, hash)
|
||||
{
|
||||
insert(init);
|
||||
}
|
||||
#else
|
||||
array_set(std::initializer_list<const CharT*> init,
|
||||
size_type bucket_count = ht::DEFAULT_INIT_BUCKET_COUNT,
|
||||
const Hash& hash = Hash()): array_set(bucket_count, hash)
|
||||
{
|
||||
insert(init);
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
|
||||
#ifdef TSL_AH_HAS_STRING_VIEW
|
||||
array_set& operator=(std::initializer_list<std::basic_string_view<CharT>> ilist) {
|
||||
clear();
|
||||
|
||||
reserve(ilist.size());
|
||||
insert(ilist);
|
||||
|
||||
return *this;
|
||||
}
|
||||
#else
|
||||
array_set& operator=(std::initializer_list<const CharT*> ilist) {
|
||||
clear();
|
||||
|
||||
reserve(ilist.size());
|
||||
insert(ilist);
|
||||
|
||||
return *this;
|
||||
}
|
||||
#endif
|
||||
|
||||
/*
|
||||
* Iterators
|
||||
*/
|
||||
iterator begin() noexcept { return m_ht.begin(); }
|
||||
const_iterator begin() const noexcept { return m_ht.begin(); }
|
||||
const_iterator cbegin() const noexcept { return m_ht.cbegin(); }
|
||||
|
||||
iterator end() noexcept { return m_ht.end(); }
|
||||
const_iterator end() const noexcept { return m_ht.end(); }
|
||||
const_iterator cend() const noexcept { return m_ht.cend(); }
|
||||
|
||||
|
||||
/*
|
||||
* Capacity
|
||||
*/
|
||||
bool empty() const noexcept { return m_ht.empty(); }
|
||||
size_type size() const noexcept { return m_ht.size(); }
|
||||
size_type max_size() const noexcept { return m_ht.max_size(); }
|
||||
size_type max_key_size() const noexcept { return m_ht.max_key_size(); }
|
||||
void shrink_to_fit() { m_ht.shrink_to_fit(); }
|
||||
|
||||
|
||||
/*
|
||||
* Modifiers
|
||||
*/
|
||||
void clear() noexcept { m_ht.clear(); }
|
||||
|
||||
|
||||
|
||||
#ifdef TSL_AH_HAS_STRING_VIEW
|
||||
std::pair<iterator, bool> insert(const std::basic_string_view<CharT>& key) {
|
||||
return m_ht.emplace(key.data(), key.size());
|
||||
}
|
||||
#else
|
||||
std::pair<iterator, bool> insert(const CharT* key) {
|
||||
return m_ht.emplace(key, std::char_traits<CharT>::length(key));
|
||||
}
|
||||
|
||||
std::pair<iterator, bool> insert(const std::basic_string<CharT>& key) {
|
||||
return m_ht.emplace(key.data(), key.size());
|
||||
}
|
||||
#endif
|
||||
std::pair<iterator, bool> insert_ks(const CharT* key, size_type key_size) {
|
||||
return m_ht.emplace(key, key_size);
|
||||
}
|
||||
|
||||
|
||||
|
||||
template<class InputIt, typename std::enable_if<is_iterator<InputIt>::value>::type* = nullptr>
|
||||
void insert(InputIt first, InputIt last) {
|
||||
if(std::is_base_of<std::forward_iterator_tag,
|
||||
typename std::iterator_traits<InputIt>::iterator_category>::value)
|
||||
{
|
||||
const auto nb_elements_insert = std::distance(first, last);
|
||||
const std::size_t nb_free_buckets = std::size_t(float(bucket_count())*max_load_factor()) - size();
|
||||
|
||||
if(nb_elements_insert > 0 && nb_free_buckets < std::size_t(nb_elements_insert)) {
|
||||
reserve(size() + std::size_t(nb_elements_insert));
|
||||
}
|
||||
}
|
||||
|
||||
for(auto it = first; it != last; ++it) {
|
||||
insert(*it);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
#ifdef TSL_AH_HAS_STRING_VIEW
|
||||
void insert(std::initializer_list<std::basic_string_view<CharT>> ilist) {
|
||||
insert(ilist.begin(), ilist.end());
|
||||
}
|
||||
#else
|
||||
void insert(std::initializer_list<const CharT*> ilist) {
|
||||
insert(ilist.begin(), ilist.end());
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
|
||||
#ifdef TSL_AH_HAS_STRING_VIEW
|
||||
/**
|
||||
* @copydoc emplace_ks(const CharT* key, size_type key_size)
|
||||
*/
|
||||
std::pair<iterator, bool> emplace(const std::basic_string_view<CharT>& key) {
|
||||
return m_ht.emplace(key.data(), key.size());
|
||||
}
|
||||
#else
|
||||
/**
|
||||
* @copydoc emplace_ks(const CharT* key, size_type key_size)
|
||||
*/
|
||||
std::pair<iterator, bool> emplace(const CharT* key) {
|
||||
return m_ht.emplace(key, std::char_traits<CharT>::length(key));
|
||||
}
|
||||
|
||||
/**
|
||||
* @copydoc emplace_ks(const CharT* key, size_type key_size)
|
||||
*/
|
||||
std::pair<iterator, bool> emplace(const std::basic_string<CharT>& key) {
|
||||
return m_ht.emplace(key.data(), key.size());
|
||||
}
|
||||
#endif
|
||||
/**
|
||||
* No difference compared to the insert method. Mainly here for coherence with array_map.
|
||||
*/
|
||||
std::pair<iterator, bool> emplace_ks(const CharT* key, size_type key_size) {
|
||||
return m_ht.emplace(key, key_size);
|
||||
}
|
||||
|
||||
|
||||
|
||||
iterator erase(const_iterator pos) { return m_ht.erase(pos); }
|
||||
iterator erase(const_iterator first, const_iterator last) { return m_ht.erase(first, last); }
|
||||
|
||||
#ifdef TSL_AH_HAS_STRING_VIEW
|
||||
size_type erase(const std::basic_string_view<CharT>& key) {
|
||||
return m_ht.erase(key.data(), key.size());
|
||||
}
|
||||
#else
|
||||
size_type erase(const CharT* key) {
|
||||
return m_ht.erase(key, std::char_traits<CharT>::length(key));
|
||||
}
|
||||
|
||||
size_type erase(const std::basic_string<CharT>& key) {
|
||||
return m_ht.erase(key.data(), key.size());
|
||||
}
|
||||
#endif
|
||||
size_type erase_ks(const CharT* key, size_type key_size) {
|
||||
return m_ht.erase(key, key_size);
|
||||
}
|
||||
|
||||
|
||||
|
||||
#ifdef TSL_AH_HAS_STRING_VIEW
|
||||
/**
|
||||
* @copydoc erase_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash)
|
||||
*/
|
||||
size_type erase(const std::basic_string_view<CharT>& key, std::size_t precalculated_hash) {
|
||||
return m_ht.erase(key.data(), key.size(), precalculated_hash);
|
||||
}
|
||||
#else
|
||||
/**
|
||||
* @copydoc erase_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash)
|
||||
*/
|
||||
size_type erase(const CharT* key, std::size_t precalculated_hash) {
|
||||
return m_ht.erase(key, std::char_traits<CharT>::length(key), precalculated_hash);
|
||||
}
|
||||
|
||||
/**
|
||||
* @copydoc erase_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash)
|
||||
*/
|
||||
size_type erase(const std::basic_string<CharT>& key, std::size_t precalculated_hash) {
|
||||
return m_ht.erase(key.data(), key.size(), precalculated_hash);
|
||||
}
|
||||
#endif
|
||||
/**
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup to the value if you already have the hash.
|
||||
*/
|
||||
size_type erase_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash) {
|
||||
return m_ht.erase(key, key_size, precalculated_hash);
|
||||
}
|
||||
|
||||
|
||||
|
||||
void swap(array_set& other) { other.m_ht.swap(m_ht); }
|
||||
|
||||
|
||||
|
||||
/*
|
||||
* Lookup
|
||||
*/
|
||||
#ifdef TSL_AH_HAS_STRING_VIEW
|
||||
size_type count(const std::basic_string_view<CharT>& key) const { return m_ht.count(key.data(), key.size()); }
|
||||
#else
|
||||
size_type count(const CharT* key) const { return m_ht.count(key, std::char_traits<CharT>::length(key)); }
|
||||
size_type count(const std::basic_string<CharT>& key) const { return m_ht.count(key.data(), key.size()); }
|
||||
#endif
|
||||
size_type count_ks(const CharT* key, size_type key_size) const { return m_ht.count(key, key_size); }
|
||||
|
||||
|
||||
|
||||
#ifdef TSL_AH_HAS_STRING_VIEW
|
||||
/**
|
||||
* @copydoc count_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash) const
|
||||
*/
|
||||
size_type count(const std::basic_string_view<CharT>& key, std::size_t precalculated_hash) const {
|
||||
return m_ht.count(key.data(), key.size(), precalculated_hash);
|
||||
}
|
||||
#else
|
||||
/**
|
||||
* @copydoc count_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash) const
|
||||
*/
|
||||
size_type count(const CharT* key, std::size_t precalculated_hash) const {
|
||||
return m_ht.count(key, std::char_traits<CharT>::length(key), precalculated_hash);
|
||||
}
|
||||
|
||||
/**
|
||||
* @copydoc count_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash) const
|
||||
*/
|
||||
size_type count(const std::basic_string<CharT>& key, std::size_t precalculated_hash) const {
|
||||
return m_ht.count(key.data(), key.size(), precalculated_hash);
|
||||
}
|
||||
#endif
|
||||
/**
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup to the value if you already have the hash.
|
||||
*/
|
||||
size_type count_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash) const {
|
||||
return m_ht.count(key, key_size, precalculated_hash);
|
||||
}
|
||||
|
||||
|
||||
|
||||
#ifdef TSL_AH_HAS_STRING_VIEW
|
||||
iterator find(const std::basic_string_view<CharT>& key) {
|
||||
return m_ht.find(key.data(), key.size());
|
||||
}
|
||||
|
||||
const_iterator find(const std::basic_string_view<CharT>& key) const {
|
||||
return m_ht.find(key.data(), key.size());
|
||||
}
|
||||
#else
|
||||
iterator find(const CharT* key) {
|
||||
return m_ht.find(key, std::char_traits<CharT>::length(key));
|
||||
}
|
||||
|
||||
const_iterator find(const CharT* key) const {
|
||||
return m_ht.find(key, std::char_traits<CharT>::length(key));
|
||||
}
|
||||
|
||||
iterator find(const std::basic_string<CharT>& key) {
|
||||
return m_ht.find(key.data(), key.size());
|
||||
}
|
||||
|
||||
const_iterator find(const std::basic_string<CharT>& key) const {
|
||||
return m_ht.find(key.data(), key.size());
|
||||
}
|
||||
#endif
|
||||
iterator find_ks(const CharT* key, size_type key_size) {
|
||||
return m_ht.find(key, key_size);
|
||||
}
|
||||
|
||||
const_iterator find_ks(const CharT* key, size_type key_size) const {
|
||||
return m_ht.find(key, key_size);
|
||||
}
|
||||
|
||||
|
||||
|
||||
#ifdef TSL_AH_HAS_STRING_VIEW
|
||||
/**
|
||||
* @copydoc find_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash)
|
||||
*/
|
||||
iterator find(const std::basic_string_view<CharT>& key, std::size_t precalculated_hash) {
|
||||
return m_ht.find(key.data(), key.size(), precalculated_hash);
|
||||
}
|
||||
|
||||
/**
|
||||
* @copydoc find_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash)
|
||||
*/
|
||||
const_iterator find(const std::basic_string_view<CharT>& key, std::size_t precalculated_hash) const {
|
||||
return m_ht.find(key.data(), key.size(), precalculated_hash);
|
||||
}
|
||||
#else
|
||||
/**
|
||||
* @copydoc find_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash)
|
||||
*/
|
||||
iterator find(const CharT* key, std::size_t precalculated_hash) {
|
||||
return m_ht.find(key, std::char_traits<CharT>::length(key), precalculated_hash);
|
||||
}
|
||||
|
||||
/**
|
||||
* @copydoc find_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash)
|
||||
*/
|
||||
const_iterator find(const CharT* key, std::size_t precalculated_hash) const {
|
||||
return m_ht.find(key, std::char_traits<CharT>::length(key), precalculated_hash);
|
||||
}
|
||||
|
||||
/**
|
||||
* @copydoc find_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash)
|
||||
*/
|
||||
iterator find(const std::basic_string<CharT>& key, std::size_t precalculated_hash) {
|
||||
return m_ht.find(key.data(), key.size(), precalculated_hash);
|
||||
}
|
||||
|
||||
/**
|
||||
* @copydoc find_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash)
|
||||
*/
|
||||
const_iterator find(const std::basic_string<CharT>& key, std::size_t precalculated_hash) const {
|
||||
return m_ht.find(key.data(), key.size(), precalculated_hash);
|
||||
}
|
||||
#endif
|
||||
/**
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup to the value if you already have the hash.
|
||||
*/
|
||||
iterator find_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash) {
|
||||
return m_ht.find(key, key_size, precalculated_hash);
|
||||
}
|
||||
|
||||
/**
|
||||
* @copydoc find_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash)
|
||||
*/
|
||||
const_iterator find_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash) const {
|
||||
return m_ht.find(key, key_size, precalculated_hash);
|
||||
}
|
||||
|
||||
|
||||
|
||||
#ifdef TSL_AH_HAS_STRING_VIEW
|
||||
std::pair<iterator, iterator> equal_range(const std::basic_string_view<CharT>& key) {
|
||||
return m_ht.equal_range(key.data(), key.size());
|
||||
}
|
||||
|
||||
std::pair<const_iterator, const_iterator> equal_range(const std::basic_string_view<CharT>& key) const {
|
||||
return m_ht.equal_range(key.data(), key.size());
|
||||
}
|
||||
#else
|
||||
std::pair<iterator, iterator> equal_range(const CharT* key) {
|
||||
return m_ht.equal_range(key, std::char_traits<CharT>::length(key));
|
||||
}
|
||||
|
||||
std::pair<const_iterator, const_iterator> equal_range(const CharT* key) const {
|
||||
return m_ht.equal_range(key, std::char_traits<CharT>::length(key));
|
||||
}
|
||||
|
||||
std::pair<iterator, iterator> equal_range(const std::basic_string<CharT>& key) {
|
||||
return m_ht.equal_range(key.data(), key.size());
|
||||
}
|
||||
|
||||
std::pair<const_iterator, const_iterator> equal_range(const std::basic_string<CharT>& key) const {
|
||||
return m_ht.equal_range(key.data(), key.size());
|
||||
}
|
||||
#endif
|
||||
std::pair<iterator, iterator> equal_range_ks(const CharT* key, size_type key_size) {
|
||||
return m_ht.equal_range(key, key_size);
|
||||
}
|
||||
|
||||
std::pair<const_iterator, const_iterator> equal_range_ks(const CharT* key, size_type key_size) const {
|
||||
return m_ht.equal_range(key, key_size);
|
||||
}
|
||||
|
||||
|
||||
|
||||
#ifdef TSL_AH_HAS_STRING_VIEW
|
||||
/**
|
||||
* @copydoc equal_range_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash)
|
||||
*/
|
||||
std::pair<iterator, iterator> equal_range(const std::basic_string_view<CharT>& key, std::size_t precalculated_hash) {
|
||||
return m_ht.equal_range(key.data(), key.size(), precalculated_hash);
|
||||
}
|
||||
|
||||
/**
|
||||
* @copydoc equal_range_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash)
|
||||
*/
|
||||
std::pair<const_iterator, const_iterator> equal_range(const std::basic_string_view<CharT>& key, std::size_t precalculated_hash) const {
|
||||
return m_ht.equal_range(key.data(), key.size(), precalculated_hash);
|
||||
}
|
||||
#else
|
||||
/**
|
||||
* @copydoc equal_range_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash)
|
||||
*/
|
||||
std::pair<iterator, iterator> equal_range(const CharT* key, std::size_t precalculated_hash) {
|
||||
return m_ht.equal_range(key, std::char_traits<CharT>::length(key), precalculated_hash);
|
||||
}
|
||||
|
||||
/**
|
||||
* @copydoc equal_range_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash)
|
||||
*/
|
||||
std::pair<const_iterator, const_iterator> equal_range(const CharT* key, std::size_t precalculated_hash) const {
|
||||
return m_ht.equal_range(key, std::char_traits<CharT>::length(key), precalculated_hash);
|
||||
}
|
||||
|
||||
/**
|
||||
* @copydoc equal_range_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash)
|
||||
*/
|
||||
std::pair<iterator, iterator> equal_range(const std::basic_string<CharT>& key, std::size_t precalculated_hash) {
|
||||
return m_ht.equal_range(key.data(), key.size(), precalculated_hash);
|
||||
}
|
||||
|
||||
/**
|
||||
* @copydoc equal_range_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash)
|
||||
*/
|
||||
std::pair<const_iterator, const_iterator> equal_range(const std::basic_string<CharT>& key, std::size_t precalculated_hash) const {
|
||||
return m_ht.equal_range(key.data(), key.size(), precalculated_hash);
|
||||
}
|
||||
#endif
|
||||
/**
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup to the value if you already have the hash.
|
||||
*/
|
||||
std::pair<iterator, iterator> equal_range_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash) {
|
||||
return m_ht.equal_range(key, key_size, precalculated_hash);
|
||||
}
|
||||
|
||||
/**
|
||||
* @copydoc equal_range_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash)
|
||||
*/
|
||||
std::pair<const_iterator, const_iterator> equal_range_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash) const {
|
||||
return m_ht.equal_range(key, key_size, precalculated_hash);
|
||||
}
|
||||
|
||||
|
||||
|
||||
/*
|
||||
* Bucket interface
|
||||
*/
|
||||
size_type bucket_count() const { return m_ht.bucket_count(); }
|
||||
size_type max_bucket_count() const { return m_ht.max_bucket_count(); }
|
||||
|
||||
|
||||
/*
|
||||
* Hash policy
|
||||
*/
|
||||
float load_factor() const { return m_ht.load_factor(); }
|
||||
float max_load_factor() const { return m_ht.max_load_factor(); }
|
||||
void max_load_factor(float ml) { m_ht.max_load_factor(ml); }
|
||||
|
||||
void rehash(size_type count) { m_ht.rehash(count); }
|
||||
void reserve(size_type count) { m_ht.reserve(count); }
|
||||
|
||||
|
||||
/*
|
||||
* Observers
|
||||
*/
|
||||
hasher hash_function() const { return m_ht.hash_function(); }
|
||||
key_equal key_eq() const { return m_ht.key_eq(); }
|
||||
|
||||
|
||||
/*
|
||||
* Other
|
||||
*/
|
||||
/**
|
||||
* Return the `const_iterator it` as an `iterator`.
|
||||
*/
|
||||
iterator mutable_iterator(const_iterator it) noexcept { return m_ht.mutable_iterator(it); }
|
||||
|
||||
/**
|
||||
* Serialize the set through the `serializer` parameter.
|
||||
*
|
||||
* The `serializer` parameter must be a function object that supports the following calls:
|
||||
* - `template<typename U> void operator()(const U& value);` where the types `std::uint64_t` and `float` must be supported for U.
|
||||
* - `void operator()(const CharT* value, std::size_t value_size);`
|
||||
*
|
||||
* The implementation leaves binary compatibilty (endianness, IEEE 754 for floats, ...) of the types it serializes
|
||||
* in the hands of the `Serializer` function object if compatibilty is required.
|
||||
*/
|
||||
template<class Serializer>
|
||||
void serialize(Serializer& serializer) const {
|
||||
m_ht.serialize(serializer);
|
||||
}
|
||||
|
||||
/**
|
||||
* Deserialize a previouly serialized set through the `deserializer` parameter.
|
||||
*
|
||||
* The `deserializer` parameter must be a function object that supports the following calls:
|
||||
* - `template<typename U> U operator()();` where the types `std::uint64_t` and `float` must be supported for U.
|
||||
* - `void operator()(CharT* value_out, std::size_t value_size);`
|
||||
*
|
||||
* If the deserialized hash set type is hash compatible with the serialized set, the deserialization process can be
|
||||
* sped up by setting `hash_compatible` to true. To be hash compatible, the Hash (take care of the 32-bits vs 64 bits),
|
||||
* KeyEqual, GrowthPolicy, StoreNullTerminator, KeySizeT and IndexSizeT must behave the same than the ones used on the
|
||||
* serialized set. Otherwise the behaviour is undefined with `hash_compatible` sets to true.
|
||||
*
|
||||
* The behaviour is undefined if the type `CharT` of the `array_set` is not the same as the
|
||||
* type used during serialization.
|
||||
*
|
||||
* The implementation leaves binary compatibilty (endianness, IEEE 754 for floats, size of int, ...) of the types it
|
||||
* deserializes in the hands of the `Deserializer` function object if compatibilty is required.
|
||||
*/
|
||||
template<class Deserializer>
|
||||
static array_set deserialize(Deserializer& deserializer, bool hash_compatible = false) {
|
||||
array_set set(0);
|
||||
set.m_ht.deserialize(deserializer, hash_compatible);
|
||||
|
||||
return set;
|
||||
}
|
||||
|
||||
friend bool operator==(const array_set& lhs, const array_set& rhs) {
|
||||
if(lhs.size() != rhs.size()) {
|
||||
return false;
|
||||
}
|
||||
|
||||
for(auto it = lhs.cbegin(); it != lhs.cend(); ++it) {
|
||||
const auto it_element_rhs = rhs.find_ks(it.key(), it.key_size());
|
||||
if(it_element_rhs == rhs.cend()) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
friend bool operator!=(const array_set& lhs, const array_set& rhs) {
|
||||
return !operator==(lhs, rhs);
|
||||
}
|
||||
|
||||
friend void swap(array_set& lhs, array_set& rhs) {
|
||||
lhs.swap(rhs);
|
||||
}
|
||||
|
||||
public:
|
||||
static const size_type MAX_KEY_SIZE = ht::MAX_KEY_SIZE;
|
||||
|
||||
private:
|
||||
ht m_ht;
|
||||
};
|
||||
|
||||
|
||||
/**
|
||||
* Same as
|
||||
* `tsl::array_set<CharT, Hash, KeyEqual, StoreNullTerminator, KeySizeT, IndexSizeT, tsl::ah::prime_growth_policy>`.
|
||||
*/
|
||||
template<class CharT,
|
||||
class Hash = tsl::ah::str_hash<CharT>,
|
||||
class KeyEqual = tsl::ah::str_equal<CharT>,
|
||||
bool StoreNullTerminator = true,
|
||||
class KeySizeT = std::uint16_t,
|
||||
class IndexSizeT = std::uint32_t>
|
||||
using array_pg_set = array_set<CharT, Hash, KeyEqual, StoreNullTerminator,
|
||||
KeySizeT, IndexSizeT, tsl::ah::prime_growth_policy>;
|
||||
|
||||
} //end namespace tsl
|
||||
|
||||
#endif
|
706
src/includes/3thparty/tsl/bhopscotch_map.h
Normal file
706
src/includes/3thparty/tsl/bhopscotch_map.h
Normal file
@@ -0,0 +1,706 @@
|
||||
/**
|
||||
* MIT License
|
||||
*
|
||||
* Copyright (c) 2017 Tessil
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
* of this software and associated documentation files (the "Software"), to deal
|
||||
* in the Software without restriction, including without limitation the rights
|
||||
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
* copies of the Software, and to permit persons to whom the Software is
|
||||
* furnished to do so, subject to the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice shall be included in all
|
||||
* copies or substantial portions of the Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
* SOFTWARE.
|
||||
*/
|
||||
#ifndef TSL_BHOPSCOTCH_MAP_H
|
||||
#define TSL_BHOPSCOTCH_MAP_H
|
||||
|
||||
|
||||
#include <algorithm>
|
||||
#include <cstddef>
|
||||
#include <functional>
|
||||
#include <initializer_list>
|
||||
#include <map>
|
||||
#include <memory>
|
||||
#include <type_traits>
|
||||
#include <utility>
|
||||
#include "hopscotch_hash.h"
|
||||
|
||||
|
||||
namespace tsl {
|
||||
|
||||
|
||||
/**
|
||||
* Similar to tsl::hopscotch_map but instead of using a list for overflowing elements it uses
|
||||
* a binary search tree. It thus needs an additional template parameter Compare. Compare should
|
||||
* be arithmetically coherent with KeyEqual.
|
||||
*
|
||||
* The binary search tree allows the map to have a worst-case scenario of O(log n) for search
|
||||
* and delete, even if the hash function maps all the elements to the same bucket.
|
||||
* For insert, the amortized worst case is O(log n), but the worst case is O(n) in case of rehash.
|
||||
*
|
||||
* This makes the map resistant to DoS attacks (but doesn't preclude you to have a good hash function,
|
||||
* as an element in the bucket array is faster to retrieve than in the tree).
|
||||
*
|
||||
* @copydoc hopscotch_map
|
||||
*/
|
||||
template<class Key,
|
||||
class T,
|
||||
class Hash = std::hash<Key>,
|
||||
class KeyEqual = std::equal_to<Key>,
|
||||
class Compare = std::less<Key>,
|
||||
class Allocator = std::allocator<std::pair<const Key, T>>,
|
||||
unsigned int NeighborhoodSize = 62,
|
||||
bool StoreHash = false,
|
||||
class GrowthPolicy = tsl::hh::power_of_two_growth_policy<2>>
|
||||
class bhopscotch_map {
|
||||
private:
|
||||
template<typename U>
|
||||
using has_is_transparent = tsl::detail_hopscotch_hash::has_is_transparent<U>;
|
||||
|
||||
class KeySelect {
|
||||
public:
|
||||
using key_type = Key;
|
||||
|
||||
const key_type& operator()(const std::pair<const Key, T>& key_value) const {
|
||||
return key_value.first;
|
||||
}
|
||||
|
||||
const key_type& operator()(std::pair<const Key, T>& key_value) {
|
||||
return key_value.first;
|
||||
}
|
||||
};
|
||||
|
||||
class ValueSelect {
|
||||
public:
|
||||
using value_type = T;
|
||||
|
||||
const value_type& operator()(const std::pair<const Key, T>& key_value) const {
|
||||
return key_value.second;
|
||||
}
|
||||
|
||||
value_type& operator()(std::pair<const Key, T>& key_value) {
|
||||
return key_value.second;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
// TODO Not optimal as we have to use std::pair<const Key, T> as ValueType which forbid
|
||||
// us to move the key in the bucket array, we have to use copy. Optimize.
|
||||
using overflow_container_type = std::map<Key, T, Compare, Allocator>;
|
||||
using ht = detail_hopscotch_hash::hopscotch_hash<std::pair<const Key, T>, KeySelect, ValueSelect,
|
||||
Hash, KeyEqual,
|
||||
Allocator, NeighborhoodSize,
|
||||
StoreHash, GrowthPolicy,
|
||||
overflow_container_type>;
|
||||
|
||||
public:
|
||||
using key_type = typename ht::key_type;
|
||||
using mapped_type = T;
|
||||
using value_type = typename ht::value_type;
|
||||
using size_type = typename ht::size_type;
|
||||
using difference_type = typename ht::difference_type;
|
||||
using hasher = typename ht::hasher;
|
||||
using key_equal = typename ht::key_equal;
|
||||
using key_compare = Compare;
|
||||
using allocator_type = typename ht::allocator_type;
|
||||
using reference = typename ht::reference;
|
||||
using const_reference = typename ht::const_reference;
|
||||
using pointer = typename ht::pointer;
|
||||
using const_pointer = typename ht::const_pointer;
|
||||
using iterator = typename ht::iterator;
|
||||
using const_iterator = typename ht::const_iterator;
|
||||
|
||||
|
||||
/*
|
||||
* Constructors
|
||||
*/
|
||||
bhopscotch_map() : bhopscotch_map(ht::DEFAULT_INIT_BUCKETS_SIZE) {
|
||||
}
|
||||
|
||||
explicit bhopscotch_map(size_type bucket_count,
|
||||
const Hash& hash = Hash(),
|
||||
const KeyEqual& equal = KeyEqual(),
|
||||
const Allocator& alloc = Allocator(),
|
||||
const Compare& comp = Compare()) :
|
||||
m_ht(bucket_count, hash, equal, alloc, ht::DEFAULT_MAX_LOAD_FACTOR, comp)
|
||||
{
|
||||
}
|
||||
|
||||
bhopscotch_map(size_type bucket_count,
|
||||
const Allocator& alloc) : bhopscotch_map(bucket_count, Hash(), KeyEqual(), alloc)
|
||||
{
|
||||
}
|
||||
|
||||
bhopscotch_map(size_type bucket_count,
|
||||
const Hash& hash,
|
||||
const Allocator& alloc) : bhopscotch_map(bucket_count, hash, KeyEqual(), alloc)
|
||||
{
|
||||
}
|
||||
|
||||
explicit bhopscotch_map(const Allocator& alloc) : bhopscotch_map(ht::DEFAULT_INIT_BUCKETS_SIZE, alloc) {
|
||||
}
|
||||
|
||||
template<class InputIt>
|
||||
bhopscotch_map(InputIt first, InputIt last,
|
||||
size_type bucket_count = ht::DEFAULT_INIT_BUCKETS_SIZE,
|
||||
const Hash& hash = Hash(),
|
||||
const KeyEqual& equal = KeyEqual(),
|
||||
const Allocator& alloc = Allocator()) : bhopscotch_map(bucket_count, hash, equal, alloc)
|
||||
{
|
||||
insert(first, last);
|
||||
}
|
||||
|
||||
template<class InputIt>
|
||||
bhopscotch_map(InputIt first, InputIt last,
|
||||
size_type bucket_count,
|
||||
const Allocator& alloc) : bhopscotch_map(first, last, bucket_count, Hash(), KeyEqual(), alloc)
|
||||
{
|
||||
}
|
||||
|
||||
template<class InputIt>
|
||||
bhopscotch_map(InputIt first, InputIt last,
|
||||
size_type bucket_count,
|
||||
const Hash& hash,
|
||||
const Allocator& alloc) : bhopscotch_map(first, last, bucket_count, hash, KeyEqual(), alloc)
|
||||
{
|
||||
}
|
||||
|
||||
bhopscotch_map(std::initializer_list<value_type> init,
|
||||
size_type bucket_count = ht::DEFAULT_INIT_BUCKETS_SIZE,
|
||||
const Hash& hash = Hash(),
|
||||
const KeyEqual& equal = KeyEqual(),
|
||||
const Allocator& alloc = Allocator()) :
|
||||
bhopscotch_map(init.begin(), init.end(), bucket_count, hash, equal, alloc)
|
||||
{
|
||||
}
|
||||
|
||||
bhopscotch_map(std::initializer_list<value_type> init,
|
||||
size_type bucket_count,
|
||||
const Allocator& alloc) :
|
||||
bhopscotch_map(init.begin(), init.end(), bucket_count, Hash(), KeyEqual(), alloc)
|
||||
{
|
||||
}
|
||||
|
||||
bhopscotch_map(std::initializer_list<value_type> init,
|
||||
size_type bucket_count,
|
||||
const Hash& hash,
|
||||
const Allocator& alloc) :
|
||||
bhopscotch_map(init.begin(), init.end(), bucket_count, hash, KeyEqual(), alloc)
|
||||
{
|
||||
}
|
||||
|
||||
|
||||
bhopscotch_map& operator=(std::initializer_list<value_type> ilist) {
|
||||
m_ht.clear();
|
||||
|
||||
m_ht.reserve(ilist.size());
|
||||
m_ht.insert(ilist.begin(), ilist.end());
|
||||
|
||||
return *this;
|
||||
}
|
||||
|
||||
allocator_type get_allocator() const { return m_ht.get_allocator(); }
|
||||
|
||||
|
||||
/*
|
||||
* Iterators
|
||||
*/
|
||||
iterator begin() noexcept { return m_ht.begin(); }
|
||||
const_iterator begin() const noexcept { return m_ht.begin(); }
|
||||
const_iterator cbegin() const noexcept { return m_ht.cbegin(); }
|
||||
|
||||
iterator end() noexcept { return m_ht.end(); }
|
||||
const_iterator end() const noexcept { return m_ht.end(); }
|
||||
const_iterator cend() const noexcept { return m_ht.cend(); }
|
||||
|
||||
|
||||
/*
|
||||
* Capacity
|
||||
*/
|
||||
bool empty() const noexcept { return m_ht.empty(); }
|
||||
size_type size() const noexcept { return m_ht.size(); }
|
||||
size_type max_size() const noexcept { return m_ht.max_size(); }
|
||||
|
||||
/*
|
||||
* Modifiers
|
||||
*/
|
||||
void clear() noexcept { m_ht.clear(); }
|
||||
|
||||
|
||||
|
||||
|
||||
std::pair<iterator, bool> insert(const value_type& value) {
|
||||
return m_ht.insert(value);
|
||||
}
|
||||
|
||||
template<class P, typename std::enable_if<std::is_constructible<value_type, P&&>::value>::type* = nullptr>
|
||||
std::pair<iterator, bool> insert(P&& value) {
|
||||
return m_ht.insert(std::forward<P>(value));
|
||||
}
|
||||
|
||||
std::pair<iterator, bool> insert(value_type&& value) {
|
||||
return m_ht.insert(std::move(value));
|
||||
}
|
||||
|
||||
|
||||
iterator insert(const_iterator hint, const value_type& value) {
|
||||
return m_ht.insert(hint, value);
|
||||
}
|
||||
|
||||
template<class P, typename std::enable_if<std::is_constructible<value_type, P&&>::value>::type* = nullptr>
|
||||
iterator insert(const_iterator hint, P&& value) {
|
||||
return m_ht.insert(hint, std::forward<P>(value));
|
||||
}
|
||||
|
||||
iterator insert(const_iterator hint, value_type&& value) {
|
||||
return m_ht.insert(hint, std::move(value));
|
||||
}
|
||||
|
||||
|
||||
template<class InputIt>
|
||||
void insert(InputIt first, InputIt last) {
|
||||
m_ht.insert(first, last);
|
||||
}
|
||||
|
||||
void insert(std::initializer_list<value_type> ilist) {
|
||||
m_ht.insert(ilist.begin(), ilist.end());
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
template<class M>
|
||||
std::pair<iterator, bool> insert_or_assign(const key_type& k, M&& obj) {
|
||||
return m_ht.insert_or_assign(k, std::forward<M>(obj));
|
||||
}
|
||||
|
||||
template<class M>
|
||||
std::pair<iterator, bool> insert_or_assign(key_type&& k, M&& obj) {
|
||||
return m_ht.insert_or_assign(std::move(k), std::forward<M>(obj));
|
||||
}
|
||||
|
||||
template<class M>
|
||||
iterator insert_or_assign(const_iterator hint, const key_type& k, M&& obj) {
|
||||
return m_ht.insert_or_assign(hint, k, std::forward<M>(obj));
|
||||
}
|
||||
|
||||
template<class M>
|
||||
iterator insert_or_assign(const_iterator hint, key_type&& k, M&& obj) {
|
||||
return m_ht.insert_or_assign(hint, std::move(k), std::forward<M>(obj));
|
||||
}
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Due to the way elements are stored, emplace will need to move or copy the key-value once.
|
||||
* The method is equivalent to insert(value_type(std::forward<Args>(args)...));
|
||||
*
|
||||
* Mainly here for compatibility with the std::unordered_map interface.
|
||||
*/
|
||||
template<class... Args>
|
||||
std::pair<iterator, bool> emplace(Args&&... args) {
|
||||
return m_ht.emplace(std::forward<Args>(args)...);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Due to the way elements are stored, emplace_hint will need to move or copy the key-value once.
|
||||
* The method is equivalent to insert(hint, value_type(std::forward<Args>(args)...));
|
||||
*
|
||||
* Mainly here for compatibility with the std::unordered_map interface.
|
||||
*/
|
||||
template<class... Args>
|
||||
iterator emplace_hint(const_iterator hint, Args&&... args) {
|
||||
return m_ht.emplace_hint(hint, std::forward<Args>(args)...);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
template<class... Args>
|
||||
std::pair<iterator, bool> try_emplace(const key_type& k, Args&&... args) {
|
||||
return m_ht.try_emplace(k, std::forward<Args>(args)...);
|
||||
}
|
||||
|
||||
template<class... Args>
|
||||
std::pair<iterator, bool> try_emplace(key_type&& k, Args&&... args) {
|
||||
return m_ht.try_emplace(std::move(k), std::forward<Args>(args)...);
|
||||
}
|
||||
|
||||
template<class... Args>
|
||||
iterator try_emplace(const_iterator hint, const key_type& k, Args&&... args) {
|
||||
return m_ht.try_emplace(hint, k, std::forward<Args>(args)...);
|
||||
}
|
||||
|
||||
template<class... Args>
|
||||
iterator try_emplace(const_iterator hint, key_type&& k, Args&&... args) {
|
||||
return m_ht.try_emplace(hint, std::move(k), std::forward<Args>(args)...);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
iterator erase(iterator pos) { return m_ht.erase(pos); }
|
||||
iterator erase(const_iterator pos) { return m_ht.erase(pos); }
|
||||
iterator erase(const_iterator first, const_iterator last) { return m_ht.erase(first, last); }
|
||||
size_type erase(const key_type& key) { return m_ht.erase(key); }
|
||||
|
||||
/**
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup to the value if you already have the hash.
|
||||
*/
|
||||
size_type erase(const key_type& key, std::size_t precalculated_hash) {
|
||||
return m_ht.erase(key, precalculated_hash);
|
||||
}
|
||||
|
||||
/**
|
||||
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent
|
||||
* and Compare::is_transparent exist.
|
||||
* If so, K must be hashable and comparable to Key.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, class CP = Compare,
|
||||
typename std::enable_if<has_is_transparent<KE>::value && has_is_transparent<CP>::value>::type* = nullptr>
|
||||
size_type erase(const K& key) { return m_ht.erase(key); }
|
||||
|
||||
/**
|
||||
* @copydoc erase(const K& key)
|
||||
*
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup to the value if you already have the hash.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, class CP = Compare,
|
||||
typename std::enable_if<has_is_transparent<KE>::value && has_is_transparent<CP>::value>::type* = nullptr>
|
||||
size_type erase(const K& key, std::size_t precalculated_hash) { return m_ht.erase(key, precalculated_hash); }
|
||||
|
||||
|
||||
|
||||
|
||||
void swap(bhopscotch_map& other) { other.m_ht.swap(m_ht); }
|
||||
|
||||
/*
|
||||
* Lookup
|
||||
*/
|
||||
T& at(const Key& key) { return m_ht.at(key); }
|
||||
|
||||
/**
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
|
||||
*/
|
||||
T& at(const Key& key, std::size_t precalculated_hash) { return m_ht.at(key, precalculated_hash); }
|
||||
|
||||
const T& at(const Key& key) const { return m_ht.at(key); }
|
||||
|
||||
/**
|
||||
* @copydoc at(const Key& key, std::size_t precalculated_hash)
|
||||
*/
|
||||
const T& at(const Key& key, std::size_t precalculated_hash) const { return m_ht.at(key, precalculated_hash); }
|
||||
|
||||
/**
|
||||
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent
|
||||
* and Compare::is_transparent exist.
|
||||
* If so, K must be hashable and comparable to Key.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, class CP = Compare,
|
||||
typename std::enable_if<has_is_transparent<KE>::value && has_is_transparent<CP>::value>::type* = nullptr>
|
||||
T& at(const K& key) { return m_ht.at(key); }
|
||||
|
||||
/**
|
||||
* @copydoc at(const K& key)
|
||||
*
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, class CP = Compare,
|
||||
typename std::enable_if<has_is_transparent<KE>::value && has_is_transparent<CP>::value>::type* = nullptr>
|
||||
T& at(const K& key, std::size_t precalculated_hash) { return m_ht.at(key, precalculated_hash); }
|
||||
|
||||
/**
|
||||
* @copydoc at(const K& key)
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, class CP = Compare,
|
||||
typename std::enable_if<has_is_transparent<KE>::value && has_is_transparent<CP>::value>::type* = nullptr>
|
||||
const T& at(const K& key) const { return m_ht.at(key); }
|
||||
|
||||
/**
|
||||
* @copydoc at(const K& key, std::size_t precalculated_hash)
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, class CP = Compare,
|
||||
typename std::enable_if<has_is_transparent<KE>::value && has_is_transparent<CP>::value>::type* = nullptr>
|
||||
const T& at(const K& key, std::size_t precalculated_hash) const { return m_ht.at(key, precalculated_hash); }
|
||||
|
||||
|
||||
|
||||
|
||||
T& operator[](const Key& key) { return m_ht[key]; }
|
||||
T& operator[](Key&& key) { return m_ht[std::move(key)]; }
|
||||
|
||||
|
||||
|
||||
|
||||
size_type count(const Key& key) const { return m_ht.count(key); }
|
||||
|
||||
/**
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
|
||||
*/
|
||||
size_type count(const Key& key, std::size_t precalculated_hash) const { return m_ht.count(key, precalculated_hash); }
|
||||
|
||||
/**
|
||||
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent
|
||||
* and Compare::is_transparent exist.
|
||||
* If so, K must be hashable and comparable to Key.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, class CP = Compare,
|
||||
typename std::enable_if<has_is_transparent<KE>::value && has_is_transparent<CP>::value>::type* = nullptr>
|
||||
size_type count(const K& key) const { return m_ht.count(key); }
|
||||
|
||||
/**
|
||||
* @copydoc count(const K& key) const
|
||||
*
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, class CP = Compare,
|
||||
typename std::enable_if<has_is_transparent<KE>::value && has_is_transparent<CP>::value>::type* = nullptr>
|
||||
size_type count(const K& key, std::size_t precalculated_hash) const { return m_ht.count(key, precalculated_hash); }
|
||||
|
||||
|
||||
|
||||
|
||||
iterator find(const Key& key) { return m_ht.find(key); }
|
||||
|
||||
/**
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
|
||||
*/
|
||||
iterator find(const Key& key, std::size_t precalculated_hash) { return m_ht.find(key, precalculated_hash); }
|
||||
|
||||
const_iterator find(const Key& key) const { return m_ht.find(key); }
|
||||
|
||||
/**
|
||||
* @copydoc find(const Key& key, std::size_t precalculated_hash)
|
||||
*/
|
||||
const_iterator find(const Key& key, std::size_t precalculated_hash) const { return m_ht.find(key, precalculated_hash); }
|
||||
|
||||
/**
|
||||
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent
|
||||
* and Compare::is_transparent exist.
|
||||
* If so, K must be hashable and comparable to Key.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, class CP = Compare,
|
||||
typename std::enable_if<has_is_transparent<KE>::value && has_is_transparent<CP>::value>::type* = nullptr>
|
||||
iterator find(const K& key) { return m_ht.find(key); }
|
||||
|
||||
/**
|
||||
* @copydoc find(const K& key)
|
||||
*
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, class CP = Compare,
|
||||
typename std::enable_if<has_is_transparent<KE>::value && has_is_transparent<CP>::value>::type* = nullptr>
|
||||
iterator find(const K& key, std::size_t precalculated_hash) { return m_ht.find(key, precalculated_hash); }
|
||||
|
||||
/**
|
||||
* @copydoc find(const K& key)
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, class CP = Compare,
|
||||
typename std::enable_if<has_is_transparent<KE>::value && has_is_transparent<CP>::value>::type* = nullptr>
|
||||
const_iterator find(const K& key) const { return m_ht.find(key); }
|
||||
|
||||
/**
|
||||
* @copydoc find(const K& key, std::size_t precalculated_hash)
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, class CP = Compare,
|
||||
typename std::enable_if<has_is_transparent<KE>::value && has_is_transparent<CP>::value>::type* = nullptr>
|
||||
const_iterator find(const K& key, std::size_t precalculated_hash) const { return m_ht.find(key, precalculated_hash); }
|
||||
|
||||
|
||||
|
||||
|
||||
bool contains(const Key& key) const { return m_ht.contains(key); }
|
||||
|
||||
/**
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
|
||||
*/
|
||||
bool contains(const Key& key, std::size_t precalculated_hash) const {
|
||||
return m_ht.contains(key, precalculated_hash);
|
||||
}
|
||||
|
||||
/**
|
||||
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
|
||||
* If so, K must be hashable and comparable to Key.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
bool contains(const K& key) const { return m_ht.contains(key); }
|
||||
|
||||
/**
|
||||
* @copydoc contains(const K& key) const
|
||||
*
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
bool contains(const K& key, std::size_t precalculated_hash) const {
|
||||
return m_ht.contains(key, precalculated_hash);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
std::pair<iterator, iterator> equal_range(const Key& key) { return m_ht.equal_range(key); }
|
||||
|
||||
/**
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
|
||||
*/
|
||||
std::pair<iterator, iterator> equal_range(const Key& key, std::size_t precalculated_hash) {
|
||||
return m_ht.equal_range(key, precalculated_hash);
|
||||
}
|
||||
|
||||
std::pair<const_iterator, const_iterator> equal_range(const Key& key) const { return m_ht.equal_range(key); }
|
||||
|
||||
/**
|
||||
* @copydoc equal_range(const Key& key, std::size_t precalculated_hash)
|
||||
*/
|
||||
std::pair<const_iterator, const_iterator> equal_range(const Key& key, std::size_t precalculated_hash) const {
|
||||
return m_ht.equal_range(key, precalculated_hash);
|
||||
}
|
||||
|
||||
/**
|
||||
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent
|
||||
* and Compare::is_transparent exist.
|
||||
* If so, K must be hashable and comparable to Key.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, class CP = Compare,
|
||||
typename std::enable_if<has_is_transparent<KE>::value && has_is_transparent<CP>::value>::type* = nullptr>
|
||||
std::pair<iterator, iterator> equal_range(const K& key) { return m_ht.equal_range(key); }
|
||||
|
||||
/**
|
||||
* @copydoc equal_range(const K& key)
|
||||
*
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, class CP = Compare,
|
||||
typename std::enable_if<has_is_transparent<KE>::value && has_is_transparent<CP>::value>::type* = nullptr>
|
||||
std::pair<iterator, iterator> equal_range(const K& key, std::size_t precalculated_hash) {
|
||||
return m_ht.equal_range(key, precalculated_hash);
|
||||
}
|
||||
|
||||
/**
|
||||
* @copydoc equal_range(const K& key)
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, class CP = Compare,
|
||||
typename std::enable_if<has_is_transparent<KE>::value && has_is_transparent<CP>::value>::type* = nullptr>
|
||||
std::pair<const_iterator, const_iterator> equal_range(const K& key) const { return m_ht.equal_range(key); }
|
||||
|
||||
/**
|
||||
* @copydoc equal_range(const K& key, std::size_t precalculated_hash)
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, class CP = Compare,
|
||||
typename std::enable_if<has_is_transparent<KE>::value && has_is_transparent<CP>::value>::type* = nullptr>
|
||||
std::pair<const_iterator, const_iterator> equal_range(const K& key, std::size_t precalculated_hash) const {
|
||||
return m_ht.equal_range(key, precalculated_hash);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
/*
|
||||
* Bucket interface
|
||||
*/
|
||||
size_type bucket_count() const { return m_ht.bucket_count(); }
|
||||
size_type max_bucket_count() const { return m_ht.max_bucket_count(); }
|
||||
|
||||
|
||||
/*
|
||||
* Hash policy
|
||||
*/
|
||||
float load_factor() const { return m_ht.load_factor(); }
|
||||
float max_load_factor() const { return m_ht.max_load_factor(); }
|
||||
void max_load_factor(float ml) { m_ht.max_load_factor(ml); }
|
||||
|
||||
void rehash(size_type count_) { m_ht.rehash(count_); }
|
||||
void reserve(size_type count_) { m_ht.reserve(count_); }
|
||||
|
||||
|
||||
/*
|
||||
* Observers
|
||||
*/
|
||||
hasher hash_function() const { return m_ht.hash_function(); }
|
||||
key_equal key_eq() const { return m_ht.key_eq(); }
|
||||
key_compare key_comp() const { return m_ht.key_comp(); }
|
||||
|
||||
/*
|
||||
* Other
|
||||
*/
|
||||
|
||||
/**
|
||||
* Convert a const_iterator to an iterator.
|
||||
*/
|
||||
iterator mutable_iterator(const_iterator pos) {
|
||||
return m_ht.mutable_iterator(pos);
|
||||
}
|
||||
|
||||
size_type overflow_size() const noexcept { return m_ht.overflow_size(); }
|
||||
|
||||
friend bool operator==(const bhopscotch_map& lhs, const bhopscotch_map& rhs) {
|
||||
if(lhs.size() != rhs.size()) {
|
||||
return false;
|
||||
}
|
||||
|
||||
for(const auto& element_lhs : lhs) {
|
||||
const auto it_element_rhs = rhs.find(element_lhs.first);
|
||||
if(it_element_rhs == rhs.cend() || element_lhs.second != it_element_rhs->second) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
friend bool operator!=(const bhopscotch_map& lhs, const bhopscotch_map& rhs) {
|
||||
return !operator==(lhs, rhs);
|
||||
}
|
||||
|
||||
friend void swap(bhopscotch_map& lhs, bhopscotch_map& rhs) {
|
||||
lhs.swap(rhs);
|
||||
}
|
||||
|
||||
|
||||
|
||||
private:
|
||||
ht m_ht;
|
||||
};
|
||||
|
||||
|
||||
/**
|
||||
* Same as `tsl::bhopscotch_map<Key, T, Hash, KeyEqual, Compare, Allocator, NeighborhoodSize, StoreHash, tsl::hh::prime_growth_policy>`.
|
||||
*/
|
||||
template<class Key,
|
||||
class T,
|
||||
class Hash = std::hash<Key>,
|
||||
class KeyEqual = std::equal_to<Key>,
|
||||
class Compare = std::less<Key>,
|
||||
class Allocator = std::allocator<std::pair<const Key, T>>,
|
||||
unsigned int NeighborhoodSize = 62,
|
||||
bool StoreHash = false>
|
||||
using bhopscotch_pg_map = bhopscotch_map<Key, T, Hash, KeyEqual, Compare, Allocator, NeighborhoodSize, StoreHash, tsl::hh::prime_growth_policy>;
|
||||
|
||||
} // end namespace tsl
|
||||
|
||||
#endif
|
560
src/includes/3thparty/tsl/bhopscotch_set.h
Normal file
560
src/includes/3thparty/tsl/bhopscotch_set.h
Normal file
@@ -0,0 +1,560 @@
|
||||
/**
|
||||
* MIT License
|
||||
*
|
||||
* Copyright (c) 2017 Tessil
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
* of this software and associated documentation files (the "Software"), to deal
|
||||
* in the Software without restriction, including without limitation the rights
|
||||
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
* copies of the Software, and to permit persons to whom the Software is
|
||||
* furnished to do so, subject to the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice shall be included in all
|
||||
* copies or substantial portions of the Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
* SOFTWARE.
|
||||
*/
|
||||
#ifndef TSL_BHOPSCOTCH_SET_H
|
||||
#define TSL_BHOPSCOTCH_SET_H
|
||||
|
||||
|
||||
#include <algorithm>
|
||||
#include <cstddef>
|
||||
#include <functional>
|
||||
#include <initializer_list>
|
||||
#include <memory>
|
||||
#include <set>
|
||||
#include <type_traits>
|
||||
#include <utility>
|
||||
#include "hopscotch_hash.h"
|
||||
|
||||
|
||||
namespace tsl {
|
||||
|
||||
|
||||
/**
|
||||
* Similar to tsl::hopscotch_set but instead of using a list for overflowing elements it uses
|
||||
* a binary search tree. It thus needs an additional template parameter Compare. Compare should
|
||||
* be arithmetically coherent with KeyEqual.
|
||||
*
|
||||
* The binary search tree allows the set to have a worst-case scenario of O(log n) for search
|
||||
* and delete, even if the hash function maps all the elements to the same bucket.
|
||||
* For insert, the amortized worst case is O(log n), but the worst case is O(n) in case of rehash.
|
||||
*
|
||||
* This makes the set resistant to DoS attacks (but doesn't preclude you to have a good hash function,
|
||||
* as an element in the bucket array is faster to retrieve than in the tree).
|
||||
*
|
||||
* @copydoc hopscotch_set
|
||||
*/
|
||||
template<class Key,
|
||||
class Hash = std::hash<Key>,
|
||||
class KeyEqual = std::equal_to<Key>,
|
||||
class Compare = std::less<Key>,
|
||||
class Allocator = std::allocator<Key>,
|
||||
unsigned int NeighborhoodSize = 62,
|
||||
bool StoreHash = false,
|
||||
class GrowthPolicy = tsl::hh::power_of_two_growth_policy<2>>
|
||||
class bhopscotch_set {
|
||||
private:
|
||||
template<typename U>
|
||||
using has_is_transparent = tsl::detail_hopscotch_hash::has_is_transparent<U>;
|
||||
|
||||
class KeySelect {
|
||||
public:
|
||||
using key_type = Key;
|
||||
|
||||
const key_type& operator()(const Key& key) const {
|
||||
return key;
|
||||
}
|
||||
|
||||
key_type& operator()(Key& key) {
|
||||
return key;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
using overflow_container_type = std::set<Key, Compare, Allocator>;
|
||||
using ht = tsl::detail_hopscotch_hash::hopscotch_hash<Key, KeySelect, void,
|
||||
Hash, KeyEqual,
|
||||
Allocator, NeighborhoodSize,
|
||||
StoreHash, GrowthPolicy,
|
||||
overflow_container_type>;
|
||||
|
||||
public:
|
||||
using key_type = typename ht::key_type;
|
||||
using value_type = typename ht::value_type;
|
||||
using size_type = typename ht::size_type;
|
||||
using difference_type = typename ht::difference_type;
|
||||
using hasher = typename ht::hasher;
|
||||
using key_equal = typename ht::key_equal;
|
||||
using key_compare = Compare;
|
||||
using allocator_type = typename ht::allocator_type;
|
||||
using reference = typename ht::reference;
|
||||
using const_reference = typename ht::const_reference;
|
||||
using pointer = typename ht::pointer;
|
||||
using const_pointer = typename ht::const_pointer;
|
||||
using iterator = typename ht::iterator;
|
||||
using const_iterator = typename ht::const_iterator;
|
||||
|
||||
|
||||
/*
|
||||
* Constructors
|
||||
*/
|
||||
bhopscotch_set() : bhopscotch_set(ht::DEFAULT_INIT_BUCKETS_SIZE) {
|
||||
}
|
||||
|
||||
explicit bhopscotch_set(size_type bucket_count,
|
||||
const Hash& hash = Hash(),
|
||||
const KeyEqual& equal = KeyEqual(),
|
||||
const Allocator& alloc = Allocator(),
|
||||
const Compare& comp = Compare()) :
|
||||
m_ht(bucket_count, hash, equal, alloc, ht::DEFAULT_MAX_LOAD_FACTOR, comp)
|
||||
{
|
||||
}
|
||||
|
||||
bhopscotch_set(size_type bucket_count,
|
||||
const Allocator& alloc) : bhopscotch_set(bucket_count, Hash(), KeyEqual(), alloc)
|
||||
{
|
||||
}
|
||||
|
||||
bhopscotch_set(size_type bucket_count,
|
||||
const Hash& hash,
|
||||
const Allocator& alloc) : bhopscotch_set(bucket_count, hash, KeyEqual(), alloc)
|
||||
{
|
||||
}
|
||||
|
||||
explicit bhopscotch_set(const Allocator& alloc) : bhopscotch_set(ht::DEFAULT_INIT_BUCKETS_SIZE, alloc) {
|
||||
}
|
||||
|
||||
template<class InputIt>
|
||||
bhopscotch_set(InputIt first, InputIt last,
|
||||
size_type bucket_count = ht::DEFAULT_INIT_BUCKETS_SIZE,
|
||||
const Hash& hash = Hash(),
|
||||
const KeyEqual& equal = KeyEqual(),
|
||||
const Allocator& alloc = Allocator()) : bhopscotch_set(bucket_count, hash, equal, alloc)
|
||||
{
|
||||
insert(first, last);
|
||||
}
|
||||
|
||||
template<class InputIt>
|
||||
bhopscotch_set(InputIt first, InputIt last,
|
||||
size_type bucket_count,
|
||||
const Allocator& alloc) : bhopscotch_set(first, last, bucket_count, Hash(), KeyEqual(), alloc)
|
||||
{
|
||||
}
|
||||
|
||||
template<class InputIt>
|
||||
bhopscotch_set(InputIt first, InputIt last,
|
||||
size_type bucket_count,
|
||||
const Hash& hash,
|
||||
const Allocator& alloc) : bhopscotch_set(first, last, bucket_count, hash, KeyEqual(), alloc)
|
||||
{
|
||||
}
|
||||
|
||||
bhopscotch_set(std::initializer_list<value_type> init,
|
||||
size_type bucket_count = ht::DEFAULT_INIT_BUCKETS_SIZE,
|
||||
const Hash& hash = Hash(),
|
||||
const KeyEqual& equal = KeyEqual(),
|
||||
const Allocator& alloc = Allocator()) :
|
||||
bhopscotch_set(init.begin(), init.end(), bucket_count, hash, equal, alloc)
|
||||
{
|
||||
}
|
||||
|
||||
bhopscotch_set(std::initializer_list<value_type> init,
|
||||
size_type bucket_count,
|
||||
const Allocator& alloc) :
|
||||
bhopscotch_set(init.begin(), init.end(), bucket_count, Hash(), KeyEqual(), alloc)
|
||||
{
|
||||
}
|
||||
|
||||
bhopscotch_set(std::initializer_list<value_type> init,
|
||||
size_type bucket_count,
|
||||
const Hash& hash,
|
||||
const Allocator& alloc) :
|
||||
bhopscotch_set(init.begin(), init.end(), bucket_count, hash, KeyEqual(), alloc)
|
||||
{
|
||||
}
|
||||
|
||||
|
||||
bhopscotch_set& operator=(std::initializer_list<value_type> ilist) {
|
||||
m_ht.clear();
|
||||
|
||||
m_ht.reserve(ilist.size());
|
||||
m_ht.insert(ilist.begin(), ilist.end());
|
||||
|
||||
return *this;
|
||||
}
|
||||
|
||||
allocator_type get_allocator() const { return m_ht.get_allocator(); }
|
||||
|
||||
|
||||
/*
|
||||
* Iterators
|
||||
*/
|
||||
iterator begin() noexcept { return m_ht.begin(); }
|
||||
const_iterator begin() const noexcept { return m_ht.begin(); }
|
||||
const_iterator cbegin() const noexcept { return m_ht.cbegin(); }
|
||||
|
||||
iterator end() noexcept { return m_ht.end(); }
|
||||
const_iterator end() const noexcept { return m_ht.end(); }
|
||||
const_iterator cend() const noexcept { return m_ht.cend(); }
|
||||
|
||||
|
||||
/*
|
||||
* Capacity
|
||||
*/
|
||||
bool empty() const noexcept { return m_ht.empty(); }
|
||||
size_type size() const noexcept { return m_ht.size(); }
|
||||
size_type max_size() const noexcept { return m_ht.max_size(); }
|
||||
|
||||
/*
|
||||
* Modifiers
|
||||
*/
|
||||
void clear() noexcept { m_ht.clear(); }
|
||||
|
||||
|
||||
|
||||
|
||||
std::pair<iterator, bool> insert(const value_type& value) { return m_ht.insert(value); }
|
||||
std::pair<iterator, bool> insert(value_type&& value) { return m_ht.insert(std::move(value)); }
|
||||
|
||||
iterator insert(const_iterator hint, const value_type& value) { return m_ht.insert(hint, value); }
|
||||
iterator insert(const_iterator hint, value_type&& value) { return m_ht.insert(hint, std::move(value)); }
|
||||
|
||||
template<class InputIt>
|
||||
void insert(InputIt first, InputIt last) { m_ht.insert(first, last); }
|
||||
void insert(std::initializer_list<value_type> ilist) { m_ht.insert(ilist.begin(), ilist.end()); }
|
||||
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Due to the way elements are stored, emplace will need to move or copy the key-value once.
|
||||
* The method is equivalent to insert(value_type(std::forward<Args>(args)...));
|
||||
*
|
||||
* Mainly here for compatibility with the std::unordered_map interface.
|
||||
*/
|
||||
template<class... Args>
|
||||
std::pair<iterator, bool> emplace(Args&&... args) { return m_ht.emplace(std::forward<Args>(args)...); }
|
||||
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Due to the way elements are stored, emplace_hint will need to move or copy the key-value once.
|
||||
* The method is equivalent to insert(hint, value_type(std::forward<Args>(args)...));
|
||||
*
|
||||
* Mainly here for compatibility with the std::unordered_map interface.
|
||||
*/
|
||||
template<class... Args>
|
||||
iterator emplace_hint(const_iterator hint, Args&&... args) {
|
||||
return m_ht.emplace_hint(hint, std::forward<Args>(args)...);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
iterator erase(iterator pos) { return m_ht.erase(pos); }
|
||||
iterator erase(const_iterator pos) { return m_ht.erase(pos); }
|
||||
iterator erase(const_iterator first, const_iterator last) { return m_ht.erase(first, last); }
|
||||
size_type erase(const key_type& key) { return m_ht.erase(key); }
|
||||
|
||||
/**
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup to the value if you already have the hash.
|
||||
*/
|
||||
size_type erase(const key_type& key, std::size_t precalculated_hash) {
|
||||
return m_ht.erase(key, precalculated_hash);
|
||||
}
|
||||
|
||||
/**
|
||||
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent
|
||||
* and Compare::is_transparent exist.
|
||||
* If so, K must be hashable and comparable to Key.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, class CP = Compare,
|
||||
typename std::enable_if<has_is_transparent<KE>::value && has_is_transparent<CP>::value>::type* = nullptr>
|
||||
size_type erase(const K& key) { return m_ht.erase(key); }
|
||||
|
||||
/**
|
||||
* @copydoc erase(const K& key)
|
||||
*
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup to the value if you already have the hash.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, class CP = Compare,
|
||||
typename std::enable_if<has_is_transparent<KE>::value && has_is_transparent<CP>::value>::type* = nullptr>
|
||||
size_type erase(const K& key, std::size_t precalculated_hash) { return m_ht.erase(key, precalculated_hash); }
|
||||
|
||||
|
||||
|
||||
|
||||
void swap(bhopscotch_set& other) { other.m_ht.swap(m_ht); }
|
||||
|
||||
|
||||
/*
|
||||
* Lookup
|
||||
*/
|
||||
size_type count(const Key& key) const { return m_ht.count(key); }
|
||||
|
||||
/**
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
|
||||
*/
|
||||
size_type count(const Key& key, std::size_t precalculated_hash) const { return m_ht.count(key, precalculated_hash); }
|
||||
|
||||
/**
|
||||
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent
|
||||
* and Compare::is_transparent exist.
|
||||
* If so, K must be hashable and comparable to Key.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, class CP = Compare,
|
||||
typename std::enable_if<has_is_transparent<KE>::value && has_is_transparent<CP>::value>::type* = nullptr>
|
||||
size_type count(const K& key) const { return m_ht.count(key); }
|
||||
|
||||
/**
|
||||
* @copydoc count(const K& key) const
|
||||
*
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, class CP = Compare,
|
||||
typename std::enable_if<has_is_transparent<KE>::value && has_is_transparent<CP>::value>::type* = nullptr>
|
||||
size_type count(const K& key, std::size_t precalculated_hash) const { return m_ht.count(key, precalculated_hash); }
|
||||
|
||||
|
||||
|
||||
|
||||
iterator find(const Key& key) { return m_ht.find(key); }
|
||||
|
||||
/**
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
|
||||
*/
|
||||
iterator find(const Key& key, std::size_t precalculated_hash) { return m_ht.find(key, precalculated_hash); }
|
||||
|
||||
const_iterator find(const Key& key) const { return m_ht.find(key); }
|
||||
|
||||
/**
|
||||
* @copydoc find(const Key& key, std::size_t precalculated_hash)
|
||||
*/
|
||||
const_iterator find(const Key& key, std::size_t precalculated_hash) const { return m_ht.find(key, precalculated_hash); }
|
||||
|
||||
/**
|
||||
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent
|
||||
* and Compare::is_transparent exist.
|
||||
* If so, K must be hashable and comparable to Key.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, class CP = Compare,
|
||||
typename std::enable_if<has_is_transparent<KE>::value && has_is_transparent<CP>::value>::type* = nullptr>
|
||||
iterator find(const K& key) { return m_ht.find(key); }
|
||||
|
||||
/**
|
||||
* @copydoc find(const K& key)
|
||||
*
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, class CP = Compare,
|
||||
typename std::enable_if<has_is_transparent<KE>::value && has_is_transparent<CP>::value>::type* = nullptr>
|
||||
iterator find(const K& key, std::size_t precalculated_hash) { return m_ht.find(key, precalculated_hash); }
|
||||
|
||||
/**
|
||||
* @copydoc find(const K& key)
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, class CP = Compare,
|
||||
typename std::enable_if<has_is_transparent<KE>::value && has_is_transparent<CP>::value>::type* = nullptr>
|
||||
const_iterator find(const K& key) const { return m_ht.find(key); }
|
||||
|
||||
/**
|
||||
* @copydoc find(const K& key)
|
||||
*
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, class CP = Compare,
|
||||
typename std::enable_if<has_is_transparent<KE>::value && has_is_transparent<CP>::value>::type* = nullptr>
|
||||
const_iterator find(const K& key, std::size_t precalculated_hash) const { return m_ht.find(key, precalculated_hash); }
|
||||
|
||||
|
||||
|
||||
|
||||
bool contains(const Key& key) const { return m_ht.contains(key); }
|
||||
|
||||
/**
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
|
||||
*/
|
||||
bool contains(const Key& key, std::size_t precalculated_hash) const {
|
||||
return m_ht.contains(key, precalculated_hash);
|
||||
}
|
||||
|
||||
/**
|
||||
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
|
||||
* If so, K must be hashable and comparable to Key.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
bool contains(const K& key) const { return m_ht.contains(key); }
|
||||
|
||||
/**
|
||||
* @copydoc contains(const K& key) const
|
||||
*
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
bool contains(const K& key, std::size_t precalculated_hash) const {
|
||||
return m_ht.contains(key, precalculated_hash);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
std::pair<iterator, iterator> equal_range(const Key& key) { return m_ht.equal_range(key); }
|
||||
|
||||
/**
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
|
||||
*/
|
||||
std::pair<iterator, iterator> equal_range(const Key& key, std::size_t precalculated_hash) {
|
||||
return m_ht.equal_range(key, precalculated_hash);
|
||||
}
|
||||
|
||||
std::pair<const_iterator, const_iterator> equal_range(const Key& key) const { return m_ht.equal_range(key); }
|
||||
|
||||
/**
|
||||
* @copydoc equal_range(const Key& key, std::size_t precalculated_hash)
|
||||
*/
|
||||
std::pair<const_iterator, const_iterator> equal_range(const Key& key, std::size_t precalculated_hash) const {
|
||||
return m_ht.equal_range(key, precalculated_hash);
|
||||
}
|
||||
|
||||
/**
|
||||
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent
|
||||
* and Compare::is_transparent exist.
|
||||
* If so, K must be hashable and comparable to Key.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, class CP = Compare,
|
||||
typename std::enable_if<has_is_transparent<KE>::value && has_is_transparent<CP>::value>::type* = nullptr>
|
||||
std::pair<iterator, iterator> equal_range(const K& key) { return m_ht.equal_range(key); }
|
||||
|
||||
/**
|
||||
* @copydoc equal_range(const K& key)
|
||||
*
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, class CP = Compare,
|
||||
typename std::enable_if<has_is_transparent<KE>::value && has_is_transparent<CP>::value>::type* = nullptr>
|
||||
std::pair<iterator, iterator> equal_range(const K& key, std::size_t precalculated_hash) {
|
||||
return m_ht.equal_range(key, precalculated_hash);
|
||||
}
|
||||
|
||||
/**
|
||||
* @copydoc equal_range(const K& key)
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, class CP = Compare,
|
||||
typename std::enable_if<has_is_transparent<KE>::value && has_is_transparent<CP>::value>::type* = nullptr>
|
||||
std::pair<const_iterator, const_iterator> equal_range(const K& key) const { return m_ht.equal_range(key); }
|
||||
|
||||
/**
|
||||
* @copydoc equal_range(const K& key, std::size_t precalculated_hash)
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, class CP = Compare,
|
||||
typename std::enable_if<has_is_transparent<KE>::value && has_is_transparent<CP>::value>::type* = nullptr>
|
||||
std::pair<const_iterator, const_iterator> equal_range(const K& key, std::size_t precalculated_hash) const {
|
||||
return m_ht.equal_range(key, precalculated_hash);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
/*
|
||||
* Bucket interface
|
||||
*/
|
||||
size_type bucket_count() const { return m_ht.bucket_count(); }
|
||||
size_type max_bucket_count() const { return m_ht.max_bucket_count(); }
|
||||
|
||||
|
||||
/*
|
||||
* Hash policy
|
||||
*/
|
||||
float load_factor() const { return m_ht.load_factor(); }
|
||||
float max_load_factor() const { return m_ht.max_load_factor(); }
|
||||
void max_load_factor(float ml) { m_ht.max_load_factor(ml); }
|
||||
|
||||
void rehash(size_type count_) { m_ht.rehash(count_); }
|
||||
void reserve(size_type count_) { m_ht.reserve(count_); }
|
||||
|
||||
|
||||
/*
|
||||
* Observers
|
||||
*/
|
||||
hasher hash_function() const { return m_ht.hash_function(); }
|
||||
key_equal key_eq() const { return m_ht.key_eq(); }
|
||||
key_compare key_comp() const { return m_ht.key_comp(); }
|
||||
|
||||
|
||||
/*
|
||||
* Other
|
||||
*/
|
||||
|
||||
/**
|
||||
* Convert a const_iterator to an iterator.
|
||||
*/
|
||||
iterator mutable_iterator(const_iterator pos) {
|
||||
return m_ht.mutable_iterator(pos);
|
||||
}
|
||||
|
||||
size_type overflow_size() const noexcept { return m_ht.overflow_size(); }
|
||||
|
||||
friend bool operator==(const bhopscotch_set& lhs, const bhopscotch_set& rhs) {
|
||||
if(lhs.size() != rhs.size()) {
|
||||
return false;
|
||||
}
|
||||
|
||||
for(const auto& element_lhs : lhs) {
|
||||
const auto it_element_rhs = rhs.find(element_lhs);
|
||||
if(it_element_rhs == rhs.cend()) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
friend bool operator!=(const bhopscotch_set& lhs, const bhopscotch_set& rhs) {
|
||||
return !operator==(lhs, rhs);
|
||||
}
|
||||
|
||||
friend void swap(bhopscotch_set& lhs, bhopscotch_set& rhs) {
|
||||
lhs.swap(rhs);
|
||||
}
|
||||
|
||||
private:
|
||||
ht m_ht;
|
||||
};
|
||||
|
||||
|
||||
/**
|
||||
* Same as `tsl::bhopscotch_set<Key, Hash, KeyEqual, Compare, Allocator, NeighborhoodSize, StoreHash, tsl::hh::prime_growth_policy>`.
|
||||
*/
|
||||
template<class Key,
|
||||
class Hash = std::hash<Key>,
|
||||
class KeyEqual = std::equal_to<Key>,
|
||||
class Compare = std::less<Key>,
|
||||
class Allocator = std::allocator<Key>,
|
||||
unsigned int NeighborhoodSize = 62,
|
||||
bool StoreHash = false>
|
||||
using bhopscotch_pg_set = bhopscotch_set<Key, Hash, KeyEqual, Compare, Allocator, NeighborhoodSize, StoreHash, tsl::hh::prime_growth_policy>;
|
||||
|
||||
} // end namespace tsl
|
||||
|
||||
#endif
|
295
src/includes/3thparty/tsl/hopscotch_growth_policy.h
Normal file
295
src/includes/3thparty/tsl/hopscotch_growth_policy.h
Normal file
@@ -0,0 +1,295 @@
|
||||
/**
|
||||
* MIT License
|
||||
*
|
||||
* Copyright (c) 2018 Tessil
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
* of this software and associated documentation files (the "Software"), to deal
|
||||
* in the Software without restriction, including without limitation the rights
|
||||
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
* copies of the Software, and to permit persons to whom the Software is
|
||||
* furnished to do so, subject to the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice shall be included in all
|
||||
* copies or substantial portions of the Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
* SOFTWARE.
|
||||
*/
|
||||
#ifndef TSL_HOPSCOTCH_GROWTH_POLICY_H
|
||||
#define TSL_HOPSCOTCH_GROWTH_POLICY_H
|
||||
|
||||
|
||||
#include <algorithm>
|
||||
#include <array>
|
||||
#include <climits>
|
||||
#include <cmath>
|
||||
#include <cstddef>
|
||||
#include <iterator>
|
||||
#include <limits>
|
||||
#include <ratio>
|
||||
#include <stdexcept>
|
||||
|
||||
|
||||
namespace tsl {
|
||||
namespace hh {
|
||||
|
||||
/**
|
||||
* Grow the hash table by a factor of GrowthFactor keeping the bucket count to a power of two. It allows
|
||||
* the table to use a mask operation instead of a modulo operation to map a hash to a bucket.
|
||||
*
|
||||
* GrowthFactor must be a power of two >= 2.
|
||||
*/
|
||||
template<std::size_t GrowthFactor>
|
||||
class power_of_two_growth_policy {
|
||||
public:
|
||||
/**
|
||||
* Called on the hash table creation and on rehash. The number of buckets for the table is passed in parameter.
|
||||
* This number is a minimum, the policy may update this value with a higher value if needed (but not lower).
|
||||
*
|
||||
* If 0 is given, min_bucket_count_in_out must still be 0 after the policy creation and
|
||||
* bucket_for_hash must always return 0 in this case.
|
||||
*/
|
||||
explicit power_of_two_growth_policy(std::size_t& min_bucket_count_in_out) {
|
||||
if(min_bucket_count_in_out > max_bucket_count()) {
|
||||
throw std::length_error("The hash table exceeds its maxmimum size.");
|
||||
}
|
||||
|
||||
if(min_bucket_count_in_out > 0) {
|
||||
min_bucket_count_in_out = round_up_to_power_of_two(min_bucket_count_in_out);
|
||||
m_mask = min_bucket_count_in_out - 1;
|
||||
}
|
||||
else {
|
||||
m_mask = 0;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Return the bucket [0, bucket_count()) to which the hash belongs.
|
||||
* If bucket_count() is 0, it must always return 0.
|
||||
*/
|
||||
std::size_t bucket_for_hash(std::size_t hash) const noexcept {
|
||||
return hash & m_mask;
|
||||
}
|
||||
|
||||
/**
|
||||
* Return the bucket count to use when the bucket array grows on rehash.
|
||||
*/
|
||||
std::size_t next_bucket_count() const {
|
||||
if((m_mask + 1) > max_bucket_count() / GrowthFactor) {
|
||||
throw std::length_error("The hash table exceeds its maxmimum size.");
|
||||
}
|
||||
|
||||
return (m_mask + 1) * GrowthFactor;
|
||||
}
|
||||
|
||||
/**
|
||||
* Return the maximum number of buckets supported by the policy.
|
||||
*/
|
||||
std::size_t max_bucket_count() const {
|
||||
// Largest power of two.
|
||||
return (std::numeric_limits<std::size_t>::max() / 2) + 1;
|
||||
}
|
||||
|
||||
/**
|
||||
* Reset the growth policy as if it was created with a bucket count of 0.
|
||||
* After a clear, the policy must always return 0 when bucket_for_hash is called.
|
||||
*/
|
||||
void clear() noexcept {
|
||||
m_mask = 0;
|
||||
}
|
||||
|
||||
private:
|
||||
static std::size_t round_up_to_power_of_two(std::size_t value) {
|
||||
if(is_power_of_two(value)) {
|
||||
return value;
|
||||
}
|
||||
|
||||
if(value == 0) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
--value;
|
||||
for(std::size_t i = 1; i < sizeof(std::size_t) * CHAR_BIT; i *= 2) {
|
||||
value |= value >> i;
|
||||
}
|
||||
|
||||
return value + 1;
|
||||
}
|
||||
|
||||
static constexpr bool is_power_of_two(std::size_t value) {
|
||||
return value != 0 && (value & (value - 1)) == 0;
|
||||
}
|
||||
|
||||
private:
|
||||
static_assert(is_power_of_two(GrowthFactor) && GrowthFactor >= 2, "GrowthFactor must be a power of two >= 2.");
|
||||
|
||||
std::size_t m_mask;
|
||||
};
|
||||
|
||||
|
||||
/**
|
||||
* Grow the hash table by GrowthFactor::num / GrowthFactor::den and use a modulo to map a hash
|
||||
* to a bucket. Slower but it can be useful if you want a slower growth.
|
||||
*/
|
||||
template<class GrowthFactor = std::ratio<3, 2>>
|
||||
class mod_growth_policy {
|
||||
public:
|
||||
explicit mod_growth_policy(std::size_t& min_bucket_count_in_out) {
|
||||
if(min_bucket_count_in_out > max_bucket_count()) {
|
||||
throw std::length_error("The hash table exceeds its maxmimum size.");
|
||||
}
|
||||
|
||||
if(min_bucket_count_in_out > 0) {
|
||||
m_mod = min_bucket_count_in_out;
|
||||
}
|
||||
else {
|
||||
m_mod = 1;
|
||||
}
|
||||
}
|
||||
|
||||
std::size_t bucket_for_hash(std::size_t hash) const noexcept {
|
||||
return hash % m_mod;
|
||||
}
|
||||
|
||||
std::size_t next_bucket_count() const {
|
||||
if(m_mod == max_bucket_count()) {
|
||||
throw std::length_error("The hash table exceeds its maxmimum size.");
|
||||
}
|
||||
|
||||
const double next_bucket_count = std::ceil(double(m_mod) * REHASH_SIZE_MULTIPLICATION_FACTOR);
|
||||
if(!std::isnormal(next_bucket_count)) {
|
||||
throw std::length_error("The hash table exceeds its maxmimum size.");
|
||||
}
|
||||
|
||||
if(next_bucket_count > double(max_bucket_count())) {
|
||||
return max_bucket_count();
|
||||
}
|
||||
else {
|
||||
return std::size_t(next_bucket_count);
|
||||
}
|
||||
}
|
||||
|
||||
std::size_t max_bucket_count() const {
|
||||
return MAX_BUCKET_COUNT;
|
||||
}
|
||||
|
||||
void clear() noexcept {
|
||||
m_mod = 1;
|
||||
}
|
||||
|
||||
private:
|
||||
static constexpr double REHASH_SIZE_MULTIPLICATION_FACTOR = 1.0 * GrowthFactor::num / GrowthFactor::den;
|
||||
static const std::size_t MAX_BUCKET_COUNT =
|
||||
std::size_t(double(
|
||||
std::numeric_limits<std::size_t>::max() / REHASH_SIZE_MULTIPLICATION_FACTOR
|
||||
));
|
||||
|
||||
static_assert(REHASH_SIZE_MULTIPLICATION_FACTOR >= 1.1, "Growth factor should be >= 1.1.");
|
||||
|
||||
std::size_t m_mod;
|
||||
};
|
||||
|
||||
|
||||
|
||||
namespace detail {
|
||||
|
||||
static constexpr const std::array<std::size_t, 40> PRIMES = {{
|
||||
1ul, 5ul, 17ul, 29ul, 37ul, 53ul, 67ul, 79ul, 97ul, 131ul, 193ul, 257ul, 389ul, 521ul, 769ul, 1031ul,
|
||||
1543ul, 2053ul, 3079ul, 6151ul, 12289ul, 24593ul, 49157ul, 98317ul, 196613ul, 393241ul, 786433ul,
|
||||
1572869ul, 3145739ul, 6291469ul, 12582917ul, 25165843ul, 50331653ul, 100663319ul, 201326611ul,
|
||||
402653189ul, 805306457ul, 1610612741ul, 3221225473ul, 4294967291ul
|
||||
}};
|
||||
|
||||
template<unsigned int IPrime>
|
||||
static constexpr std::size_t mod(std::size_t hash) { return hash % PRIMES[IPrime]; }
|
||||
|
||||
// MOD_PRIME[iprime](hash) returns hash % PRIMES[iprime]. This table allows for faster modulo as the
|
||||
// compiler can optimize the modulo code better with a constant known at the compilation.
|
||||
static constexpr const std::array<std::size_t(*)(std::size_t), 40> MOD_PRIME = {{
|
||||
&mod<0>, &mod<1>, &mod<2>, &mod<3>, &mod<4>, &mod<5>, &mod<6>, &mod<7>, &mod<8>, &mod<9>, &mod<10>,
|
||||
&mod<11>, &mod<12>, &mod<13>, &mod<14>, &mod<15>, &mod<16>, &mod<17>, &mod<18>, &mod<19>, &mod<20>,
|
||||
&mod<21>, &mod<22>, &mod<23>, &mod<24>, &mod<25>, &mod<26>, &mod<27>, &mod<28>, &mod<29>, &mod<30>,
|
||||
&mod<31>, &mod<32>, &mod<33>, &mod<34>, &mod<35>, &mod<36>, &mod<37> , &mod<38>, &mod<39>
|
||||
}};
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* Grow the hash table by using prime numbers as bucket count. Slower than tsl::hh::power_of_two_growth_policy in
|
||||
* general but will probably distribute the values around better in the buckets with a poor hash function.
|
||||
*
|
||||
* To allow the compiler to optimize the modulo operation, a lookup table is used with constant primes numbers.
|
||||
*
|
||||
* With a switch the code would look like:
|
||||
* \code
|
||||
* switch(iprime) { // iprime is the current prime of the hash table
|
||||
* case 0: hash % 5ul;
|
||||
* break;
|
||||
* case 1: hash % 17ul;
|
||||
* break;
|
||||
* case 2: hash % 29ul;
|
||||
* break;
|
||||
* ...
|
||||
* }
|
||||
* \endcode
|
||||
*
|
||||
* Due to the constant variable in the modulo the compiler is able to optimize the operation
|
||||
* by a series of multiplications, substractions and shifts.
|
||||
*
|
||||
* The 'hash % 5' could become something like 'hash - (hash * 0xCCCCCCCD) >> 34) * 5' in a 64 bits environement.
|
||||
*/
|
||||
class prime_growth_policy {
|
||||
public:
|
||||
explicit prime_growth_policy(std::size_t& min_bucket_count_in_out) {
|
||||
auto it_prime = std::lower_bound(detail::PRIMES.begin(),
|
||||
detail::PRIMES.end(), min_bucket_count_in_out);
|
||||
if(it_prime == detail::PRIMES.end()) {
|
||||
throw std::length_error("The hash table exceeds its maxmimum size.");
|
||||
}
|
||||
|
||||
m_iprime = static_cast<unsigned int>(std::distance(detail::PRIMES.begin(), it_prime));
|
||||
if(min_bucket_count_in_out > 0) {
|
||||
min_bucket_count_in_out = *it_prime;
|
||||
}
|
||||
else {
|
||||
min_bucket_count_in_out = 0;
|
||||
}
|
||||
}
|
||||
|
||||
std::size_t bucket_for_hash(std::size_t hash) const noexcept {
|
||||
return detail::MOD_PRIME[m_iprime](hash);
|
||||
}
|
||||
|
||||
std::size_t next_bucket_count() const {
|
||||
if(m_iprime + 1 >= detail::PRIMES.size()) {
|
||||
throw std::length_error("The hash table exceeds its maxmimum size.");
|
||||
}
|
||||
|
||||
return detail::PRIMES[m_iprime + 1];
|
||||
}
|
||||
|
||||
std::size_t max_bucket_count() const {
|
||||
return detail::PRIMES.back();
|
||||
}
|
||||
|
||||
void clear() noexcept {
|
||||
m_iprime = 0;
|
||||
}
|
||||
|
||||
private:
|
||||
unsigned int m_iprime;
|
||||
|
||||
static_assert(std::numeric_limits<decltype(m_iprime)>::max() >= detail::PRIMES.size(),
|
||||
"The type of m_iprime is not big enough.");
|
||||
};
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
1822
src/includes/3thparty/tsl/hopscotch_hash.h
Normal file
1822
src/includes/3thparty/tsl/hopscotch_hash.h
Normal file
File diff suppressed because it is too large
Load Diff
710
src/includes/3thparty/tsl/hopscotch_map.h
Normal file
710
src/includes/3thparty/tsl/hopscotch_map.h
Normal file
@@ -0,0 +1,710 @@
|
||||
/**
|
||||
* MIT License
|
||||
*
|
||||
* Copyright (c) 2017 Tessil
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
* of this software and associated documentation files (the "Software"), to deal
|
||||
* in the Software without restriction, including without limitation the rights
|
||||
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
* copies of the Software, and to permit persons to whom the Software is
|
||||
* furnished to do so, subject to the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice shall be included in all
|
||||
* copies or substantial portions of the Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
* SOFTWARE.
|
||||
*/
|
||||
#ifndef TSL_HOPSCOTCH_MAP_H
|
||||
#define TSL_HOPSCOTCH_MAP_H
|
||||
|
||||
|
||||
#include <algorithm>
|
||||
#include <cstddef>
|
||||
#include <functional>
|
||||
#include <initializer_list>
|
||||
#include <list>
|
||||
#include <memory>
|
||||
#include <type_traits>
|
||||
#include <utility>
|
||||
#include "hopscotch_hash.h"
|
||||
|
||||
|
||||
namespace tsl {
|
||||
|
||||
/**
|
||||
* Implementation of a hash map using the hopscotch hashing algorithm.
|
||||
*
|
||||
* The Key and the value T must be either nothrow move-constructible, copy-constuctible or both.
|
||||
*
|
||||
* The size of the neighborhood (NeighborhoodSize) must be > 0 and <= 62 if StoreHash is false.
|
||||
* When StoreHash is true, 32-bits of the hash will be stored alongside the neighborhood limiting
|
||||
* the NeighborhoodSize to <= 30. There is no memory usage difference between
|
||||
* 'NeighborhoodSize 62; StoreHash false' and 'NeighborhoodSize 30; StoreHash true'.
|
||||
*
|
||||
* Storing the hash may improve performance on insert during the rehash process if the hash takes time
|
||||
* to compute. It may also improve read performance if the KeyEqual function takes time (or incurs a cache-miss).
|
||||
* If used with simple Hash and KeyEqual it may slow things down.
|
||||
*
|
||||
* StoreHash can only be set if the GrowthPolicy is set to tsl::power_of_two_growth_policy.
|
||||
*
|
||||
* GrowthPolicy defines how the map grows and consequently how a hash value is mapped to a bucket.
|
||||
* By default the map uses tsl::power_of_two_growth_policy. This policy keeps the number of buckets
|
||||
* to a power of two and uses a mask to map the hash to a bucket instead of the slow modulo.
|
||||
* You may define your own growth policy, check tsl::power_of_two_growth_policy for the interface.
|
||||
*
|
||||
* If the destructors of Key or T throw an exception, behaviour of the class is undefined.
|
||||
*
|
||||
* Iterators invalidation:
|
||||
* - clear, operator=, reserve, rehash: always invalidate the iterators.
|
||||
* - insert, emplace, emplace_hint, operator[]: if there is an effective insert, invalidate the iterators
|
||||
* if a displacement is needed to resolve a collision (which mean that most of the time,
|
||||
* insert will invalidate the iterators). Or if there is a rehash.
|
||||
* - erase: iterator on the erased element is the only one which become invalid.
|
||||
*/
|
||||
template<class Key,
|
||||
class T,
|
||||
class Hash = std::hash<Key>,
|
||||
class KeyEqual = std::equal_to<Key>,
|
||||
class Allocator = std::allocator<std::pair<Key, T>>,
|
||||
unsigned int NeighborhoodSize = 62,
|
||||
bool StoreHash = false,
|
||||
class GrowthPolicy = tsl::hh::power_of_two_growth_policy<2>>
|
||||
class hopscotch_map {
|
||||
private:
|
||||
template<typename U>
|
||||
using has_is_transparent = tsl::detail_hopscotch_hash::has_is_transparent<U>;
|
||||
|
||||
class KeySelect {
|
||||
public:
|
||||
using key_type = Key;
|
||||
|
||||
const key_type& operator()(const std::pair<Key, T>& key_value) const {
|
||||
return key_value.first;
|
||||
}
|
||||
|
||||
key_type& operator()(std::pair<Key, T>& key_value) {
|
||||
return key_value.first;
|
||||
}
|
||||
};
|
||||
|
||||
class ValueSelect {
|
||||
public:
|
||||
using value_type = T;
|
||||
|
||||
const value_type& operator()(const std::pair<Key, T>& key_value) const {
|
||||
return key_value.second;
|
||||
}
|
||||
|
||||
value_type& operator()(std::pair<Key, T>& key_value) {
|
||||
return key_value.second;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
using overflow_container_type = std::list<std::pair<Key, T>, Allocator>;
|
||||
using ht = detail_hopscotch_hash::hopscotch_hash<std::pair<Key, T>, KeySelect, ValueSelect,
|
||||
Hash, KeyEqual,
|
||||
Allocator, NeighborhoodSize,
|
||||
StoreHash, GrowthPolicy,
|
||||
overflow_container_type>;
|
||||
|
||||
public:
|
||||
using key_type = typename ht::key_type;
|
||||
using mapped_type = T;
|
||||
using value_type = typename ht::value_type;
|
||||
using size_type = typename ht::size_type;
|
||||
using difference_type = typename ht::difference_type;
|
||||
using hasher = typename ht::hasher;
|
||||
using key_equal = typename ht::key_equal;
|
||||
using allocator_type = typename ht::allocator_type;
|
||||
using reference = typename ht::reference;
|
||||
using const_reference = typename ht::const_reference;
|
||||
using pointer = typename ht::pointer;
|
||||
using const_pointer = typename ht::const_pointer;
|
||||
using iterator = typename ht::iterator;
|
||||
using const_iterator = typename ht::const_iterator;
|
||||
|
||||
|
||||
|
||||
/*
|
||||
* Constructors
|
||||
*/
|
||||
hopscotch_map() : hopscotch_map(ht::DEFAULT_INIT_BUCKETS_SIZE) {
|
||||
}
|
||||
|
||||
explicit hopscotch_map(size_type bucket_count,
|
||||
const Hash& hash = Hash(),
|
||||
const KeyEqual& equal = KeyEqual(),
|
||||
const Allocator& alloc = Allocator()) :
|
||||
m_ht(bucket_count, hash, equal, alloc, ht::DEFAULT_MAX_LOAD_FACTOR)
|
||||
{
|
||||
}
|
||||
|
||||
hopscotch_map(size_type bucket_count,
|
||||
const Allocator& alloc) : hopscotch_map(bucket_count, Hash(), KeyEqual(), alloc)
|
||||
{
|
||||
}
|
||||
|
||||
hopscotch_map(size_type bucket_count,
|
||||
const Hash& hash,
|
||||
const Allocator& alloc) : hopscotch_map(bucket_count, hash, KeyEqual(), alloc)
|
||||
{
|
||||
}
|
||||
|
||||
explicit hopscotch_map(const Allocator& alloc) : hopscotch_map(ht::DEFAULT_INIT_BUCKETS_SIZE, alloc) {
|
||||
}
|
||||
|
||||
template<class InputIt>
|
||||
hopscotch_map(InputIt first, InputIt last,
|
||||
size_type bucket_count = ht::DEFAULT_INIT_BUCKETS_SIZE,
|
||||
const Hash& hash = Hash(),
|
||||
const KeyEqual& equal = KeyEqual(),
|
||||
const Allocator& alloc = Allocator()) : hopscotch_map(bucket_count, hash, equal, alloc)
|
||||
{
|
||||
insert(first, last);
|
||||
}
|
||||
|
||||
template<class InputIt>
|
||||
hopscotch_map(InputIt first, InputIt last,
|
||||
size_type bucket_count,
|
||||
const Allocator& alloc) : hopscotch_map(first, last, bucket_count, Hash(), KeyEqual(), alloc)
|
||||
{
|
||||
}
|
||||
|
||||
template<class InputIt>
|
||||
hopscotch_map(InputIt first, InputIt last,
|
||||
size_type bucket_count,
|
||||
const Hash& hash,
|
||||
const Allocator& alloc) : hopscotch_map(first, last, bucket_count, hash, KeyEqual(), alloc)
|
||||
{
|
||||
}
|
||||
|
||||
hopscotch_map(std::initializer_list<value_type> init,
|
||||
size_type bucket_count = ht::DEFAULT_INIT_BUCKETS_SIZE,
|
||||
const Hash& hash = Hash(),
|
||||
const KeyEqual& equal = KeyEqual(),
|
||||
const Allocator& alloc = Allocator()) :
|
||||
hopscotch_map(init.begin(), init.end(), bucket_count, hash, equal, alloc)
|
||||
{
|
||||
}
|
||||
|
||||
hopscotch_map(std::initializer_list<value_type> init,
|
||||
size_type bucket_count,
|
||||
const Allocator& alloc) :
|
||||
hopscotch_map(init.begin(), init.end(), bucket_count, Hash(), KeyEqual(), alloc)
|
||||
{
|
||||
}
|
||||
|
||||
hopscotch_map(std::initializer_list<value_type> init,
|
||||
size_type bucket_count,
|
||||
const Hash& hash,
|
||||
const Allocator& alloc) :
|
||||
hopscotch_map(init.begin(), init.end(), bucket_count, hash, KeyEqual(), alloc)
|
||||
{
|
||||
}
|
||||
|
||||
|
||||
hopscotch_map& operator=(std::initializer_list<value_type> ilist) {
|
||||
m_ht.clear();
|
||||
|
||||
m_ht.reserve(ilist.size());
|
||||
m_ht.insert(ilist.begin(), ilist.end());
|
||||
|
||||
return *this;
|
||||
}
|
||||
|
||||
allocator_type get_allocator() const { return m_ht.get_allocator(); }
|
||||
|
||||
|
||||
/*
|
||||
* Iterators
|
||||
*/
|
||||
iterator begin() noexcept { return m_ht.begin(); }
|
||||
const_iterator begin() const noexcept { return m_ht.begin(); }
|
||||
const_iterator cbegin() const noexcept { return m_ht.cbegin(); }
|
||||
|
||||
iterator end() noexcept { return m_ht.end(); }
|
||||
const_iterator end() const noexcept { return m_ht.end(); }
|
||||
const_iterator cend() const noexcept { return m_ht.cend(); }
|
||||
|
||||
|
||||
/*
|
||||
* Capacity
|
||||
*/
|
||||
bool empty() const noexcept { return m_ht.empty(); }
|
||||
size_type size() const noexcept { return m_ht.size(); }
|
||||
size_type max_size() const noexcept { return m_ht.max_size(); }
|
||||
|
||||
/*
|
||||
* Modifiers
|
||||
*/
|
||||
void clear() noexcept { m_ht.clear(); }
|
||||
|
||||
|
||||
|
||||
|
||||
std::pair<iterator, bool> insert(const value_type& value) {
|
||||
return m_ht.insert(value);
|
||||
}
|
||||
|
||||
template<class P, typename std::enable_if<std::is_constructible<value_type, P&&>::value>::type* = nullptr>
|
||||
std::pair<iterator, bool> insert(P&& value) {
|
||||
return m_ht.insert(std::forward<P>(value));
|
||||
}
|
||||
|
||||
std::pair<iterator, bool> insert(value_type&& value) {
|
||||
return m_ht.insert(std::move(value));
|
||||
}
|
||||
|
||||
|
||||
iterator insert(const_iterator hint, const value_type& value) {
|
||||
return m_ht.insert(hint, value);
|
||||
}
|
||||
|
||||
template<class P, typename std::enable_if<std::is_constructible<value_type, P&&>::value>::type* = nullptr>
|
||||
iterator insert(const_iterator hint, P&& value) {
|
||||
return m_ht.insert(hint, std::forward<P>(value));
|
||||
}
|
||||
|
||||
iterator insert(const_iterator hint, value_type&& value) {
|
||||
return m_ht.insert(hint, std::move(value));
|
||||
}
|
||||
|
||||
|
||||
template<class InputIt>
|
||||
void insert(InputIt first, InputIt last) {
|
||||
m_ht.insert(first, last);
|
||||
}
|
||||
|
||||
void insert(std::initializer_list<value_type> ilist) {
|
||||
m_ht.insert(ilist.begin(), ilist.end());
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
template<class M>
|
||||
std::pair<iterator, bool> insert_or_assign(const key_type& k, M&& obj) {
|
||||
return m_ht.insert_or_assign(k, std::forward<M>(obj));
|
||||
}
|
||||
|
||||
template<class M>
|
||||
std::pair<iterator, bool> insert_or_assign(key_type&& k, M&& obj) {
|
||||
return m_ht.insert_or_assign(std::move(k), std::forward<M>(obj));
|
||||
}
|
||||
|
||||
template<class M>
|
||||
iterator insert_or_assign(const_iterator hint, const key_type& k, M&& obj) {
|
||||
return m_ht.insert_or_assign(hint, k, std::forward<M>(obj));
|
||||
}
|
||||
|
||||
template<class M>
|
||||
iterator insert_or_assign(const_iterator hint, key_type&& k, M&& obj) {
|
||||
return m_ht.insert_or_assign(hint, std::move(k), std::forward<M>(obj));
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Due to the way elements are stored, emplace will need to move or copy the key-value once.
|
||||
* The method is equivalent to insert(value_type(std::forward<Args>(args)...));
|
||||
*
|
||||
* Mainly here for compatibility with the std::unordered_map interface.
|
||||
*/
|
||||
template<class... Args>
|
||||
std::pair<iterator, bool> emplace(Args&&... args) {
|
||||
return m_ht.emplace(std::forward<Args>(args)...);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Due to the way elements are stored, emplace_hint will need to move or copy the key-value once.
|
||||
* The method is equivalent to insert(hint, value_type(std::forward<Args>(args)...));
|
||||
*
|
||||
* Mainly here for compatibility with the std::unordered_map interface.
|
||||
*/
|
||||
template<class... Args>
|
||||
iterator emplace_hint(const_iterator hint, Args&&... args) {
|
||||
return m_ht.emplace_hint(hint, std::forward<Args>(args)...);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
template<class... Args>
|
||||
std::pair<iterator, bool> try_emplace(const key_type& k, Args&&... args) {
|
||||
return m_ht.try_emplace(k, std::forward<Args>(args)...);
|
||||
}
|
||||
|
||||
template<class... Args>
|
||||
std::pair<iterator, bool> try_emplace(key_type&& k, Args&&... args) {
|
||||
return m_ht.try_emplace(std::move(k), std::forward<Args>(args)...);
|
||||
}
|
||||
|
||||
template<class... Args>
|
||||
iterator try_emplace(const_iterator hint, const key_type& k, Args&&... args) {
|
||||
return m_ht.try_emplace(hint, k, std::forward<Args>(args)...);
|
||||
}
|
||||
|
||||
template<class... Args>
|
||||
iterator try_emplace(const_iterator hint, key_type&& k, Args&&... args) {
|
||||
return m_ht.try_emplace(hint, std::move(k), std::forward<Args>(args)...);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
iterator erase(iterator pos) { return m_ht.erase(pos); }
|
||||
iterator erase(const_iterator pos) { return m_ht.erase(pos); }
|
||||
iterator erase(const_iterator first, const_iterator last) { return m_ht.erase(first, last); }
|
||||
size_type erase(const key_type& key) { return m_ht.erase(key); }
|
||||
|
||||
/**
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup to the value if you already have the hash.
|
||||
*/
|
||||
size_type erase(const key_type& key, std::size_t precalculated_hash) {
|
||||
return m_ht.erase(key, precalculated_hash);
|
||||
}
|
||||
|
||||
/**
|
||||
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
|
||||
* If so, K must be hashable and comparable to Key.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
size_type erase(const K& key) { return m_ht.erase(key); }
|
||||
|
||||
/**
|
||||
* @copydoc erase(const K& key)
|
||||
*
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup to the value if you already have the hash.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
size_type erase(const K& key, std::size_t precalculated_hash) {
|
||||
return m_ht.erase(key, precalculated_hash);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
void swap(hopscotch_map& other) { other.m_ht.swap(m_ht); }
|
||||
|
||||
/*
|
||||
* Lookup
|
||||
*/
|
||||
T& at(const Key& key) { return m_ht.at(key); }
|
||||
|
||||
/**
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
|
||||
*/
|
||||
T& at(const Key& key, std::size_t precalculated_hash) { return m_ht.at(key, precalculated_hash); }
|
||||
|
||||
|
||||
const T& at(const Key& key) const { return m_ht.at(key); }
|
||||
|
||||
/**
|
||||
* @copydoc at(const Key& key, std::size_t precalculated_hash)
|
||||
*/
|
||||
const T& at(const Key& key, std::size_t precalculated_hash) const { return m_ht.at(key, precalculated_hash); }
|
||||
|
||||
|
||||
/**
|
||||
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
|
||||
* If so, K must be hashable and comparable to Key.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
T& at(const K& key) { return m_ht.at(key); }
|
||||
|
||||
/**
|
||||
* @copydoc at(const K& key)
|
||||
*
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
T& at(const K& key, std::size_t precalculated_hash) { return m_ht.at(key, precalculated_hash); }
|
||||
|
||||
|
||||
/**
|
||||
* @copydoc at(const K& key)
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
const T& at(const K& key) const { return m_ht.at(key); }
|
||||
|
||||
/**
|
||||
* @copydoc at(const K& key, std::size_t precalculated_hash)
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
const T& at(const K& key, std::size_t precalculated_hash) const { return m_ht.at(key, precalculated_hash); }
|
||||
|
||||
|
||||
|
||||
|
||||
T& operator[](const Key& key) { return m_ht[key]; }
|
||||
T& operator[](Key&& key) { return m_ht[std::move(key)]; }
|
||||
|
||||
|
||||
|
||||
|
||||
size_type count(const Key& key) const { return m_ht.count(key); }
|
||||
|
||||
/**
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
|
||||
*/
|
||||
size_type count(const Key& key, std::size_t precalculated_hash) const {
|
||||
return m_ht.count(key, precalculated_hash);
|
||||
}
|
||||
|
||||
/**
|
||||
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
|
||||
* If so, K must be hashable and comparable to Key.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
size_type count(const K& key) const { return m_ht.count(key); }
|
||||
|
||||
/**
|
||||
* @copydoc count(const K& key) const
|
||||
*
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
size_type count(const K& key, std::size_t precalculated_hash) const { return m_ht.count(key, precalculated_hash); }
|
||||
|
||||
|
||||
|
||||
|
||||
iterator find(const Key& key) { return m_ht.find(key); }
|
||||
|
||||
/**
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
|
||||
*/
|
||||
iterator find(const Key& key, std::size_t precalculated_hash) { return m_ht.find(key, precalculated_hash); }
|
||||
|
||||
const_iterator find(const Key& key) const { return m_ht.find(key); }
|
||||
|
||||
/**
|
||||
* @copydoc find(const Key& key, std::size_t precalculated_hash)
|
||||
*/
|
||||
const_iterator find(const Key& key, std::size_t precalculated_hash) const {
|
||||
return m_ht.find(key, precalculated_hash);
|
||||
}
|
||||
|
||||
/**
|
||||
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
|
||||
* If so, K must be hashable and comparable to Key.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
iterator find(const K& key) { return m_ht.find(key); }
|
||||
|
||||
/**
|
||||
* @copydoc find(const K& key)
|
||||
*
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
iterator find(const K& key, std::size_t precalculated_hash) { return m_ht.find(key, precalculated_hash); }
|
||||
|
||||
/**
|
||||
* @copydoc find(const K& key)
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
const_iterator find(const K& key) const { return m_ht.find(key); }
|
||||
|
||||
/**
|
||||
* @copydoc find(const K& key)
|
||||
*
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
const_iterator find(const K& key, std::size_t precalculated_hash) const {
|
||||
return m_ht.find(key, precalculated_hash);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
bool contains(const Key& key) const { return m_ht.contains(key); }
|
||||
|
||||
/**
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
|
||||
*/
|
||||
bool contains(const Key& key, std::size_t precalculated_hash) const {
|
||||
return m_ht.contains(key, precalculated_hash);
|
||||
}
|
||||
|
||||
/**
|
||||
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
|
||||
* If so, K must be hashable and comparable to Key.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
bool contains(const K& key) const { return m_ht.contains(key); }
|
||||
|
||||
/**
|
||||
* @copydoc contains(const K& key) const
|
||||
*
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
bool contains(const K& key, std::size_t precalculated_hash) const {
|
||||
return m_ht.contains(key, precalculated_hash);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
std::pair<iterator, iterator> equal_range(const Key& key) { return m_ht.equal_range(key); }
|
||||
|
||||
/**
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
|
||||
*/
|
||||
std::pair<iterator, iterator> equal_range(const Key& key, std::size_t precalculated_hash) {
|
||||
return m_ht.equal_range(key, precalculated_hash);
|
||||
}
|
||||
|
||||
std::pair<const_iterator, const_iterator> equal_range(const Key& key) const { return m_ht.equal_range(key); }
|
||||
|
||||
/**
|
||||
* @copydoc equal_range(const Key& key, std::size_t precalculated_hash)
|
||||
*/
|
||||
std::pair<const_iterator, const_iterator> equal_range(const Key& key, std::size_t precalculated_hash) const {
|
||||
return m_ht.equal_range(key, precalculated_hash);
|
||||
}
|
||||
|
||||
/**
|
||||
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
|
||||
* If so, K must be hashable and comparable to Key.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
std::pair<iterator, iterator> equal_range(const K& key) { return m_ht.equal_range(key); }
|
||||
|
||||
|
||||
/**
|
||||
* @copydoc equal_range(const K& key)
|
||||
*
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
std::pair<iterator, iterator> equal_range(const K& key, std::size_t precalculated_hash) {
|
||||
return m_ht.equal_range(key, precalculated_hash);
|
||||
}
|
||||
|
||||
/**
|
||||
* @copydoc equal_range(const K& key)
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
std::pair<const_iterator, const_iterator> equal_range(const K& key) const { return m_ht.equal_range(key); }
|
||||
|
||||
/**
|
||||
* @copydoc equal_range(const K& key, std::size_t precalculated_hash)
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
std::pair<const_iterator, const_iterator> equal_range(const K& key, std::size_t precalculated_hash) const {
|
||||
return m_ht.equal_range(key, precalculated_hash);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
/*
|
||||
* Bucket interface
|
||||
*/
|
||||
size_type bucket_count() const { return m_ht.bucket_count(); }
|
||||
size_type max_bucket_count() const { return m_ht.max_bucket_count(); }
|
||||
|
||||
|
||||
/*
|
||||
* Hash policy
|
||||
*/
|
||||
float load_factor() const { return m_ht.load_factor(); }
|
||||
float max_load_factor() const { return m_ht.max_load_factor(); }
|
||||
void max_load_factor(float ml) { m_ht.max_load_factor(ml); }
|
||||
|
||||
void rehash(size_type count_) { m_ht.rehash(count_); }
|
||||
void reserve(size_type count_) { m_ht.reserve(count_); }
|
||||
|
||||
|
||||
/*
|
||||
* Observers
|
||||
*/
|
||||
hasher hash_function() const { return m_ht.hash_function(); }
|
||||
key_equal key_eq() const { return m_ht.key_eq(); }
|
||||
|
||||
/*
|
||||
* Other
|
||||
*/
|
||||
|
||||
/**
|
||||
* Convert a const_iterator to an iterator.
|
||||
*/
|
||||
iterator mutable_iterator(const_iterator pos) {
|
||||
return m_ht.mutable_iterator(pos);
|
||||
}
|
||||
|
||||
size_type overflow_size() const noexcept { return m_ht.overflow_size(); }
|
||||
|
||||
friend bool operator==(const hopscotch_map& lhs, const hopscotch_map& rhs) {
|
||||
if(lhs.size() != rhs.size()) {
|
||||
return false;
|
||||
}
|
||||
|
||||
for(const auto& element_lhs : lhs) {
|
||||
const auto it_element_rhs = rhs.find(element_lhs.first);
|
||||
if(it_element_rhs == rhs.cend() || element_lhs.second != it_element_rhs->second) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
friend bool operator!=(const hopscotch_map& lhs, const hopscotch_map& rhs) {
|
||||
return !operator==(lhs, rhs);
|
||||
}
|
||||
|
||||
friend void swap(hopscotch_map& lhs, hopscotch_map& rhs) {
|
||||
lhs.swap(rhs);
|
||||
}
|
||||
|
||||
|
||||
|
||||
private:
|
||||
ht m_ht;
|
||||
};
|
||||
|
||||
|
||||
/**
|
||||
* Same as `tsl::hopscotch_map<Key, T, Hash, KeyEqual, Allocator, NeighborhoodSize, StoreHash, tsl::hh::prime_growth_policy>`.
|
||||
*/
|
||||
template<class Key,
|
||||
class T,
|
||||
class Hash = std::hash<Key>,
|
||||
class KeyEqual = std::equal_to<Key>,
|
||||
class Allocator = std::allocator<std::pair<Key, T>>,
|
||||
unsigned int NeighborhoodSize = 62,
|
||||
bool StoreHash = false>
|
||||
using hopscotch_pg_map = hopscotch_map<Key, T, Hash, KeyEqual, Allocator, NeighborhoodSize, StoreHash, tsl::hh::prime_growth_policy>;
|
||||
|
||||
} // end namespace tsl
|
||||
|
||||
#endif
|
556
src/includes/3thparty/tsl/hopscotch_set.h
Normal file
556
src/includes/3thparty/tsl/hopscotch_set.h
Normal file
@@ -0,0 +1,556 @@
|
||||
/**
|
||||
* MIT License
|
||||
*
|
||||
* Copyright (c) 2017 Tessil
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
* of this software and associated documentation files (the "Software"), to deal
|
||||
* in the Software without restriction, including without limitation the rights
|
||||
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
* copies of the Software, and to permit persons to whom the Software is
|
||||
* furnished to do so, subject to the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice shall be included in all
|
||||
* copies or substantial portions of the Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
* SOFTWARE.
|
||||
*/
|
||||
#ifndef TSL_HOPSCOTCH_SET_H
|
||||
#define TSL_HOPSCOTCH_SET_H
|
||||
|
||||
|
||||
#include <algorithm>
|
||||
#include <cstddef>
|
||||
#include <functional>
|
||||
#include <initializer_list>
|
||||
#include <list>
|
||||
#include <memory>
|
||||
#include <type_traits>
|
||||
#include <utility>
|
||||
#include "hopscotch_hash.h"
|
||||
|
||||
|
||||
namespace tsl {
|
||||
|
||||
/**
|
||||
* Implementation of a hash set using the hopscotch hashing algorithm.
|
||||
*
|
||||
* The Key must be either nothrow move-constructible, copy-constuctible or both.
|
||||
*
|
||||
* The size of the neighborhood (NeighborhoodSize) must be > 0 and <= 62 if StoreHash is false.
|
||||
* When StoreHash is true, 32-bits of the hash will be stored alongside the neighborhood limiting
|
||||
* the NeighborhoodSize to <= 30. There is no memory usage difference between
|
||||
* 'NeighborhoodSize 62; StoreHash false' and 'NeighborhoodSize 30; StoreHash true'.
|
||||
*
|
||||
* Storing the hash may improve performance on insert during the rehash process if the hash takes time
|
||||
* to compute. It may also improve read performance if the KeyEqual function takes time (or incurs a cache-miss).
|
||||
* If used with simple Hash and KeyEqual it may slow things down.
|
||||
*
|
||||
* StoreHash can only be set if the GrowthPolicy is set to tsl::power_of_two_growth_policy.
|
||||
*
|
||||
* GrowthPolicy defines how the set grows and consequently how a hash value is mapped to a bucket.
|
||||
* By default the set uses tsl::power_of_two_growth_policy. This policy keeps the number of buckets
|
||||
* to a power of two and uses a mask to set the hash to a bucket instead of the slow modulo.
|
||||
* You may define your own growth policy, check tsl::power_of_two_growth_policy for the interface.
|
||||
*
|
||||
* If the destructor of Key throws an exception, behaviour of the class is undefined.
|
||||
*
|
||||
* Iterators invalidation:
|
||||
* - clear, operator=, reserve, rehash: always invalidate the iterators.
|
||||
* - insert, emplace, emplace_hint, operator[]: if there is an effective insert, invalidate the iterators
|
||||
* if a displacement is needed to resolve a collision (which mean that most of the time,
|
||||
* insert will invalidate the iterators). Or if there is a rehash.
|
||||
* - erase: iterator on the erased element is the only one which become invalid.
|
||||
*/
|
||||
template<class Key,
|
||||
class Hash = std::hash<Key>,
|
||||
class KeyEqual = std::equal_to<Key>,
|
||||
class Allocator = std::allocator<Key>,
|
||||
unsigned int NeighborhoodSize = 62,
|
||||
bool StoreHash = false,
|
||||
class GrowthPolicy = tsl::hh::power_of_two_growth_policy<2>>
|
||||
class hopscotch_set {
|
||||
private:
|
||||
template<typename U>
|
||||
using has_is_transparent = tsl::detail_hopscotch_hash::has_is_transparent<U>;
|
||||
|
||||
class KeySelect {
|
||||
public:
|
||||
using key_type = Key;
|
||||
|
||||
const key_type& operator()(const Key& key) const {
|
||||
return key;
|
||||
}
|
||||
|
||||
key_type& operator()(Key& key) {
|
||||
return key;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
using overflow_container_type = std::list<Key, Allocator>;
|
||||
using ht = detail_hopscotch_hash::hopscotch_hash<Key, KeySelect, void,
|
||||
Hash, KeyEqual,
|
||||
Allocator, NeighborhoodSize,
|
||||
StoreHash, GrowthPolicy,
|
||||
overflow_container_type>;
|
||||
|
||||
public:
|
||||
using key_type = typename ht::key_type;
|
||||
using value_type = typename ht::value_type;
|
||||
using size_type = typename ht::size_type;
|
||||
using difference_type = typename ht::difference_type;
|
||||
using hasher = typename ht::hasher;
|
||||
using key_equal = typename ht::key_equal;
|
||||
using allocator_type = typename ht::allocator_type;
|
||||
using reference = typename ht::reference;
|
||||
using const_reference = typename ht::const_reference;
|
||||
using pointer = typename ht::pointer;
|
||||
using const_pointer = typename ht::const_pointer;
|
||||
using iterator = typename ht::iterator;
|
||||
using const_iterator = typename ht::const_iterator;
|
||||
|
||||
|
||||
/*
|
||||
* Constructors
|
||||
*/
|
||||
hopscotch_set() : hopscotch_set(ht::DEFAULT_INIT_BUCKETS_SIZE) {
|
||||
}
|
||||
|
||||
explicit hopscotch_set(size_type bucket_count,
|
||||
const Hash& hash = Hash(),
|
||||
const KeyEqual& equal = KeyEqual(),
|
||||
const Allocator& alloc = Allocator()) :
|
||||
m_ht(bucket_count, hash, equal, alloc, ht::DEFAULT_MAX_LOAD_FACTOR)
|
||||
{
|
||||
}
|
||||
|
||||
hopscotch_set(size_type bucket_count,
|
||||
const Allocator& alloc) : hopscotch_set(bucket_count, Hash(), KeyEqual(), alloc)
|
||||
{
|
||||
}
|
||||
|
||||
hopscotch_set(size_type bucket_count,
|
||||
const Hash& hash,
|
||||
const Allocator& alloc) : hopscotch_set(bucket_count, hash, KeyEqual(), alloc)
|
||||
{
|
||||
}
|
||||
|
||||
explicit hopscotch_set(const Allocator& alloc) : hopscotch_set(ht::DEFAULT_INIT_BUCKETS_SIZE, alloc) {
|
||||
}
|
||||
|
||||
template<class InputIt>
|
||||
hopscotch_set(InputIt first, InputIt last,
|
||||
size_type bucket_count = ht::DEFAULT_INIT_BUCKETS_SIZE,
|
||||
const Hash& hash = Hash(),
|
||||
const KeyEqual& equal = KeyEqual(),
|
||||
const Allocator& alloc = Allocator()) : hopscotch_set(bucket_count, hash, equal, alloc)
|
||||
{
|
||||
insert(first, last);
|
||||
}
|
||||
|
||||
template<class InputIt>
|
||||
hopscotch_set(InputIt first, InputIt last,
|
||||
size_type bucket_count,
|
||||
const Allocator& alloc) : hopscotch_set(first, last, bucket_count, Hash(), KeyEqual(), alloc)
|
||||
{
|
||||
}
|
||||
|
||||
template<class InputIt>
|
||||
hopscotch_set(InputIt first, InputIt last,
|
||||
size_type bucket_count,
|
||||
const Hash& hash,
|
||||
const Allocator& alloc) : hopscotch_set(first, last, bucket_count, hash, KeyEqual(), alloc)
|
||||
{
|
||||
}
|
||||
|
||||
hopscotch_set(std::initializer_list<value_type> init,
|
||||
size_type bucket_count = ht::DEFAULT_INIT_BUCKETS_SIZE,
|
||||
const Hash& hash = Hash(),
|
||||
const KeyEqual& equal = KeyEqual(),
|
||||
const Allocator& alloc = Allocator()) :
|
||||
hopscotch_set(init.begin(), init.end(), bucket_count, hash, equal, alloc)
|
||||
{
|
||||
}
|
||||
|
||||
hopscotch_set(std::initializer_list<value_type> init,
|
||||
size_type bucket_count,
|
||||
const Allocator& alloc) :
|
||||
hopscotch_set(init.begin(), init.end(), bucket_count, Hash(), KeyEqual(), alloc)
|
||||
{
|
||||
}
|
||||
|
||||
hopscotch_set(std::initializer_list<value_type> init,
|
||||
size_type bucket_count,
|
||||
const Hash& hash,
|
||||
const Allocator& alloc) :
|
||||
hopscotch_set(init.begin(), init.end(), bucket_count, hash, KeyEqual(), alloc)
|
||||
{
|
||||
}
|
||||
|
||||
|
||||
hopscotch_set& operator=(std::initializer_list<value_type> ilist) {
|
||||
m_ht.clear();
|
||||
|
||||
m_ht.reserve(ilist.size());
|
||||
m_ht.insert(ilist.begin(), ilist.end());
|
||||
|
||||
return *this;
|
||||
}
|
||||
|
||||
allocator_type get_allocator() const { return m_ht.get_allocator(); }
|
||||
|
||||
|
||||
/*
|
||||
* Iterators
|
||||
*/
|
||||
iterator begin() noexcept { return m_ht.begin(); }
|
||||
const_iterator begin() const noexcept { return m_ht.begin(); }
|
||||
const_iterator cbegin() const noexcept { return m_ht.cbegin(); }
|
||||
|
||||
iterator end() noexcept { return m_ht.end(); }
|
||||
const_iterator end() const noexcept { return m_ht.end(); }
|
||||
const_iterator cend() const noexcept { return m_ht.cend(); }
|
||||
|
||||
|
||||
/*
|
||||
* Capacity
|
||||
*/
|
||||
bool empty() const noexcept { return m_ht.empty(); }
|
||||
size_type size() const noexcept { return m_ht.size(); }
|
||||
size_type max_size() const noexcept { return m_ht.max_size(); }
|
||||
|
||||
/*
|
||||
* Modifiers
|
||||
*/
|
||||
void clear() noexcept { m_ht.clear(); }
|
||||
|
||||
|
||||
|
||||
|
||||
std::pair<iterator, bool> insert(const value_type& value) { return m_ht.insert(value); }
|
||||
std::pair<iterator, bool> insert(value_type&& value) { return m_ht.insert(std::move(value)); }
|
||||
|
||||
iterator insert(const_iterator hint, const value_type& value) { return m_ht.insert(hint, value); }
|
||||
iterator insert(const_iterator hint, value_type&& value) { return m_ht.insert(hint, std::move(value)); }
|
||||
|
||||
template<class InputIt>
|
||||
void insert(InputIt first, InputIt last) { m_ht.insert(first, last); }
|
||||
void insert(std::initializer_list<value_type> ilist) { m_ht.insert(ilist.begin(), ilist.end()); }
|
||||
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Due to the way elements are stored, emplace will need to move or copy the key-value once.
|
||||
* The method is equivalent to insert(value_type(std::forward<Args>(args)...));
|
||||
*
|
||||
* Mainly here for compatibility with the std::unordered_map interface.
|
||||
*/
|
||||
template<class... Args>
|
||||
std::pair<iterator, bool> emplace(Args&&... args) { return m_ht.emplace(std::forward<Args>(args)...); }
|
||||
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Due to the way elements are stored, emplace_hint will need to move or copy the key-value once.
|
||||
* The method is equivalent to insert(hint, value_type(std::forward<Args>(args)...));
|
||||
*
|
||||
* Mainly here for compatibility with the std::unordered_map interface.
|
||||
*/
|
||||
template<class... Args>
|
||||
iterator emplace_hint(const_iterator hint, Args&&... args) {
|
||||
return m_ht.emplace_hint(hint, std::forward<Args>(args)...);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
iterator erase(iterator pos) { return m_ht.erase(pos); }
|
||||
iterator erase(const_iterator pos) { return m_ht.erase(pos); }
|
||||
iterator erase(const_iterator first, const_iterator last) { return m_ht.erase(first, last); }
|
||||
size_type erase(const key_type& key) { return m_ht.erase(key); }
|
||||
|
||||
/**
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup to the value if you already have the hash.
|
||||
*/
|
||||
size_type erase(const key_type& key, std::size_t precalculated_hash) {
|
||||
return m_ht.erase(key, precalculated_hash);
|
||||
}
|
||||
|
||||
/**
|
||||
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
|
||||
* If so, K must be hashable and comparable to Key.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
size_type erase(const K& key) { return m_ht.erase(key); }
|
||||
|
||||
/**
|
||||
* @copydoc erase(const K& key)
|
||||
*
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup to the value if you already have the hash.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
size_type erase(const K& key, std::size_t precalculated_hash) {
|
||||
return m_ht.erase(key, precalculated_hash);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
void swap(hopscotch_set& other) { other.m_ht.swap(m_ht); }
|
||||
|
||||
|
||||
/*
|
||||
* Lookup
|
||||
*/
|
||||
size_type count(const Key& key) const { return m_ht.count(key); }
|
||||
|
||||
/**
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
|
||||
*/
|
||||
size_type count(const Key& key, std::size_t precalculated_hash) const { return m_ht.count(key, precalculated_hash); }
|
||||
|
||||
/**
|
||||
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
|
||||
* If so, K must be hashable and comparable to Key.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
size_type count(const K& key) const { return m_ht.count(key); }
|
||||
|
||||
/**
|
||||
* @copydoc count(const K& key) const
|
||||
*
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
size_type count(const K& key, std::size_t precalculated_hash) const { return m_ht.count(key, precalculated_hash); }
|
||||
|
||||
|
||||
|
||||
|
||||
iterator find(const Key& key) { return m_ht.find(key); }
|
||||
|
||||
/**
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
|
||||
*/
|
||||
iterator find(const Key& key, std::size_t precalculated_hash) { return m_ht.find(key, precalculated_hash); }
|
||||
|
||||
const_iterator find(const Key& key) const { return m_ht.find(key); }
|
||||
|
||||
/**
|
||||
* @copydoc find(const Key& key, std::size_t precalculated_hash)
|
||||
*/
|
||||
const_iterator find(const Key& key, std::size_t precalculated_hash) const { return m_ht.find(key, precalculated_hash); }
|
||||
|
||||
/**
|
||||
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
|
||||
* If so, K must be hashable and comparable to Key.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
iterator find(const K& key) { return m_ht.find(key); }
|
||||
|
||||
/**
|
||||
* @copydoc find(const K& key)
|
||||
*
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
iterator find(const K& key, std::size_t precalculated_hash) { return m_ht.find(key, precalculated_hash); }
|
||||
|
||||
/**
|
||||
* @copydoc find(const K& key)
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
const_iterator find(const K& key) const { return m_ht.find(key); }
|
||||
|
||||
/**
|
||||
* @copydoc find(const K& key)
|
||||
*
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
const_iterator find(const K& key, std::size_t precalculated_hash) const { return m_ht.find(key, precalculated_hash); }
|
||||
|
||||
|
||||
|
||||
|
||||
bool contains(const Key& key) const { return m_ht.contains(key); }
|
||||
|
||||
/**
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
|
||||
*/
|
||||
bool contains(const Key& key, std::size_t precalculated_hash) const {
|
||||
return m_ht.contains(key, precalculated_hash);
|
||||
}
|
||||
|
||||
/**
|
||||
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
|
||||
* If so, K must be hashable and comparable to Key.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
bool contains(const K& key) const { return m_ht.contains(key); }
|
||||
|
||||
/**
|
||||
* @copydoc contains(const K& key) const
|
||||
*
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
bool contains(const K& key, std::size_t precalculated_hash) const {
|
||||
return m_ht.contains(key, precalculated_hash);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
std::pair<iterator, iterator> equal_range(const Key& key) { return m_ht.equal_range(key); }
|
||||
|
||||
/**
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
|
||||
*/
|
||||
std::pair<iterator, iterator> equal_range(const Key& key, std::size_t precalculated_hash) {
|
||||
return m_ht.equal_range(key, precalculated_hash);
|
||||
}
|
||||
|
||||
std::pair<const_iterator, const_iterator> equal_range(const Key& key) const { return m_ht.equal_range(key); }
|
||||
|
||||
/**
|
||||
* @copydoc equal_range(const Key& key, std::size_t precalculated_hash)
|
||||
*/
|
||||
std::pair<const_iterator, const_iterator> equal_range(const Key& key, std::size_t precalculated_hash) const {
|
||||
return m_ht.equal_range(key, precalculated_hash);
|
||||
}
|
||||
|
||||
/**
|
||||
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
|
||||
* If so, K must be hashable and comparable to Key.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
std::pair<iterator, iterator> equal_range(const K& key) { return m_ht.equal_range(key); }
|
||||
|
||||
/**
|
||||
* @copydoc equal_range(const K& key)
|
||||
*
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
std::pair<iterator, iterator> equal_range(const K& key, std::size_t precalculated_hash) {
|
||||
return m_ht.equal_range(key, precalculated_hash);
|
||||
}
|
||||
|
||||
/**
|
||||
* @copydoc equal_range(const K& key)
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
std::pair<const_iterator, const_iterator> equal_range(const K& key) const { return m_ht.equal_range(key); }
|
||||
|
||||
/**
|
||||
* @copydoc equal_range(const K& key, std::size_t precalculated_hash)
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
std::pair<const_iterator, const_iterator> equal_range(const K& key, std::size_t precalculated_hash) const {
|
||||
return m_ht.equal_range(key, precalculated_hash);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
/*
|
||||
* Bucket interface
|
||||
*/
|
||||
size_type bucket_count() const { return m_ht.bucket_count(); }
|
||||
size_type max_bucket_count() const { return m_ht.max_bucket_count(); }
|
||||
|
||||
|
||||
/*
|
||||
* Hash policy
|
||||
*/
|
||||
float load_factor() const { return m_ht.load_factor(); }
|
||||
float max_load_factor() const { return m_ht.max_load_factor(); }
|
||||
void max_load_factor(float ml) { m_ht.max_load_factor(ml); }
|
||||
|
||||
void rehash(size_type count_) { m_ht.rehash(count_); }
|
||||
void reserve(size_type count_) { m_ht.reserve(count_); }
|
||||
|
||||
|
||||
/*
|
||||
* Observers
|
||||
*/
|
||||
hasher hash_function() const { return m_ht.hash_function(); }
|
||||
key_equal key_eq() const { return m_ht.key_eq(); }
|
||||
|
||||
|
||||
/*
|
||||
* Other
|
||||
*/
|
||||
|
||||
/**
|
||||
* Convert a const_iterator to an iterator.
|
||||
*/
|
||||
iterator mutable_iterator(const_iterator pos) {
|
||||
return m_ht.mutable_iterator(pos);
|
||||
}
|
||||
|
||||
size_type overflow_size() const noexcept { return m_ht.overflow_size(); }
|
||||
|
||||
friend bool operator==(const hopscotch_set& lhs, const hopscotch_set& rhs) {
|
||||
if(lhs.size() != rhs.size()) {
|
||||
return false;
|
||||
}
|
||||
|
||||
for(const auto& element_lhs : lhs) {
|
||||
const auto it_element_rhs = rhs.find(element_lhs);
|
||||
if(it_element_rhs == rhs.cend()) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
friend bool operator!=(const hopscotch_set& lhs, const hopscotch_set& rhs) {
|
||||
return !operator==(lhs, rhs);
|
||||
}
|
||||
|
||||
friend void swap(hopscotch_set& lhs, hopscotch_set& rhs) {
|
||||
lhs.swap(rhs);
|
||||
}
|
||||
|
||||
private:
|
||||
ht m_ht;
|
||||
};
|
||||
|
||||
|
||||
/**
|
||||
* Same as `tsl::hopscotch_set<Key, Hash, KeyEqual, Allocator, NeighborhoodSize, StoreHash, tsl::hh::prime_growth_policy>`.
|
||||
*/
|
||||
template<class Key,
|
||||
class Hash = std::hash<Key>,
|
||||
class KeyEqual = std::equal_to<Key>,
|
||||
class Allocator = std::allocator<Key>,
|
||||
unsigned int NeighborhoodSize = 62,
|
||||
bool StoreHash = false>
|
||||
using hopscotch_pg_set = hopscotch_set<Key, Hash, KeyEqual, Allocator, NeighborhoodSize, StoreHash, tsl::hh::prime_growth_policy>;
|
||||
|
||||
} // end namespace tsl
|
||||
|
||||
#endif
|
1614
src/includes/3thparty/tsl/ordered_hash.h
Normal file
1614
src/includes/3thparty/tsl/ordered_hash.h
Normal file
File diff suppressed because it is too large
Load Diff
833
src/includes/3thparty/tsl/ordered_map.h
Normal file
833
src/includes/3thparty/tsl/ordered_map.h
Normal file
@@ -0,0 +1,833 @@
|
||||
/**
|
||||
* MIT License
|
||||
*
|
||||
* Copyright (c) 2017 Tessil
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
* of this software and associated documentation files (the "Software"), to deal
|
||||
* in the Software without restriction, including without limitation the rights
|
||||
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
* copies of the Software, and to permit persons to whom the Software is
|
||||
* furnished to do so, subject to the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice shall be included in all
|
||||
* copies or substantial portions of the Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
* SOFTWARE.
|
||||
*/
|
||||
#ifndef TSL_ORDERED_MAP_H
|
||||
#define TSL_ORDERED_MAP_H
|
||||
|
||||
|
||||
#include <cstddef>
|
||||
#include <cstdint>
|
||||
#include <deque>
|
||||
#include <functional>
|
||||
#include <initializer_list>
|
||||
#include <memory>
|
||||
#include <type_traits>
|
||||
#include <utility>
|
||||
#include <vector>
|
||||
#include "ordered_hash.h"
|
||||
|
||||
|
||||
namespace tsl {
|
||||
|
||||
|
||||
/**
|
||||
* Implementation of an hash map using open adressing with robin hood with backshift delete to resolve collisions.
|
||||
*
|
||||
* The particularity of this hash map is that it remembers the order in which the elements were added and
|
||||
* provide a way to access the structure which stores these values through the 'values_container()' method.
|
||||
* The used container is defined by ValueTypeContainer, by default a std::deque is used (grows faster) but
|
||||
* a std::vector may be used. In this case the map provides a 'data()' method which give a direct access
|
||||
* to the memory used to store the values (which can be usefull to communicate with C API's).
|
||||
*
|
||||
* The Key and T must be copy constructible and/or move constructible. To use `unordered_erase` they both
|
||||
* must be swappable.
|
||||
*
|
||||
* The behaviour of the hash map is undefinded if the destructor of Key or T throws an exception.
|
||||
*
|
||||
* By default the maximum size of a map is limited to 2^32 - 1 values, if needed this can be changed through
|
||||
* the IndexType template parameter. Using an `uint64_t` will raise this limit to 2^64 - 1 values but each
|
||||
* bucket will use 16 bytes instead of 8 bytes in addition to the space needed to store the values.
|
||||
*
|
||||
* Iterators invalidation:
|
||||
* - clear, operator=, reserve, rehash: always invalidate the iterators (also invalidate end()).
|
||||
* - insert, emplace, emplace_hint, operator[]: when a std::vector is used as ValueTypeContainer
|
||||
* and if size() < capacity(), only end().
|
||||
* Otherwise all the iterators are invalidated if an insert occurs.
|
||||
* - erase, unordered_erase: when a std::vector is used as ValueTypeContainer invalidate the iterator of
|
||||
* the erased element and all the ones after the erased element (including end()).
|
||||
* Otherwise all the iterators are invalidated if an erase occurs.
|
||||
*/
|
||||
template<class Key,
|
||||
class T,
|
||||
class Hash = std::hash<Key>,
|
||||
class KeyEqual = std::equal_to<Key>,
|
||||
class Allocator = std::allocator<std::pair<Key, T>>,
|
||||
class ValueTypeContainer = std::deque<std::pair<Key, T>, Allocator>,
|
||||
class IndexType = std::uint_least32_t>
|
||||
class ordered_map {
|
||||
private:
|
||||
template<typename U>
|
||||
using has_is_transparent = tsl::detail_ordered_hash::has_is_transparent<U>;
|
||||
|
||||
class KeySelect {
|
||||
public:
|
||||
using key_type = Key;
|
||||
|
||||
const key_type& operator()(const std::pair<Key, T>& key_value) const noexcept {
|
||||
return key_value.first;
|
||||
}
|
||||
|
||||
key_type& operator()(std::pair<Key, T>& key_value) noexcept {
|
||||
return key_value.first;
|
||||
}
|
||||
};
|
||||
|
||||
class ValueSelect {
|
||||
public:
|
||||
using value_type = T;
|
||||
|
||||
const value_type& operator()(const std::pair<Key, T>& key_value) const noexcept {
|
||||
return key_value.second;
|
||||
}
|
||||
|
||||
value_type& operator()(std::pair<Key, T>& key_value) noexcept {
|
||||
return key_value.second;
|
||||
}
|
||||
};
|
||||
|
||||
using ht = detail_ordered_hash::ordered_hash<std::pair<Key, T>, KeySelect, ValueSelect,
|
||||
Hash, KeyEqual, Allocator, ValueTypeContainer, IndexType>;
|
||||
|
||||
public:
|
||||
using key_type = typename ht::key_type;
|
||||
using mapped_type = T;
|
||||
using value_type = typename ht::value_type;
|
||||
using size_type = typename ht::size_type;
|
||||
using difference_type = typename ht::difference_type;
|
||||
using hasher = typename ht::hasher;
|
||||
using key_equal = typename ht::key_equal;
|
||||
using allocator_type = typename ht::allocator_type;
|
||||
using reference = typename ht::reference;
|
||||
using const_reference = typename ht::const_reference;
|
||||
using pointer = typename ht::pointer;
|
||||
using const_pointer = typename ht::const_pointer;
|
||||
using iterator = typename ht::iterator;
|
||||
using const_iterator = typename ht::const_iterator;
|
||||
using reverse_iterator = typename ht::reverse_iterator;
|
||||
using const_reverse_iterator = typename ht::const_reverse_iterator;
|
||||
|
||||
using values_container_type = typename ht::values_container_type;
|
||||
|
||||
|
||||
/*
|
||||
* Constructors
|
||||
*/
|
||||
ordered_map(): ordered_map(ht::DEFAULT_INIT_BUCKETS_SIZE) {
|
||||
}
|
||||
|
||||
explicit ordered_map(size_type bucket_count,
|
||||
const Hash& hash = Hash(),
|
||||
const KeyEqual& equal = KeyEqual(),
|
||||
const Allocator& alloc = Allocator()):
|
||||
m_ht(bucket_count, hash, equal, alloc, ht::DEFAULT_MAX_LOAD_FACTOR)
|
||||
{
|
||||
}
|
||||
|
||||
ordered_map(size_type bucket_count,
|
||||
const Allocator& alloc): ordered_map(bucket_count, Hash(), KeyEqual(), alloc)
|
||||
{
|
||||
}
|
||||
|
||||
ordered_map(size_type bucket_count,
|
||||
const Hash& hash,
|
||||
const Allocator& alloc): ordered_map(bucket_count, hash, KeyEqual(), alloc)
|
||||
{
|
||||
}
|
||||
|
||||
explicit ordered_map(const Allocator& alloc): ordered_map(ht::DEFAULT_INIT_BUCKETS_SIZE, alloc) {
|
||||
}
|
||||
|
||||
template<class InputIt>
|
||||
ordered_map(InputIt first, InputIt last,
|
||||
size_type bucket_count = ht::DEFAULT_INIT_BUCKETS_SIZE,
|
||||
const Hash& hash = Hash(),
|
||||
const KeyEqual& equal = KeyEqual(),
|
||||
const Allocator& alloc = Allocator()): ordered_map(bucket_count, hash, equal, alloc)
|
||||
{
|
||||
insert(first, last);
|
||||
}
|
||||
|
||||
template<class InputIt>
|
||||
ordered_map(InputIt first, InputIt last,
|
||||
size_type bucket_count,
|
||||
const Allocator& alloc): ordered_map(first, last, bucket_count, Hash(), KeyEqual(), alloc)
|
||||
{
|
||||
}
|
||||
|
||||
template<class InputIt>
|
||||
ordered_map(InputIt first, InputIt last,
|
||||
size_type bucket_count,
|
||||
const Hash& hash,
|
||||
const Allocator& alloc): ordered_map(first, last, bucket_count, hash, KeyEqual(), alloc)
|
||||
{
|
||||
}
|
||||
|
||||
ordered_map(std::initializer_list<value_type> init,
|
||||
size_type bucket_count = ht::DEFAULT_INIT_BUCKETS_SIZE,
|
||||
const Hash& hash = Hash(),
|
||||
const KeyEqual& equal = KeyEqual(),
|
||||
const Allocator& alloc = Allocator()):
|
||||
ordered_map(init.begin(), init.end(), bucket_count, hash, equal, alloc)
|
||||
{
|
||||
}
|
||||
|
||||
ordered_map(std::initializer_list<value_type> init,
|
||||
size_type bucket_count,
|
||||
const Allocator& alloc):
|
||||
ordered_map(init.begin(), init.end(), bucket_count, Hash(), KeyEqual(), alloc)
|
||||
{
|
||||
}
|
||||
|
||||
ordered_map(std::initializer_list<value_type> init,
|
||||
size_type bucket_count,
|
||||
const Hash& hash,
|
||||
const Allocator& alloc):
|
||||
ordered_map(init.begin(), init.end(), bucket_count, hash, KeyEqual(), alloc)
|
||||
{
|
||||
}
|
||||
|
||||
|
||||
ordered_map& operator=(std::initializer_list<value_type> ilist) {
|
||||
m_ht.clear();
|
||||
|
||||
m_ht.reserve(ilist.size());
|
||||
m_ht.insert(ilist.begin(), ilist.end());
|
||||
|
||||
return *this;
|
||||
}
|
||||
|
||||
allocator_type get_allocator() const { return m_ht.get_allocator(); }
|
||||
|
||||
|
||||
|
||||
/*
|
||||
* Iterators
|
||||
*/
|
||||
iterator begin() noexcept { return m_ht.begin(); }
|
||||
const_iterator begin() const noexcept { return m_ht.begin(); }
|
||||
const_iterator cbegin() const noexcept { return m_ht.cbegin(); }
|
||||
|
||||
iterator end() noexcept { return m_ht.end(); }
|
||||
const_iterator end() const noexcept { return m_ht.end(); }
|
||||
const_iterator cend() const noexcept { return m_ht.cend(); }
|
||||
|
||||
reverse_iterator rbegin() noexcept { return m_ht.rbegin(); }
|
||||
const_reverse_iterator rbegin() const noexcept { return m_ht.rbegin(); }
|
||||
const_reverse_iterator rcbegin() const noexcept { return m_ht.rcbegin(); }
|
||||
|
||||
reverse_iterator rend() noexcept { return m_ht.rend(); }
|
||||
const_reverse_iterator rend() const noexcept { return m_ht.rend(); }
|
||||
const_reverse_iterator rcend() const noexcept { return m_ht.rcend(); }
|
||||
|
||||
|
||||
/*
|
||||
* Capacity
|
||||
*/
|
||||
bool empty() const noexcept { return m_ht.empty(); }
|
||||
size_type size() const noexcept { return m_ht.size(); }
|
||||
size_type max_size() const noexcept { return m_ht.max_size(); }
|
||||
|
||||
/*
|
||||
* Modifiers
|
||||
*/
|
||||
void clear() noexcept { m_ht.clear(); }
|
||||
|
||||
|
||||
|
||||
std::pair<iterator, bool> insert(const value_type& value) { return m_ht.insert(value); }
|
||||
|
||||
template<class P, typename std::enable_if<std::is_constructible<value_type, P&&>::value>::type* = nullptr>
|
||||
std::pair<iterator, bool> insert(P&& value) { return m_ht.emplace(std::forward<P>(value)); }
|
||||
|
||||
std::pair<iterator, bool> insert(value_type&& value) { return m_ht.insert(std::move(value)); }
|
||||
|
||||
|
||||
iterator insert(const_iterator hint, const value_type& value) {
|
||||
return m_ht.insert_hint(hint, value);
|
||||
}
|
||||
|
||||
template<class P, typename std::enable_if<std::is_constructible<value_type, P&&>::value>::type* = nullptr>
|
||||
iterator insert(const_iterator hint, P&& value) {
|
||||
return m_ht.emplace_hint(hint, std::forward<P>(value));
|
||||
}
|
||||
|
||||
iterator insert(const_iterator hint, value_type&& value) {
|
||||
return m_ht.insert_hint(hint, std::move(value));
|
||||
}
|
||||
|
||||
|
||||
template<class InputIt>
|
||||
void insert(InputIt first, InputIt last) { m_ht.insert(first, last); }
|
||||
void insert(std::initializer_list<value_type> ilist) { m_ht.insert(ilist.begin(), ilist.end()); }
|
||||
|
||||
|
||||
|
||||
|
||||
template<class M>
|
||||
std::pair<iterator, bool> insert_or_assign(const key_type& k, M&& obj) {
|
||||
return m_ht.insert_or_assign(k, std::forward<M>(obj));
|
||||
}
|
||||
|
||||
template<class M>
|
||||
std::pair<iterator, bool> insert_or_assign(key_type&& k, M&& obj) {
|
||||
return m_ht.insert_or_assign(std::move(k), std::forward<M>(obj));
|
||||
}
|
||||
|
||||
|
||||
template<class M>
|
||||
iterator insert_or_assign(const_iterator hint, const key_type& k, M&& obj) {
|
||||
return m_ht.insert_or_assign(hint, k, std::forward<M>(obj));
|
||||
}
|
||||
|
||||
template<class M>
|
||||
iterator insert_or_assign(const_iterator hint, key_type&& k, M&& obj) {
|
||||
return m_ht.insert_or_assign(hint, std::move(k), std::forward<M>(obj));
|
||||
}
|
||||
|
||||
/**
|
||||
* Due to the way elements are stored, emplace will need to move or copy the key-value once.
|
||||
* The method is equivalent to insert(value_type(std::forward<Args>(args)...));
|
||||
*
|
||||
* Mainly here for compatibility with the std::unordered_map interface.
|
||||
*/
|
||||
template<class... Args>
|
||||
std::pair<iterator, bool> emplace(Args&&... args) { return m_ht.emplace(std::forward<Args>(args)...); }
|
||||
|
||||
/**
|
||||
* Due to the way elements are stored, emplace_hint will need to move or copy the key-value once.
|
||||
* The method is equivalent to insert(hint, value_type(std::forward<Args>(args)...));
|
||||
*
|
||||
* Mainly here for compatibility with the std::unordered_map interface.
|
||||
*/
|
||||
template <class... Args>
|
||||
iterator emplace_hint(const_iterator hint, Args&&... args) {
|
||||
return m_ht.emplace_hint(hint, std::forward<Args>(args)...);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
template<class... Args>
|
||||
std::pair<iterator, bool> try_emplace(const key_type& k, Args&&... args) {
|
||||
return m_ht.try_emplace(k, std::forward<Args>(args)...);
|
||||
}
|
||||
|
||||
template<class... Args>
|
||||
std::pair<iterator, bool> try_emplace(key_type&& k, Args&&... args) {
|
||||
return m_ht.try_emplace(std::move(k), std::forward<Args>(args)...);
|
||||
}
|
||||
|
||||
template<class... Args>
|
||||
iterator try_emplace(const_iterator hint, const key_type& k, Args&&... args) {
|
||||
return m_ht.try_emplace_hint(hint, k, std::forward<Args>(args)...);
|
||||
}
|
||||
|
||||
template<class... Args>
|
||||
iterator try_emplace(const_iterator hint, key_type&& k, Args&&... args) {
|
||||
return m_ht.try_emplace_hint(hint, std::move(k), std::forward<Args>(args)...);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* When erasing an element, the insert order will be preserved and no holes will be present in the container
|
||||
* returned by 'values_container()'.
|
||||
*
|
||||
* The method is in O(n), if the order is not important 'unordered_erase(...)' method is faster with an O(1)
|
||||
* average complexity.
|
||||
*/
|
||||
iterator erase(iterator pos) { return m_ht.erase(pos); }
|
||||
|
||||
/**
|
||||
* @copydoc erase(iterator pos)
|
||||
*/
|
||||
iterator erase(const_iterator pos) { return m_ht.erase(pos); }
|
||||
|
||||
/**
|
||||
* @copydoc erase(iterator pos)
|
||||
*/
|
||||
iterator erase(const_iterator first, const_iterator last) { return m_ht.erase(first, last); }
|
||||
|
||||
/**
|
||||
* @copydoc erase(iterator pos)
|
||||
*/
|
||||
size_type erase(const key_type& key) { return m_ht.erase(key); }
|
||||
|
||||
/**
|
||||
* @copydoc erase(iterator pos)
|
||||
*
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup to the value if you already have the hash.
|
||||
*/
|
||||
size_type erase(const key_type& key, std::size_t precalculated_hash) {
|
||||
return m_ht.erase(key, precalculated_hash);
|
||||
}
|
||||
|
||||
/**
|
||||
* @copydoc erase(iterator pos)
|
||||
*
|
||||
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
|
||||
* If so, K must be hashable and comparable to Key.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
size_type erase(const K& key) { return m_ht.erase(key); }
|
||||
|
||||
/**
|
||||
* @copydoc erase(const key_type& key, std::size_t precalculated_hash)
|
||||
*
|
||||
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
|
||||
* If so, K must be hashable and comparable to Key.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
size_type erase(const K& key, std::size_t precalculated_hash) {
|
||||
return m_ht.erase(key, precalculated_hash);
|
||||
}
|
||||
|
||||
|
||||
|
||||
void swap(ordered_map& other) { other.m_ht.swap(m_ht); }
|
||||
|
||||
/*
|
||||
* Lookup
|
||||
*/
|
||||
T& at(const Key& key) { return m_ht.at(key); }
|
||||
|
||||
/**
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
|
||||
*/
|
||||
T& at(const Key& key, std::size_t precalculated_hash) { return m_ht.at(key, precalculated_hash); }
|
||||
|
||||
|
||||
const T& at(const Key& key) const { return m_ht.at(key); }
|
||||
|
||||
/**
|
||||
* @copydoc at(const Key& key, std::size_t precalculated_hash)
|
||||
*/
|
||||
const T& at(const Key& key, std::size_t precalculated_hash) const { return m_ht.at(key, precalculated_hash); }
|
||||
|
||||
|
||||
/**
|
||||
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
|
||||
* If so, K must be hashable and comparable to Key.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
T& at(const K& key) { return m_ht.at(key); }
|
||||
|
||||
/**
|
||||
* @copydoc at(const K& key)
|
||||
*
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
T& at(const K& key, std::size_t precalculated_hash) { return m_ht.at(key, precalculated_hash); }
|
||||
|
||||
/**
|
||||
* @copydoc at(const K& key)
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
const T& at(const K& key) const { return m_ht.at(key); }
|
||||
|
||||
/**
|
||||
* @copydoc at(const K& key, std::size_t precalculated_hash)
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
const T& at(const K& key, std::size_t precalculated_hash) const { return m_ht.at(key, precalculated_hash); }
|
||||
|
||||
|
||||
|
||||
T& operator[](const Key& key) { return m_ht[key]; }
|
||||
T& operator[](Key&& key) { return m_ht[std::move(key)]; }
|
||||
|
||||
|
||||
|
||||
size_type count(const Key& key) const { return m_ht.count(key); }
|
||||
|
||||
/**
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
|
||||
*/
|
||||
size_type count(const Key& key, std::size_t precalculated_hash) const {
|
||||
return m_ht.count(key, precalculated_hash);
|
||||
}
|
||||
|
||||
/**
|
||||
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
|
||||
* If so, K must be hashable and comparable to Key.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
size_type count(const K& key) const { return m_ht.count(key); }
|
||||
|
||||
/**
|
||||
* @copydoc count(const K& key) const
|
||||
*
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
size_type count(const K& key, std::size_t precalculated_hash) const {
|
||||
return m_ht.count(key, precalculated_hash);
|
||||
}
|
||||
|
||||
|
||||
|
||||
iterator find(const Key& key) { return m_ht.find(key); }
|
||||
|
||||
/**
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
|
||||
*/
|
||||
iterator find(const Key& key, std::size_t precalculated_hash) { return m_ht.find(key, precalculated_hash); }
|
||||
|
||||
const_iterator find(const Key& key) const { return m_ht.find(key); }
|
||||
|
||||
/**
|
||||
* @copydoc find(const Key& key, std::size_t precalculated_hash)
|
||||
*/
|
||||
const_iterator find(const Key& key, std::size_t precalculated_hash) const {
|
||||
return m_ht.find(key, precalculated_hash);
|
||||
}
|
||||
|
||||
/**
|
||||
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
|
||||
* If so, K must be hashable and comparable to Key.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
iterator find(const K& key) { return m_ht.find(key); }
|
||||
|
||||
/**
|
||||
* @copydoc find(const K& key)
|
||||
*
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
iterator find(const K& key, std::size_t precalculated_hash) { return m_ht.find(key, precalculated_hash); }
|
||||
|
||||
/**
|
||||
* @copydoc find(const K& key)
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
const_iterator find(const K& key) const { return m_ht.find(key); }
|
||||
|
||||
/**
|
||||
* @copydoc find(const K& key)
|
||||
*
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
const_iterator find(const K& key, std::size_t precalculated_hash) const {
|
||||
return m_ht.find(key, precalculated_hash);
|
||||
}
|
||||
|
||||
|
||||
|
||||
std::pair<iterator, iterator> equal_range(const Key& key) { return m_ht.equal_range(key); }
|
||||
|
||||
/**
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
|
||||
*/
|
||||
std::pair<iterator, iterator> equal_range(const Key& key, std::size_t precalculated_hash) {
|
||||
return m_ht.equal_range(key, precalculated_hash);
|
||||
}
|
||||
|
||||
std::pair<const_iterator, const_iterator> equal_range(const Key& key) const { return m_ht.equal_range(key); }
|
||||
|
||||
/**
|
||||
* @copydoc equal_range(const Key& key, std::size_t precalculated_hash)
|
||||
*/
|
||||
std::pair<const_iterator, const_iterator> equal_range(const Key& key, std::size_t precalculated_hash) const {
|
||||
return m_ht.equal_range(key, precalculated_hash);
|
||||
}
|
||||
|
||||
/**
|
||||
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
|
||||
* If so, K must be hashable and comparable to Key.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
std::pair<iterator, iterator> equal_range(const K& key) { return m_ht.equal_range(key); }
|
||||
|
||||
/**
|
||||
* @copydoc equal_range(const K& key)
|
||||
*
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
std::pair<iterator, iterator> equal_range(const K& key, std::size_t precalculated_hash) {
|
||||
return m_ht.equal_range(key, precalculated_hash);
|
||||
}
|
||||
|
||||
/**
|
||||
* @copydoc equal_range(const K& key)
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
std::pair<const_iterator, const_iterator> equal_range(const K& key) const { return m_ht.equal_range(key); }
|
||||
|
||||
/**
|
||||
* @copydoc equal_range(const K& key, std::size_t precalculated_hash)
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
std::pair<const_iterator, const_iterator> equal_range(const K& key, std::size_t precalculated_hash) const {
|
||||
return m_ht.equal_range(key, precalculated_hash);
|
||||
}
|
||||
|
||||
|
||||
|
||||
/*
|
||||
* Bucket interface
|
||||
*/
|
||||
size_type bucket_count() const { return m_ht.bucket_count(); }
|
||||
size_type max_bucket_count() const { return m_ht.max_bucket_count(); }
|
||||
|
||||
|
||||
/*
|
||||
* Hash policy
|
||||
*/
|
||||
float load_factor() const { return m_ht.load_factor(); }
|
||||
float max_load_factor() const { return m_ht.max_load_factor(); }
|
||||
void max_load_factor(float ml) { m_ht.max_load_factor(ml); }
|
||||
|
||||
void rehash(size_type count) { m_ht.rehash(count); }
|
||||
void reserve(size_type count) { m_ht.reserve(count); }
|
||||
|
||||
|
||||
/*
|
||||
* Observers
|
||||
*/
|
||||
hasher hash_function() const { return m_ht.hash_function(); }
|
||||
key_equal key_eq() const { return m_ht.key_eq(); }
|
||||
|
||||
|
||||
|
||||
/*
|
||||
* Other
|
||||
*/
|
||||
|
||||
/**
|
||||
* Convert a const_iterator to an iterator.
|
||||
*/
|
||||
iterator mutable_iterator(const_iterator pos) {
|
||||
return m_ht.mutable_iterator(pos);
|
||||
}
|
||||
|
||||
/**
|
||||
* Requires index <= size().
|
||||
*
|
||||
* Return an iterator to the element at index. Return end() if index == size().
|
||||
*/
|
||||
iterator nth(size_type index) { return m_ht.nth(index); }
|
||||
|
||||
/**
|
||||
* @copydoc nth(size_type index)
|
||||
*/
|
||||
const_iterator nth(size_type index) const { return m_ht.nth(index); }
|
||||
|
||||
|
||||
/**
|
||||
* Return const_reference to the first element. Requires the container to not be empty.
|
||||
*/
|
||||
const_reference front() const { return m_ht.front(); }
|
||||
|
||||
/**
|
||||
* Return const_reference to the last element. Requires the container to not be empty.
|
||||
*/
|
||||
const_reference back() const { return m_ht.back(); }
|
||||
|
||||
|
||||
/**
|
||||
* Only available if ValueTypeContainer is a std::vector. Same as calling 'values_container().data()'.
|
||||
*/
|
||||
template<class U = values_container_type, typename std::enable_if<tsl::detail_ordered_hash::is_vector<U>::value>::type* = nullptr>
|
||||
const typename values_container_type::value_type* data() const noexcept { return m_ht.data(); }
|
||||
|
||||
/**
|
||||
* Return the container in which the values are stored. The values are in the same order as the insertion order
|
||||
* and are contiguous in the structure, no holes (size() == values_container().size()).
|
||||
*/
|
||||
const values_container_type& values_container() const noexcept { return m_ht.values_container(); }
|
||||
|
||||
template<class U = values_container_type, typename std::enable_if<tsl::detail_ordered_hash::is_vector<U>::value>::type* = nullptr>
|
||||
size_type capacity() const noexcept { return m_ht.capacity(); }
|
||||
|
||||
void shrink_to_fit() { m_ht.shrink_to_fit(); }
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Insert the value before pos shifting all the elements on the right of pos (including pos) one position
|
||||
* to the right.
|
||||
*
|
||||
* Amortized linear time-complexity in the distance between pos and end().
|
||||
*/
|
||||
std::pair<iterator, bool> insert_at_position(const_iterator pos, const value_type& value) {
|
||||
return m_ht.insert_at_position(pos, value);
|
||||
}
|
||||
|
||||
/**
|
||||
* @copydoc insert_at_position(const_iterator pos, const value_type& value)
|
||||
*/
|
||||
std::pair<iterator, bool> insert_at_position(const_iterator pos, value_type&& value) {
|
||||
return m_ht.insert_at_position(pos, std::move(value));
|
||||
}
|
||||
|
||||
/**
|
||||
* @copydoc insert_at_position(const_iterator pos, const value_type& value)
|
||||
*
|
||||
* Same as insert_at_position(pos, value_type(std::forward<Args>(args)...), mainly
|
||||
* here for coherence.
|
||||
*/
|
||||
template<class... Args>
|
||||
std::pair<iterator, bool> emplace_at_position(const_iterator pos, Args&&... args) {
|
||||
return m_ht.emplace_at_position(pos, std::forward<Args>(args)...);
|
||||
}
|
||||
|
||||
/**
|
||||
* @copydoc insert_at_position(const_iterator pos, const value_type& value)
|
||||
*/
|
||||
template<class... Args>
|
||||
std::pair<iterator, bool> try_emplace_at_position(const_iterator pos, const key_type& k, Args&&... args) {
|
||||
return m_ht.try_emplace_at_position(pos, k, std::forward<Args>(args)...);
|
||||
}
|
||||
|
||||
/**
|
||||
* @copydoc insert_at_position(const_iterator pos, const value_type& value)
|
||||
*/
|
||||
template<class... Args>
|
||||
std::pair<iterator, bool> try_emplace_at_position(const_iterator pos, key_type&& k, Args&&... args) {
|
||||
return m_ht.try_emplace_at_position(pos, std::move(k), std::forward<Args>(args)...);
|
||||
}
|
||||
|
||||
|
||||
|
||||
void pop_back() { m_ht.pop_back(); }
|
||||
|
||||
/**
|
||||
* Faster erase operation with an O(1) average complexity but it doesn't preserve the insertion order.
|
||||
*
|
||||
* If an erasure occurs, the last element of the map will take the place of the erased element.
|
||||
*/
|
||||
iterator unordered_erase(iterator pos) { return m_ht.unordered_erase(pos); }
|
||||
|
||||
/**
|
||||
* @copydoc unordered_erase(iterator pos)
|
||||
*/
|
||||
iterator unordered_erase(const_iterator pos) { return m_ht.unordered_erase(pos); }
|
||||
|
||||
/**
|
||||
* @copydoc unordered_erase(iterator pos)
|
||||
*/
|
||||
size_type unordered_erase(const key_type& key) { return m_ht.unordered_erase(key); }
|
||||
|
||||
/**
|
||||
* @copydoc unordered_erase(iterator pos)
|
||||
*
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
|
||||
*/
|
||||
size_type unordered_erase(const key_type& key, std::size_t precalculated_hash) {
|
||||
return m_ht.unordered_erase(key, precalculated_hash);
|
||||
}
|
||||
|
||||
/**
|
||||
* @copydoc unordered_erase(iterator pos)
|
||||
*
|
||||
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
|
||||
* If so, K must be hashable and comparable to Key.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
size_type unordered_erase(const K& key) { return m_ht.unordered_erase(key); }
|
||||
|
||||
/**
|
||||
* @copydoc unordered_erase(const K& key)
|
||||
*
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
size_type unordered_erase(const K& key, std::size_t precalculated_hash) {
|
||||
return m_ht.unordered_erase(key, precalculated_hash);
|
||||
}
|
||||
|
||||
/**
|
||||
* Serialize the map through the `serializer` parameter.
|
||||
*
|
||||
* The `serializer` parameter must be a function object that supports the following call:
|
||||
* - `template<typename U> void operator()(const U& value);` where the types `std::uint64_t`, `float` and `std::pair<Key, T>` must be supported for U.
|
||||
*
|
||||
* The implementation leaves binary compatibilty (endianness, IEEE 754 for floats, ...) of the types it serializes
|
||||
* in the hands of the `Serializer` function object if compatibilty is required.
|
||||
*/
|
||||
template<class Serializer>
|
||||
void serialize(Serializer& serializer) const {
|
||||
m_ht.serialize(serializer);
|
||||
}
|
||||
|
||||
/**
|
||||
* Deserialize a previouly serialized map through the `deserializer` parameter.
|
||||
*
|
||||
* The `deserializer` parameter must be a function object that supports the following calls:
|
||||
* - `template<typename U> U operator()();` where the types `std::uint64_t`, `float` and `std::pair<Key, T>` must be supported for U.
|
||||
*
|
||||
* If the deserialized hash map type is hash compatible with the serialized map, the deserialization process can be
|
||||
* sped up by setting `hash_compatible` to true. To be hash compatible, the Hash and KeyEqual must behave the same way
|
||||
* than the ones used on the serialized map. The `std::size_t` must also be of the same size as the one on the platform used
|
||||
* to serialize the map, the same apply for `IndexType`. If these criteria are not met, the behaviour is undefined with
|
||||
* `hash_compatible` sets to true.
|
||||
*
|
||||
* The behaviour is undefined if the type `Key` and `T` of the `ordered_map` are not the same as the
|
||||
* types used during serialization.
|
||||
*
|
||||
* The implementation leaves binary compatibilty (endianness, IEEE 754 for floats, size of int, ...) of the types it
|
||||
* deserializes in the hands of the `Deserializer` function object if compatibilty is required.
|
||||
*/
|
||||
template<class Deserializer>
|
||||
static ordered_map deserialize(Deserializer& deserializer, bool hash_compatible = false) {
|
||||
ordered_map map(0);
|
||||
map.m_ht.deserialize(deserializer, hash_compatible);
|
||||
|
||||
return map;
|
||||
}
|
||||
|
||||
|
||||
|
||||
friend bool operator==(const ordered_map& lhs, const ordered_map& rhs) { return lhs.m_ht == rhs.m_ht; }
|
||||
friend bool operator!=(const ordered_map& lhs, const ordered_map& rhs) { return lhs.m_ht != rhs.m_ht; }
|
||||
friend bool operator<(const ordered_map& lhs, const ordered_map& rhs) { return lhs.m_ht < rhs.m_ht; }
|
||||
friend bool operator<=(const ordered_map& lhs, const ordered_map& rhs) { return lhs.m_ht <= rhs.m_ht; }
|
||||
friend bool operator>(const ordered_map& lhs, const ordered_map& rhs) { return lhs.m_ht > rhs.m_ht; }
|
||||
friend bool operator>=(const ordered_map& lhs, const ordered_map& rhs) { return lhs.m_ht >= rhs.m_ht; }
|
||||
|
||||
friend void swap(ordered_map& lhs, ordered_map& rhs) { lhs.swap(rhs); }
|
||||
|
||||
private:
|
||||
ht m_ht;
|
||||
};
|
||||
|
||||
} // end namespace tsl
|
||||
|
||||
#endif
|
688
src/includes/3thparty/tsl/ordered_set.h
Normal file
688
src/includes/3thparty/tsl/ordered_set.h
Normal file
@@ -0,0 +1,688 @@
|
||||
/**
|
||||
* MIT License
|
||||
*
|
||||
* Copyright (c) 2017 Tessil
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
* of this software and associated documentation files (the "Software"), to deal
|
||||
* in the Software without restriction, including without limitation the rights
|
||||
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
* copies of the Software, and to permit persons to whom the Software is
|
||||
* furnished to do so, subject to the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice shall be included in all
|
||||
* copies or substantial portions of the Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
* SOFTWARE.
|
||||
*/
|
||||
#ifndef TSL_ORDERED_SET_H
|
||||
#define TSL_ORDERED_SET_H
|
||||
|
||||
|
||||
#include <cstddef>
|
||||
#include <cstdint>
|
||||
#include <deque>
|
||||
#include <functional>
|
||||
#include <initializer_list>
|
||||
#include <memory>
|
||||
#include <type_traits>
|
||||
#include <utility>
|
||||
#include <vector>
|
||||
#include "ordered_hash.h"
|
||||
|
||||
|
||||
namespace tsl {
|
||||
|
||||
|
||||
/**
|
||||
* Implementation of an hash set using open adressing with robin hood with backshift delete to resolve collisions.
|
||||
*
|
||||
* The particularity of this hash set is that it remembers the order in which the elements were added and
|
||||
* provide a way to access the structure which stores these values through the 'values_container()' method.
|
||||
* The used container is defined by ValueTypeContainer, by default a std::deque is used (grows faster) but
|
||||
* a std::vector may be used. In this case the set provides a 'data()' method which give a direct access
|
||||
* to the memory used to store the values (which can be usefull to communicate with C API's).
|
||||
*
|
||||
* The Key must be copy constructible and/or move constructible. To use `unordered_erase` it also must be swappable.
|
||||
*
|
||||
* The behaviour of the hash set is undefinded if the destructor of Key throws an exception.
|
||||
*
|
||||
* By default the maximum size of a set is limited to 2^32 - 1 values, if needed this can be changed through
|
||||
* the IndexType template parameter. Using an `uint64_t` will raise this limit to 2^64 - 1 values but each
|
||||
* bucket will use 16 bytes instead of 8 bytes in addition to the space needed to store the values.
|
||||
*
|
||||
* Iterators invalidation:
|
||||
* - clear, operator=, reserve, rehash: always invalidate the iterators (also invalidate end()).
|
||||
* - insert, emplace, emplace_hint, operator[]: when a std::vector is used as ValueTypeContainer
|
||||
* and if size() < capacity(), only end().
|
||||
* Otherwise all the iterators are invalidated if an insert occurs.
|
||||
* - erase, unordered_erase: when a std::vector is used as ValueTypeContainer invalidate the iterator of
|
||||
* the erased element and all the ones after the erased element (including end()).
|
||||
* Otherwise all the iterators are invalidated if an erase occurs.
|
||||
*/
|
||||
template<class Key,
|
||||
class Hash = std::hash<Key>,
|
||||
class KeyEqual = std::equal_to<Key>,
|
||||
class Allocator = std::allocator<Key>,
|
||||
class ValueTypeContainer = std::deque<Key, Allocator>,
|
||||
class IndexType = std::uint_least32_t>
|
||||
class ordered_set {
|
||||
private:
|
||||
template<typename U>
|
||||
using has_is_transparent = tsl::detail_ordered_hash::has_is_transparent<U>;
|
||||
|
||||
class KeySelect {
|
||||
public:
|
||||
using key_type = Key;
|
||||
|
||||
const key_type& operator()(const Key& key) const noexcept {
|
||||
return key;
|
||||
}
|
||||
|
||||
key_type& operator()(Key& key) noexcept {
|
||||
return key;
|
||||
}
|
||||
};
|
||||
|
||||
using ht = detail_ordered_hash::ordered_hash<Key, KeySelect, void,
|
||||
Hash, KeyEqual, Allocator, ValueTypeContainer, IndexType>;
|
||||
|
||||
public:
|
||||
using key_type = typename ht::key_type;
|
||||
using value_type = typename ht::value_type;
|
||||
using size_type = typename ht::size_type;
|
||||
using difference_type = typename ht::difference_type;
|
||||
using hasher = typename ht::hasher;
|
||||
using key_equal = typename ht::key_equal;
|
||||
using allocator_type = typename ht::allocator_type;
|
||||
using reference = typename ht::reference;
|
||||
using const_reference = typename ht::const_reference;
|
||||
using pointer = typename ht::pointer;
|
||||
using const_pointer = typename ht::const_pointer;
|
||||
using iterator = typename ht::iterator;
|
||||
using const_iterator = typename ht::const_iterator;
|
||||
using reverse_iterator = typename ht::reverse_iterator;
|
||||
using const_reverse_iterator = typename ht::const_reverse_iterator;
|
||||
|
||||
using values_container_type = typename ht::values_container_type;
|
||||
|
||||
|
||||
/*
|
||||
* Constructors
|
||||
*/
|
||||
ordered_set(): ordered_set(ht::DEFAULT_INIT_BUCKETS_SIZE) {
|
||||
}
|
||||
|
||||
explicit ordered_set(size_type bucket_count,
|
||||
const Hash& hash = Hash(),
|
||||
const KeyEqual& equal = KeyEqual(),
|
||||
const Allocator& alloc = Allocator()):
|
||||
m_ht(bucket_count, hash, equal, alloc, ht::DEFAULT_MAX_LOAD_FACTOR)
|
||||
{
|
||||
}
|
||||
|
||||
ordered_set(size_type bucket_count,
|
||||
const Allocator& alloc): ordered_set(bucket_count, Hash(), KeyEqual(), alloc)
|
||||
{
|
||||
}
|
||||
|
||||
ordered_set(size_type bucket_count,
|
||||
const Hash& hash,
|
||||
const Allocator& alloc): ordered_set(bucket_count, hash, KeyEqual(), alloc)
|
||||
{
|
||||
}
|
||||
|
||||
explicit ordered_set(const Allocator& alloc): ordered_set(ht::DEFAULT_INIT_BUCKETS_SIZE, alloc) {
|
||||
}
|
||||
|
||||
template<class InputIt>
|
||||
ordered_set(InputIt first, InputIt last,
|
||||
size_type bucket_count = ht::DEFAULT_INIT_BUCKETS_SIZE,
|
||||
const Hash& hash = Hash(),
|
||||
const KeyEqual& equal = KeyEqual(),
|
||||
const Allocator& alloc = Allocator()): ordered_set(bucket_count, hash, equal, alloc)
|
||||
{
|
||||
insert(first, last);
|
||||
}
|
||||
|
||||
template<class InputIt>
|
||||
ordered_set(InputIt first, InputIt last,
|
||||
size_type bucket_count,
|
||||
const Allocator& alloc): ordered_set(first, last, bucket_count, Hash(), KeyEqual(), alloc)
|
||||
{
|
||||
}
|
||||
|
||||
template<class InputIt>
|
||||
ordered_set(InputIt first, InputIt last,
|
||||
size_type bucket_count,
|
||||
const Hash& hash,
|
||||
const Allocator& alloc): ordered_set(first, last, bucket_count, hash, KeyEqual(), alloc)
|
||||
{
|
||||
}
|
||||
|
||||
ordered_set(std::initializer_list<value_type> init,
|
||||
size_type bucket_count = ht::DEFAULT_INIT_BUCKETS_SIZE,
|
||||
const Hash& hash = Hash(),
|
||||
const KeyEqual& equal = KeyEqual(),
|
||||
const Allocator& alloc = Allocator()):
|
||||
ordered_set(init.begin(), init.end(), bucket_count, hash, equal, alloc)
|
||||
{
|
||||
}
|
||||
|
||||
ordered_set(std::initializer_list<value_type> init,
|
||||
size_type bucket_count,
|
||||
const Allocator& alloc):
|
||||
ordered_set(init.begin(), init.end(), bucket_count, Hash(), KeyEqual(), alloc)
|
||||
{
|
||||
}
|
||||
|
||||
ordered_set(std::initializer_list<value_type> init,
|
||||
size_type bucket_count,
|
||||
const Hash& hash,
|
||||
const Allocator& alloc):
|
||||
ordered_set(init.begin(), init.end(), bucket_count, hash, KeyEqual(), alloc)
|
||||
{
|
||||
}
|
||||
|
||||
|
||||
ordered_set& operator=(std::initializer_list<value_type> ilist) {
|
||||
m_ht.clear();
|
||||
|
||||
m_ht.reserve(ilist.size());
|
||||
m_ht.insert(ilist.begin(), ilist.end());
|
||||
|
||||
return *this;
|
||||
}
|
||||
|
||||
allocator_type get_allocator() const { return m_ht.get_allocator(); }
|
||||
|
||||
|
||||
/*
|
||||
* Iterators
|
||||
*/
|
||||
iterator begin() noexcept { return m_ht.begin(); }
|
||||
const_iterator begin() const noexcept { return m_ht.begin(); }
|
||||
const_iterator cbegin() const noexcept { return m_ht.cbegin(); }
|
||||
|
||||
iterator end() noexcept { return m_ht.end(); }
|
||||
const_iterator end() const noexcept { return m_ht.end(); }
|
||||
const_iterator cend() const noexcept { return m_ht.cend(); }
|
||||
|
||||
reverse_iterator rbegin() noexcept { return m_ht.rbegin(); }
|
||||
const_reverse_iterator rbegin() const noexcept { return m_ht.rbegin(); }
|
||||
const_reverse_iterator rcbegin() const noexcept { return m_ht.rcbegin(); }
|
||||
|
||||
reverse_iterator rend() noexcept { return m_ht.rend(); }
|
||||
const_reverse_iterator rend() const noexcept { return m_ht.rend(); }
|
||||
const_reverse_iterator rcend() const noexcept { return m_ht.rcend(); }
|
||||
|
||||
|
||||
/*
|
||||
* Capacity
|
||||
*/
|
||||
bool empty() const noexcept { return m_ht.empty(); }
|
||||
size_type size() const noexcept { return m_ht.size(); }
|
||||
size_type max_size() const noexcept { return m_ht.max_size(); }
|
||||
|
||||
/*
|
||||
* Modifiers
|
||||
*/
|
||||
void clear() noexcept { m_ht.clear(); }
|
||||
|
||||
|
||||
|
||||
std::pair<iterator, bool> insert(const value_type& value) { return m_ht.insert(value); }
|
||||
std::pair<iterator, bool> insert(value_type&& value) { return m_ht.insert(std::move(value)); }
|
||||
|
||||
iterator insert(const_iterator hint, const value_type& value) {
|
||||
return m_ht.insert_hint(hint, value);
|
||||
}
|
||||
|
||||
iterator insert(const_iterator hint, value_type&& value) {
|
||||
return m_ht.insert_hint(hint, std::move(value));
|
||||
}
|
||||
|
||||
template<class InputIt>
|
||||
void insert(InputIt first, InputIt last) { m_ht.insert(first, last); }
|
||||
void insert(std::initializer_list<value_type> ilist) { m_ht.insert(ilist.begin(), ilist.end()); }
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Due to the way elements are stored, emplace will need to move or copy the key-value once.
|
||||
* The method is equivalent to insert(value_type(std::forward<Args>(args)...));
|
||||
*
|
||||
* Mainly here for compatibility with the std::unordered_map interface.
|
||||
*/
|
||||
template<class... Args>
|
||||
std::pair<iterator, bool> emplace(Args&&... args) { return m_ht.emplace(std::forward<Args>(args)...); }
|
||||
|
||||
/**
|
||||
* Due to the way elements are stored, emplace_hint will need to move or copy the key-value once.
|
||||
* The method is equivalent to insert(hint, value_type(std::forward<Args>(args)...));
|
||||
*
|
||||
* Mainly here for compatibility with the std::unordered_map interface.
|
||||
*/
|
||||
template<class... Args>
|
||||
iterator emplace_hint(const_iterator hint, Args&&... args) {
|
||||
return m_ht.emplace_hint(hint, std::forward<Args>(args)...);
|
||||
}
|
||||
|
||||
/**
|
||||
* When erasing an element, the insert order will be preserved and no holes will be present in the container
|
||||
* returned by 'values_container()'.
|
||||
*
|
||||
* The method is in O(n), if the order is not important 'unordered_erase(...)' method is faster with an O(1)
|
||||
* average complexity.
|
||||
*/
|
||||
iterator erase(iterator pos) { return m_ht.erase(pos); }
|
||||
|
||||
/**
|
||||
* @copydoc erase(iterator pos)
|
||||
*/
|
||||
iterator erase(const_iterator pos) { return m_ht.erase(pos); }
|
||||
|
||||
/**
|
||||
* @copydoc erase(iterator pos)
|
||||
*/
|
||||
iterator erase(const_iterator first, const_iterator last) { return m_ht.erase(first, last); }
|
||||
|
||||
/**
|
||||
* @copydoc erase(iterator pos)
|
||||
*/
|
||||
size_type erase(const key_type& key) { return m_ht.erase(key); }
|
||||
|
||||
/**
|
||||
* @copydoc erase(iterator pos)
|
||||
*
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup to the value if you already have the hash.
|
||||
*/
|
||||
size_type erase(const key_type& key, std::size_t precalculated_hash) {
|
||||
return m_ht.erase(key, precalculated_hash);
|
||||
}
|
||||
|
||||
/**
|
||||
* @copydoc erase(iterator pos)
|
||||
*
|
||||
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
|
||||
* If so, K must be hashable and comparable to Key.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
size_type erase(const K& key) { return m_ht.erase(key); }
|
||||
|
||||
/**
|
||||
* @copydoc erase(const key_type& key, std::size_t precalculated_hash)
|
||||
*
|
||||
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
|
||||
* If so, K must be hashable and comparable to Key.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
size_type erase(const K& key, std::size_t precalculated_hash) {
|
||||
return m_ht.erase(key, precalculated_hash);
|
||||
}
|
||||
|
||||
|
||||
|
||||
void swap(ordered_set& other) { other.m_ht.swap(m_ht); }
|
||||
|
||||
/*
|
||||
* Lookup
|
||||
*/
|
||||
size_type count(const Key& key) const { return m_ht.count(key); }
|
||||
|
||||
/**
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
|
||||
*/
|
||||
size_type count(const Key& key, std::size_t precalculated_hash) const {
|
||||
return m_ht.count(key, precalculated_hash);
|
||||
}
|
||||
|
||||
/**
|
||||
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
|
||||
* If so, K must be hashable and comparable to Key.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
size_type count(const K& key) const { return m_ht.count(key); }
|
||||
|
||||
/**
|
||||
* @copydoc count(const K& key) const
|
||||
*
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
size_type count(const K& key, std::size_t precalculated_hash) const {
|
||||
return m_ht.count(key, precalculated_hash);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
iterator find(const Key& key) { return m_ht.find(key); }
|
||||
|
||||
/**
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
|
||||
*/
|
||||
iterator find(const Key& key, std::size_t precalculated_hash) { return m_ht.find(key, precalculated_hash); }
|
||||
|
||||
const_iterator find(const Key& key) const { return m_ht.find(key); }
|
||||
|
||||
/**
|
||||
* @copydoc find(const Key& key, std::size_t precalculated_hash)
|
||||
*/
|
||||
const_iterator find(const Key& key, std::size_t precalculated_hash) const {
|
||||
return m_ht.find(key, precalculated_hash);
|
||||
}
|
||||
|
||||
/**
|
||||
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
|
||||
* If so, K must be hashable and comparable to Key.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
iterator find(const K& key) { return m_ht.find(key); }
|
||||
|
||||
/**
|
||||
* @copydoc find(const K& key)
|
||||
*
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
iterator find(const K& key, std::size_t precalculated_hash) { return m_ht.find(key, precalculated_hash); }
|
||||
|
||||
/**
|
||||
* @copydoc find(const K& key)
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
const_iterator find(const K& key) const { return m_ht.find(key); }
|
||||
|
||||
/**
|
||||
* @copydoc find(const K& key)
|
||||
*
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
const_iterator find(const K& key, std::size_t precalculated_hash) const {
|
||||
return m_ht.find(key, precalculated_hash);
|
||||
}
|
||||
|
||||
|
||||
|
||||
std::pair<iterator, iterator> equal_range(const Key& key) { return m_ht.equal_range(key); }
|
||||
|
||||
/**
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
|
||||
*/
|
||||
std::pair<iterator, iterator> equal_range(const Key& key, std::size_t precalculated_hash) {
|
||||
return m_ht.equal_range(key, precalculated_hash);
|
||||
}
|
||||
|
||||
std::pair<const_iterator, const_iterator> equal_range(const Key& key) const { return m_ht.equal_range(key); }
|
||||
|
||||
/**
|
||||
* @copydoc equal_range(const Key& key, std::size_t precalculated_hash)
|
||||
*/
|
||||
std::pair<const_iterator, const_iterator> equal_range(const Key& key, std::size_t precalculated_hash) const {
|
||||
return m_ht.equal_range(key, precalculated_hash);
|
||||
}
|
||||
|
||||
/**
|
||||
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
|
||||
* If so, K must be hashable and comparable to Key.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
std::pair<iterator, iterator> equal_range(const K& key) { return m_ht.equal_range(key); }
|
||||
|
||||
/**
|
||||
* @copydoc equal_range(const K& key)
|
||||
*
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
std::pair<iterator, iterator> equal_range(const K& key, std::size_t precalculated_hash) {
|
||||
return m_ht.equal_range(key, precalculated_hash);
|
||||
}
|
||||
|
||||
/**
|
||||
* @copydoc equal_range(const K& key)
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
std::pair<const_iterator, const_iterator> equal_range(const K& key) const { return m_ht.equal_range(key); }
|
||||
|
||||
/**
|
||||
* @copydoc equal_range(const K& key, std::size_t precalculated_hash)
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
std::pair<const_iterator, const_iterator> equal_range(const K& key, std::size_t precalculated_hash) const {
|
||||
return m_ht.equal_range(key, precalculated_hash);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Bucket interface
|
||||
*/
|
||||
size_type bucket_count() const { return m_ht.bucket_count(); }
|
||||
size_type max_bucket_count() const { return m_ht.max_bucket_count(); }
|
||||
|
||||
|
||||
/*
|
||||
* Hash policy
|
||||
*/
|
||||
float load_factor() const { return m_ht.load_factor(); }
|
||||
float max_load_factor() const { return m_ht.max_load_factor(); }
|
||||
void max_load_factor(float ml) { m_ht.max_load_factor(ml); }
|
||||
|
||||
void rehash(size_type count) { m_ht.rehash(count); }
|
||||
void reserve(size_type count) { m_ht.reserve(count); }
|
||||
|
||||
|
||||
/*
|
||||
* Observers
|
||||
*/
|
||||
hasher hash_function() const { return m_ht.hash_function(); }
|
||||
key_equal key_eq() const { return m_ht.key_eq(); }
|
||||
|
||||
|
||||
/*
|
||||
* Other
|
||||
*/
|
||||
|
||||
/**
|
||||
* Convert a const_iterator to an iterator.
|
||||
*/
|
||||
iterator mutable_iterator(const_iterator pos) {
|
||||
return m_ht.mutable_iterator(pos);
|
||||
}
|
||||
|
||||
/**
|
||||
* Requires index <= size().
|
||||
*
|
||||
* Return an iterator to the element at index. Return end() if index == size().
|
||||
*/
|
||||
iterator nth(size_type index) { return m_ht.nth(index); }
|
||||
|
||||
/**
|
||||
* @copydoc nth(size_type index)
|
||||
*/
|
||||
const_iterator nth(size_type index) const { return m_ht.nth(index); }
|
||||
|
||||
|
||||
/**
|
||||
* Return const_reference to the first element. Requires the container to not be empty.
|
||||
*/
|
||||
const_reference front() const { return m_ht.front(); }
|
||||
|
||||
/**
|
||||
* Return const_reference to the last element. Requires the container to not be empty.
|
||||
*/
|
||||
const_reference back() const { return m_ht.back(); }
|
||||
|
||||
|
||||
/**
|
||||
* Only available if ValueTypeContainer is a std::vector. Same as calling 'values_container().data()'.
|
||||
*/
|
||||
template<class U = values_container_type, typename std::enable_if<tsl::detail_ordered_hash::is_vector<U>::value>::type* = nullptr>
|
||||
const typename values_container_type::value_type* data() const noexcept { return m_ht.data(); }
|
||||
|
||||
/**
|
||||
* Return the container in which the values are stored. The values are in the same order as the insertion order
|
||||
* and are contiguous in the structure, no holes (size() == values_container().size()).
|
||||
*/
|
||||
const values_container_type& values_container() const noexcept { return m_ht.values_container(); }
|
||||
|
||||
template<class U = values_container_type, typename std::enable_if<tsl::detail_ordered_hash::is_vector<U>::value>::type* = nullptr>
|
||||
size_type capacity() const noexcept { return m_ht.capacity(); }
|
||||
|
||||
void shrink_to_fit() { m_ht.shrink_to_fit(); }
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Insert the value before pos shifting all the elements on the right of pos (including pos) one position
|
||||
* to the right.
|
||||
*
|
||||
* Amortized linear time-complexity in the distance between pos and end().
|
||||
*/
|
||||
std::pair<iterator, bool> insert_at_position(const_iterator pos, const value_type& value) {
|
||||
return m_ht.insert_at_position(pos, value);
|
||||
}
|
||||
|
||||
/**
|
||||
* @copydoc insert_at_position(const_iterator pos, const value_type& value)
|
||||
*/
|
||||
std::pair<iterator, bool> insert_at_position(const_iterator pos, value_type&& value) {
|
||||
return m_ht.insert_at_position(pos, std::move(value));
|
||||
}
|
||||
|
||||
/**
|
||||
* @copydoc insert_at_position(const_iterator pos, const value_type& value)
|
||||
*
|
||||
* Same as insert_at_position(pos, value_type(std::forward<Args>(args)...), mainly
|
||||
* here for coherence.
|
||||
*/
|
||||
template<class... Args>
|
||||
std::pair<iterator, bool> emplace_at_position(const_iterator pos, Args&&... args) {
|
||||
return m_ht.emplace_at_position(pos, std::forward<Args>(args)...);
|
||||
}
|
||||
|
||||
|
||||
|
||||
void pop_back() { m_ht.pop_back(); }
|
||||
|
||||
/**
|
||||
* Faster erase operation with an O(1) average complexity but it doesn't preserve the insertion order.
|
||||
*
|
||||
* If an erasure occurs, the last element of the map will take the place of the erased element.
|
||||
*/
|
||||
iterator unordered_erase(iterator pos) { return m_ht.unordered_erase(pos); }
|
||||
|
||||
/**
|
||||
* @copydoc unordered_erase(iterator pos)
|
||||
*/
|
||||
iterator unordered_erase(const_iterator pos) { return m_ht.unordered_erase(pos); }
|
||||
|
||||
/**
|
||||
* @copydoc unordered_erase(iterator pos)
|
||||
*/
|
||||
size_type unordered_erase(const key_type& key) { return m_ht.unordered_erase(key); }
|
||||
|
||||
/**
|
||||
* @copydoc unordered_erase(iterator pos)
|
||||
*
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
|
||||
*/
|
||||
size_type unordered_erase(const key_type& key, std::size_t precalculated_hash) {
|
||||
return m_ht.unordered_erase(key, precalculated_hash);
|
||||
}
|
||||
|
||||
/**
|
||||
* @copydoc unordered_erase(iterator pos)
|
||||
*
|
||||
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
|
||||
* If so, K must be hashable and comparable to Key.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
size_type unordered_erase(const K& key) { return m_ht.unordered_erase(key); }
|
||||
|
||||
/**
|
||||
* @copydoc unordered_erase(const K& key)
|
||||
*
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
size_type unordered_erase(const K& key, std::size_t precalculated_hash) {
|
||||
return m_ht.unordered_erase(key, precalculated_hash);
|
||||
}
|
||||
|
||||
/**
|
||||
* Serialize the set through the `serializer` parameter.
|
||||
*
|
||||
* The `serializer` parameter must be a function object that supports the following call:
|
||||
* - `void operator()(const U& value);` where the types `std::uint64_t`, `float` and `Key` must be supported for U.
|
||||
*
|
||||
* The implementation leaves binary compatibilty (endianness, IEEE 754 for floats, ...) of the types it serializes
|
||||
* in the hands of the `Serializer` function object if compatibilty is required.
|
||||
*/
|
||||
template<class Serializer>
|
||||
void serialize(Serializer& serializer) const {
|
||||
m_ht.serialize(serializer);
|
||||
}
|
||||
|
||||
/**
|
||||
* Deserialize a previouly serialized set through the `deserializer` parameter.
|
||||
*
|
||||
* The `deserializer` parameter must be a function object that supports the following calls:
|
||||
* - `template<typename U> U operator()();` where the types `std::uint64_t`, `float` and `Key` must be supported for U.
|
||||
*
|
||||
* If the deserialized hash set type is hash compatible with the serialized set, the deserialization process can be
|
||||
* sped up by setting `hash_compatible` to true. To be hash compatible, the Hash and KeyEqual must behave the same way
|
||||
* than the ones used on the serialized map. The `std::size_t` must also be of the same size as the one on the platform used
|
||||
* to serialize the map, the same apply for `IndexType`. If these criteria are not met, the behaviour is undefined with
|
||||
* `hash_compatible` sets to true.
|
||||
*
|
||||
* The behaviour is undefined if the type `Key` of the `ordered_set` is not the same as the
|
||||
* type used during serialization.
|
||||
*
|
||||
* The implementation leaves binary compatibilty (endianness, IEEE 754 for floats, size of int, ...) of the types it
|
||||
* deserializes in the hands of the `Deserializer` function object if compatibilty is required.
|
||||
*/
|
||||
template<class Deserializer>
|
||||
static ordered_set deserialize(Deserializer& deserializer, bool hash_compatible = false) {
|
||||
ordered_set set(0);
|
||||
set.m_ht.deserialize(deserializer, hash_compatible);
|
||||
|
||||
return set;
|
||||
}
|
||||
|
||||
|
||||
|
||||
friend bool operator==(const ordered_set& lhs, const ordered_set& rhs) { return lhs.m_ht == rhs.m_ht; }
|
||||
friend bool operator!=(const ordered_set& lhs, const ordered_set& rhs) { return lhs.m_ht != rhs.m_ht; }
|
||||
friend bool operator<(const ordered_set& lhs, const ordered_set& rhs) { return lhs.m_ht < rhs.m_ht; }
|
||||
friend bool operator<=(const ordered_set& lhs, const ordered_set& rhs) { return lhs.m_ht <= rhs.m_ht; }
|
||||
friend bool operator>(const ordered_set& lhs, const ordered_set& rhs) { return lhs.m_ht > rhs.m_ht; }
|
||||
friend bool operator>=(const ordered_set& lhs, const ordered_set& rhs) { return lhs.m_ht >= rhs.m_ht; }
|
||||
|
||||
friend void swap(ordered_set& lhs, ordered_set& rhs) { lhs.swap(rhs); }
|
||||
|
||||
private:
|
||||
ht m_ht;
|
||||
};
|
||||
|
||||
} // end namespace tsl
|
||||
|
||||
#endif
|
348
src/includes/3thparty/tsl/robin_growth_policy.h
Normal file
348
src/includes/3thparty/tsl/robin_growth_policy.h
Normal file
@@ -0,0 +1,348 @@
|
||||
/**
|
||||
* MIT License
|
||||
*
|
||||
* Copyright (c) 2017 Tessil
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
* of this software and associated documentation files (the "Software"), to deal
|
||||
* in the Software without restriction, including without limitation the rights
|
||||
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
* copies of the Software, and to permit persons to whom the Software is
|
||||
* furnished to do so, subject to the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice shall be included in all
|
||||
* copies or substantial portions of the Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
* SOFTWARE.
|
||||
*/
|
||||
#ifndef TSL_ROBIN_GROWTH_POLICY_H
|
||||
#define TSL_ROBIN_GROWTH_POLICY_H
|
||||
|
||||
|
||||
#include <algorithm>
|
||||
#include <array>
|
||||
#include <climits>
|
||||
#include <cmath>
|
||||
#include <cstddef>
|
||||
#include <cstdint>
|
||||
#include <iterator>
|
||||
#include <limits>
|
||||
#include <ratio>
|
||||
#include <stdexcept>
|
||||
|
||||
|
||||
#ifdef TSL_DEBUG
|
||||
# define tsl_rh_assert(expr) assert(expr)
|
||||
#else
|
||||
# define tsl_rh_assert(expr) (static_cast<void>(0))
|
||||
#endif
|
||||
|
||||
|
||||
/**
|
||||
* If exceptions are enabled, throw the exception passed in parameter, otherwise call std::terminate.
|
||||
*/
|
||||
#if (defined(__cpp_exceptions) || defined(__EXCEPTIONS) || (defined (_MSC_VER) && defined (_CPPUNWIND))) && !defined(TSL_NO_EXCEPTIONS)
|
||||
# define TSL_RH_THROW_OR_TERMINATE(ex, msg) throw ex(msg)
|
||||
#else
|
||||
# define TSL_RH_NO_EXCEPTIONS
|
||||
# ifdef NDEBUG
|
||||
# define TSL_RH_THROW_OR_TERMINATE(ex, msg) std::terminate()
|
||||
# else
|
||||
# include <iostream>
|
||||
# define TSL_RH_THROW_OR_TERMINATE(ex, msg) do { std::cerr << msg << std::endl; std::terminate(); } while(0)
|
||||
# endif
|
||||
#endif
|
||||
|
||||
|
||||
#if defined(__GNUC__) || defined(__clang__)
|
||||
# define TSL_RH_LIKELY(exp) (__builtin_expect(!!(exp), true))
|
||||
#else
|
||||
# define TSL_RH_LIKELY(exp) (exp)
|
||||
#endif
|
||||
|
||||
|
||||
namespace tsl {
|
||||
namespace rh {
|
||||
|
||||
/**
|
||||
* Grow the hash table by a factor of GrowthFactor keeping the bucket count to a power of two. It allows
|
||||
* the table to use a mask operation instead of a modulo operation to map a hash to a bucket.
|
||||
*
|
||||
* GrowthFactor must be a power of two >= 2.
|
||||
*/
|
||||
template<std::size_t GrowthFactor>
|
||||
class power_of_two_growth_policy {
|
||||
public:
|
||||
/**
|
||||
* Called on the hash table creation and on rehash. The number of buckets for the table is passed in parameter.
|
||||
* This number is a minimum, the policy may update this value with a higher value if needed (but not lower).
|
||||
*
|
||||
* If 0 is given, min_bucket_count_in_out must still be 0 after the policy creation and
|
||||
* bucket_for_hash must always return 0 in this case.
|
||||
*/
|
||||
explicit power_of_two_growth_policy(std::size_t& min_bucket_count_in_out) {
|
||||
if(min_bucket_count_in_out > max_bucket_count()) {
|
||||
TSL_RH_THROW_OR_TERMINATE(std::length_error, "The hash table exceeds its maxmimum size.");
|
||||
}
|
||||
|
||||
if(min_bucket_count_in_out > 0) {
|
||||
min_bucket_count_in_out = round_up_to_power_of_two(min_bucket_count_in_out);
|
||||
m_mask = min_bucket_count_in_out - 1;
|
||||
}
|
||||
else {
|
||||
m_mask = 0;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Return the bucket [0, bucket_count()) to which the hash belongs.
|
||||
* If bucket_count() is 0, it must always return 0.
|
||||
*/
|
||||
std::size_t bucket_for_hash(std::size_t hash) const noexcept {
|
||||
return hash & m_mask;
|
||||
}
|
||||
|
||||
/**
|
||||
* Return the number of buckets that should be used on next growth.
|
||||
*/
|
||||
std::size_t next_bucket_count() const {
|
||||
if((m_mask + 1) > max_bucket_count() / GrowthFactor) {
|
||||
TSL_RH_THROW_OR_TERMINATE(std::length_error, "The hash table exceeds its maxmimum size.");
|
||||
}
|
||||
|
||||
return (m_mask + 1) * GrowthFactor;
|
||||
}
|
||||
|
||||
/**
|
||||
* Return the maximum number of buckets supported by the policy.
|
||||
*/
|
||||
std::size_t max_bucket_count() const {
|
||||
// Largest power of two.
|
||||
return (std::numeric_limits<std::size_t>::max() / 2) + 1;
|
||||
}
|
||||
|
||||
/**
|
||||
* Reset the growth policy as if it was created with a bucket count of 0.
|
||||
* After a clear, the policy must always return 0 when bucket_for_hash is called.
|
||||
*/
|
||||
void clear() noexcept {
|
||||
m_mask = 0;
|
||||
}
|
||||
|
||||
private:
|
||||
static std::size_t round_up_to_power_of_two(std::size_t value) {
|
||||
if(is_power_of_two(value)) {
|
||||
return value;
|
||||
}
|
||||
|
||||
if(value == 0) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
--value;
|
||||
for(std::size_t i = 1; i < sizeof(std::size_t) * CHAR_BIT; i *= 2) {
|
||||
value |= value >> i;
|
||||
}
|
||||
|
||||
return value + 1;
|
||||
}
|
||||
|
||||
static constexpr bool is_power_of_two(std::size_t value) {
|
||||
return value != 0 && (value & (value - 1)) == 0;
|
||||
}
|
||||
|
||||
protected:
|
||||
static_assert(is_power_of_two(GrowthFactor) && GrowthFactor >= 2, "GrowthFactor must be a power of two >= 2.");
|
||||
|
||||
std::size_t m_mask;
|
||||
};
|
||||
|
||||
|
||||
/**
|
||||
* Grow the hash table by GrowthFactor::num / GrowthFactor::den and use a modulo to map a hash
|
||||
* to a bucket. Slower but it can be useful if you want a slower growth.
|
||||
*/
|
||||
template<class GrowthFactor = std::ratio<3, 2>>
|
||||
class mod_growth_policy {
|
||||
public:
|
||||
explicit mod_growth_policy(std::size_t& min_bucket_count_in_out) {
|
||||
if(min_bucket_count_in_out > max_bucket_count()) {
|
||||
TSL_RH_THROW_OR_TERMINATE(std::length_error, "The hash table exceeds its maxmimum size.");
|
||||
}
|
||||
|
||||
if(min_bucket_count_in_out > 0) {
|
||||
m_mod = min_bucket_count_in_out;
|
||||
}
|
||||
else {
|
||||
m_mod = 1;
|
||||
}
|
||||
}
|
||||
|
||||
std::size_t bucket_for_hash(std::size_t hash) const noexcept {
|
||||
return hash % m_mod;
|
||||
}
|
||||
|
||||
std::size_t next_bucket_count() const {
|
||||
if(m_mod == max_bucket_count()) {
|
||||
TSL_RH_THROW_OR_TERMINATE(std::length_error, "The hash table exceeds its maxmimum size.");
|
||||
}
|
||||
|
||||
const double next_bucket_count = std::ceil(double(m_mod) * REHASH_SIZE_MULTIPLICATION_FACTOR);
|
||||
if(!std::isnormal(next_bucket_count)) {
|
||||
TSL_RH_THROW_OR_TERMINATE(std::length_error, "The hash table exceeds its maxmimum size.");
|
||||
}
|
||||
|
||||
if(next_bucket_count > double(max_bucket_count())) {
|
||||
return max_bucket_count();
|
||||
}
|
||||
else {
|
||||
return std::size_t(next_bucket_count);
|
||||
}
|
||||
}
|
||||
|
||||
std::size_t max_bucket_count() const {
|
||||
return MAX_BUCKET_COUNT;
|
||||
}
|
||||
|
||||
void clear() noexcept {
|
||||
m_mod = 1;
|
||||
}
|
||||
|
||||
private:
|
||||
static constexpr double REHASH_SIZE_MULTIPLICATION_FACTOR = 1.0 * GrowthFactor::num / GrowthFactor::den;
|
||||
static const std::size_t MAX_BUCKET_COUNT =
|
||||
std::size_t(double(
|
||||
std::numeric_limits<std::size_t>::max() / REHASH_SIZE_MULTIPLICATION_FACTOR
|
||||
));
|
||||
|
||||
static_assert(REHASH_SIZE_MULTIPLICATION_FACTOR >= 1.1, "Growth factor should be >= 1.1.");
|
||||
|
||||
std::size_t m_mod;
|
||||
};
|
||||
|
||||
|
||||
|
||||
namespace detail {
|
||||
|
||||
#if SIZE_MAX >= ULLONG_MAX
|
||||
#define TSL_RH_NB_PRIMES 51
|
||||
#elif SIZE_MAX >= ULONG_MAX
|
||||
#define TSL_RH_NB_PRIMES 40
|
||||
#else
|
||||
#define TSL_RH_NB_PRIMES 23
|
||||
#endif
|
||||
|
||||
static constexpr const std::array<std::size_t, TSL_RH_NB_PRIMES> PRIMES = {{
|
||||
1u, 5u, 17u, 29u, 37u, 53u, 67u, 79u, 97u, 131u, 193u, 257u, 389u, 521u, 769u, 1031u,
|
||||
1543u, 2053u, 3079u, 6151u, 12289u, 24593u, 49157u,
|
||||
#if SIZE_MAX >= ULONG_MAX
|
||||
98317ul, 196613ul, 393241ul, 786433ul, 1572869ul, 3145739ul, 6291469ul, 12582917ul,
|
||||
25165843ul, 50331653ul, 100663319ul, 201326611ul, 402653189ul, 805306457ul, 1610612741ul,
|
||||
3221225473ul, 4294967291ul,
|
||||
#endif
|
||||
#if SIZE_MAX >= ULLONG_MAX
|
||||
6442450939ull, 12884901893ull, 25769803751ull, 51539607551ull, 103079215111ull, 206158430209ull,
|
||||
412316860441ull, 824633720831ull, 1649267441651ull, 3298534883309ull, 6597069766657ull,
|
||||
#endif
|
||||
}};
|
||||
|
||||
template<unsigned int IPrime>
|
||||
static constexpr std::size_t mod(std::size_t hash) { return hash % PRIMES[IPrime]; }
|
||||
|
||||
// MOD_PRIME[iprime](hash) returns hash % PRIMES[iprime]. This table allows for faster modulo as the
|
||||
// compiler can optimize the modulo code better with a constant known at the compilation.
|
||||
static constexpr const std::array<std::size_t(*)(std::size_t), TSL_RH_NB_PRIMES> MOD_PRIME = {{
|
||||
&mod<0>, &mod<1>, &mod<2>, &mod<3>, &mod<4>, &mod<5>, &mod<6>, &mod<7>, &mod<8>, &mod<9>, &mod<10>,
|
||||
&mod<11>, &mod<12>, &mod<13>, &mod<14>, &mod<15>, &mod<16>, &mod<17>, &mod<18>, &mod<19>, &mod<20>,
|
||||
&mod<21>, &mod<22>,
|
||||
#if SIZE_MAX >= ULONG_MAX
|
||||
&mod<23>, &mod<24>, &mod<25>, &mod<26>, &mod<27>, &mod<28>, &mod<29>, &mod<30>, &mod<31>, &mod<32>,
|
||||
&mod<33>, &mod<34>, &mod<35>, &mod<36>, &mod<37> , &mod<38>, &mod<39>,
|
||||
#endif
|
||||
#if SIZE_MAX >= ULLONG_MAX
|
||||
&mod<40>, &mod<41>, &mod<42>, &mod<43>, &mod<44>, &mod<45>, &mod<46>, &mod<47>, &mod<48>, &mod<49>,
|
||||
&mod<50>,
|
||||
#endif
|
||||
}};
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* Grow the hash table by using prime numbers as bucket count. Slower than tsl::rh::power_of_two_growth_policy in
|
||||
* general but will probably distribute the values around better in the buckets with a poor hash function.
|
||||
*
|
||||
* To allow the compiler to optimize the modulo operation, a lookup table is used with constant primes numbers.
|
||||
*
|
||||
* With a switch the code would look like:
|
||||
* \code
|
||||
* switch(iprime) { // iprime is the current prime of the hash table
|
||||
* case 0: hash % 5ul;
|
||||
* break;
|
||||
* case 1: hash % 17ul;
|
||||
* break;
|
||||
* case 2: hash % 29ul;
|
||||
* break;
|
||||
* ...
|
||||
* }
|
||||
* \endcode
|
||||
*
|
||||
* Due to the constant variable in the modulo the compiler is able to optimize the operation
|
||||
* by a series of multiplications, substractions and shifts.
|
||||
*
|
||||
* The 'hash % 5' could become something like 'hash - (hash * 0xCCCCCCCD) >> 34) * 5' in a 64 bits environement.
|
||||
*/
|
||||
class prime_growth_policy {
|
||||
public:
|
||||
explicit prime_growth_policy(std::size_t& min_bucket_count_in_out) {
|
||||
auto it_prime = std::lower_bound(detail::PRIMES.begin(),
|
||||
detail::PRIMES.end(), min_bucket_count_in_out);
|
||||
if(it_prime == detail::PRIMES.end()) {
|
||||
TSL_RH_THROW_OR_TERMINATE(std::length_error, "The hash table exceeds its maxmimum size.");
|
||||
}
|
||||
|
||||
m_iprime = static_cast<unsigned int>(std::distance(detail::PRIMES.begin(), it_prime));
|
||||
if(min_bucket_count_in_out > 0) {
|
||||
min_bucket_count_in_out = *it_prime;
|
||||
}
|
||||
else {
|
||||
min_bucket_count_in_out = 0;
|
||||
}
|
||||
}
|
||||
|
||||
std::size_t bucket_for_hash(std::size_t hash) const noexcept {
|
||||
return detail::MOD_PRIME[m_iprime](hash);
|
||||
}
|
||||
|
||||
std::size_t next_bucket_count() const {
|
||||
if(m_iprime + 1 >= detail::PRIMES.size()) {
|
||||
TSL_RH_THROW_OR_TERMINATE(std::length_error, "The hash table exceeds its maxmimum size.");
|
||||
}
|
||||
|
||||
return detail::PRIMES[m_iprime + 1];
|
||||
}
|
||||
|
||||
std::size_t max_bucket_count() const {
|
||||
return detail::PRIMES.back();
|
||||
}
|
||||
|
||||
void clear() noexcept {
|
||||
m_iprime = 0;
|
||||
}
|
||||
|
||||
private:
|
||||
unsigned int m_iprime;
|
||||
|
||||
static_assert(std::numeric_limits<decltype(m_iprime)>::max() >= detail::PRIMES.size(),
|
||||
"The type of m_iprime is not big enough.");
|
||||
};
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
1441
src/includes/3thparty/tsl/robin_hash.h
Normal file
1441
src/includes/3thparty/tsl/robin_hash.h
Normal file
File diff suppressed because it is too large
Load Diff
715
src/includes/3thparty/tsl/robin_map.h
Normal file
715
src/includes/3thparty/tsl/robin_map.h
Normal file
@@ -0,0 +1,715 @@
|
||||
/**
|
||||
* MIT License
|
||||
*
|
||||
* Copyright (c) 2017 Tessil
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
* of this software and associated documentation files (the "Software"), to deal
|
||||
* in the Software without restriction, including without limitation the rights
|
||||
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
* copies of the Software, and to permit persons to whom the Software is
|
||||
* furnished to do so, subject to the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice shall be included in all
|
||||
* copies or substantial portions of the Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
* SOFTWARE.
|
||||
*/
|
||||
#ifndef TSL_ROBIN_MAP_H
|
||||
#define TSL_ROBIN_MAP_H
|
||||
|
||||
|
||||
#include <cstddef>
|
||||
#include <functional>
|
||||
#include <initializer_list>
|
||||
#include <memory>
|
||||
#include <type_traits>
|
||||
#include <utility>
|
||||
#include "robin_hash.h"
|
||||
|
||||
|
||||
namespace tsl {
|
||||
|
||||
|
||||
/**
|
||||
* Implementation of a hash map using open-adressing and the robin hood hashing algorithm with backward shift deletion.
|
||||
*
|
||||
* For operations modifying the hash map (insert, erase, rehash, ...), the strong exception guarantee
|
||||
* is only guaranteed when the expression `std::is_nothrow_swappable<std::pair<Key, T>>::value &&
|
||||
* std::is_nothrow_move_constructible<std::pair<Key, T>>::value` is true, otherwise if an exception
|
||||
* is thrown during the swap or the move, the hash map may end up in a undefined state. Per the standard
|
||||
* a `Key` or `T` with a noexcept copy constructor and no move constructor also satisfies the
|
||||
* `std::is_nothrow_move_constructible<std::pair<Key, T>>::value` criterion (and will thus guarantee the
|
||||
* strong exception for the map).
|
||||
*
|
||||
* When `StoreHash` is true, 32 bits of the hash are stored alongside the values. It can improve
|
||||
* the performance during lookups if the `KeyEqual` function takes time (if it engenders a cache-miss for example)
|
||||
* as we then compare the stored hashes before comparing the keys. When `tsl::rh::power_of_two_growth_policy` is used
|
||||
* as `GrowthPolicy`, it may also speed-up the rehash process as we can avoid to recalculate the hash.
|
||||
* When it is detected that storing the hash will not incur any memory penality due to alignement (i.e.
|
||||
* `sizeof(tsl::detail_robin_hash::bucket_entry<ValueType, true>) ==
|
||||
* sizeof(tsl::detail_robin_hash::bucket_entry<ValueType, false>)`) and `tsl::rh::power_of_two_growth_policy` is
|
||||
* used, the hash will be stored even if `StoreHash` is false so that we can speed-up the rehash (but it will
|
||||
* not be used on lookups unless `StoreHash` is true).
|
||||
*
|
||||
* `GrowthPolicy` defines how the map grows and consequently how a hash value is mapped to a bucket.
|
||||
* By default the map uses `tsl::rh::power_of_two_growth_policy`. This policy keeps the number of buckets
|
||||
* to a power of two and uses a mask to map the hash to a bucket instead of the slow modulo.
|
||||
* Other growth policies are available and you may define your own growth policy,
|
||||
* check `tsl::rh::power_of_two_growth_policy` for the interface.
|
||||
*
|
||||
* `std::pair<Key, T>` must be swappable.
|
||||
*
|
||||
* `Key` and `T` must be copy and/or move constructible.
|
||||
*
|
||||
* If the destructor of `Key` or `T` throws an exception, the behaviour of the class is undefined.
|
||||
*
|
||||
* Iterators invalidation:
|
||||
* - clear, operator=, reserve, rehash: always invalidate the iterators.
|
||||
* - insert, emplace, emplace_hint, operator[]: if there is an effective insert, invalidate the iterators.
|
||||
* - erase: always invalidate the iterators.
|
||||
*/
|
||||
template<class Key,
|
||||
class T,
|
||||
class Hash = std::hash<Key>,
|
||||
class KeyEqual = std::equal_to<Key>,
|
||||
class Allocator = std::allocator<std::pair<Key, T>>,
|
||||
bool StoreHash = false,
|
||||
class GrowthPolicy = tsl::rh::power_of_two_growth_policy<2>>
|
||||
class robin_map {
|
||||
private:
|
||||
template<typename U>
|
||||
using has_is_transparent = tsl::detail_robin_hash::has_is_transparent<U>;
|
||||
|
||||
class KeySelect {
|
||||
public:
|
||||
using key_type = Key;
|
||||
|
||||
const key_type& operator()(const std::pair<Key, T>& key_value) const noexcept {
|
||||
return key_value.first;
|
||||
}
|
||||
|
||||
key_type& operator()(std::pair<Key, T>& key_value) noexcept {
|
||||
return key_value.first;
|
||||
}
|
||||
};
|
||||
|
||||
class ValueSelect {
|
||||
public:
|
||||
using value_type = T;
|
||||
|
||||
const value_type& operator()(const std::pair<Key, T>& key_value) const noexcept {
|
||||
return key_value.second;
|
||||
}
|
||||
|
||||
value_type& operator()(std::pair<Key, T>& key_value) noexcept {
|
||||
return key_value.second;
|
||||
}
|
||||
};
|
||||
|
||||
using ht = detail_robin_hash::robin_hash<std::pair<Key, T>, KeySelect, ValueSelect,
|
||||
Hash, KeyEqual, Allocator, StoreHash, GrowthPolicy>;
|
||||
|
||||
public:
|
||||
using key_type = typename ht::key_type;
|
||||
using mapped_type = T;
|
||||
using value_type = typename ht::value_type;
|
||||
using size_type = typename ht::size_type;
|
||||
using difference_type = typename ht::difference_type;
|
||||
using hasher = typename ht::hasher;
|
||||
using key_equal = typename ht::key_equal;
|
||||
using allocator_type = typename ht::allocator_type;
|
||||
using reference = typename ht::reference;
|
||||
using const_reference = typename ht::const_reference;
|
||||
using pointer = typename ht::pointer;
|
||||
using const_pointer = typename ht::const_pointer;
|
||||
using iterator = typename ht::iterator;
|
||||
using const_iterator = typename ht::const_iterator;
|
||||
|
||||
|
||||
public:
|
||||
/*
|
||||
* Constructors
|
||||
*/
|
||||
robin_map(): robin_map(ht::DEFAULT_INIT_BUCKETS_SIZE) {
|
||||
}
|
||||
|
||||
explicit robin_map(size_type bucket_count,
|
||||
const Hash& hash = Hash(),
|
||||
const KeyEqual& equal = KeyEqual(),
|
||||
const Allocator& alloc = Allocator()):
|
||||
m_ht(bucket_count, hash, equal, alloc)
|
||||
{
|
||||
}
|
||||
|
||||
robin_map(size_type bucket_count,
|
||||
const Allocator& alloc): robin_map(bucket_count, Hash(), KeyEqual(), alloc)
|
||||
{
|
||||
}
|
||||
|
||||
robin_map(size_type bucket_count,
|
||||
const Hash& hash,
|
||||
const Allocator& alloc): robin_map(bucket_count, hash, KeyEqual(), alloc)
|
||||
{
|
||||
}
|
||||
|
||||
explicit robin_map(const Allocator& alloc): robin_map(ht::DEFAULT_INIT_BUCKETS_SIZE, alloc) {
|
||||
}
|
||||
|
||||
template<class InputIt>
|
||||
robin_map(InputIt first, InputIt last,
|
||||
size_type bucket_count = ht::DEFAULT_INIT_BUCKETS_SIZE,
|
||||
const Hash& hash = Hash(),
|
||||
const KeyEqual& equal = KeyEqual(),
|
||||
const Allocator& alloc = Allocator()): robin_map(bucket_count, hash, equal, alloc)
|
||||
{
|
||||
insert(first, last);
|
||||
}
|
||||
|
||||
template<class InputIt>
|
||||
robin_map(InputIt first, InputIt last,
|
||||
size_type bucket_count,
|
||||
const Allocator& alloc): robin_map(first, last, bucket_count, Hash(), KeyEqual(), alloc)
|
||||
{
|
||||
}
|
||||
|
||||
template<class InputIt>
|
||||
robin_map(InputIt first, InputIt last,
|
||||
size_type bucket_count,
|
||||
const Hash& hash,
|
||||
const Allocator& alloc): robin_map(first, last, bucket_count, hash, KeyEqual(), alloc)
|
||||
{
|
||||
}
|
||||
|
||||
robin_map(std::initializer_list<value_type> init,
|
||||
size_type bucket_count = ht::DEFAULT_INIT_BUCKETS_SIZE,
|
||||
const Hash& hash = Hash(),
|
||||
const KeyEqual& equal = KeyEqual(),
|
||||
const Allocator& alloc = Allocator()):
|
||||
robin_map(init.begin(), init.end(), bucket_count, hash, equal, alloc)
|
||||
{
|
||||
}
|
||||
|
||||
robin_map(std::initializer_list<value_type> init,
|
||||
size_type bucket_count,
|
||||
const Allocator& alloc):
|
||||
robin_map(init.begin(), init.end(), bucket_count, Hash(), KeyEqual(), alloc)
|
||||
{
|
||||
}
|
||||
|
||||
robin_map(std::initializer_list<value_type> init,
|
||||
size_type bucket_count,
|
||||
const Hash& hash,
|
||||
const Allocator& alloc):
|
||||
robin_map(init.begin(), init.end(), bucket_count, hash, KeyEqual(), alloc)
|
||||
{
|
||||
}
|
||||
|
||||
robin_map& operator=(std::initializer_list<value_type> ilist) {
|
||||
m_ht.clear();
|
||||
|
||||
m_ht.reserve(ilist.size());
|
||||
m_ht.insert(ilist.begin(), ilist.end());
|
||||
|
||||
return *this;
|
||||
}
|
||||
|
||||
allocator_type get_allocator() const { return m_ht.get_allocator(); }
|
||||
|
||||
|
||||
/*
|
||||
* Iterators
|
||||
*/
|
||||
iterator begin() noexcept { return m_ht.begin(); }
|
||||
const_iterator begin() const noexcept { return m_ht.begin(); }
|
||||
const_iterator cbegin() const noexcept { return m_ht.cbegin(); }
|
||||
|
||||
iterator end() noexcept { return m_ht.end(); }
|
||||
const_iterator end() const noexcept { return m_ht.end(); }
|
||||
const_iterator cend() const noexcept { return m_ht.cend(); }
|
||||
|
||||
|
||||
/*
|
||||
* Capacity
|
||||
*/
|
||||
bool empty() const noexcept { return m_ht.empty(); }
|
||||
size_type size() const noexcept { return m_ht.size(); }
|
||||
size_type max_size() const noexcept { return m_ht.max_size(); }
|
||||
|
||||
/*
|
||||
* Modifiers
|
||||
*/
|
||||
void clear() noexcept { m_ht.clear(); }
|
||||
|
||||
|
||||
|
||||
std::pair<iterator, bool> insert(const value_type& value) {
|
||||
return m_ht.insert(value);
|
||||
}
|
||||
|
||||
template<class P, typename std::enable_if<std::is_constructible<value_type, P&&>::value>::type* = nullptr>
|
||||
std::pair<iterator, bool> insert(P&& value) {
|
||||
return m_ht.emplace(std::forward<P>(value));
|
||||
}
|
||||
|
||||
std::pair<iterator, bool> insert(value_type&& value) {
|
||||
return m_ht.insert(std::move(value));
|
||||
}
|
||||
|
||||
|
||||
iterator insert(const_iterator hint, const value_type& value) {
|
||||
return m_ht.insert_hint(hint, value);
|
||||
}
|
||||
|
||||
template<class P, typename std::enable_if<std::is_constructible<value_type, P&&>::value>::type* = nullptr>
|
||||
iterator insert(const_iterator hint, P&& value) {
|
||||
return m_ht.emplace_hint(hint, std::forward<P>(value));
|
||||
}
|
||||
|
||||
iterator insert(const_iterator hint, value_type&& value) {
|
||||
return m_ht.insert_hint(hint, std::move(value));
|
||||
}
|
||||
|
||||
|
||||
template<class InputIt>
|
||||
void insert(InputIt first, InputIt last) {
|
||||
m_ht.insert(first, last);
|
||||
}
|
||||
|
||||
void insert(std::initializer_list<value_type> ilist) {
|
||||
m_ht.insert(ilist.begin(), ilist.end());
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
template<class M>
|
||||
std::pair<iterator, bool> insert_or_assign(const key_type& k, M&& obj) {
|
||||
return m_ht.insert_or_assign(k, std::forward<M>(obj));
|
||||
}
|
||||
|
||||
template<class M>
|
||||
std::pair<iterator, bool> insert_or_assign(key_type&& k, M&& obj) {
|
||||
return m_ht.insert_or_assign(std::move(k), std::forward<M>(obj));
|
||||
}
|
||||
|
||||
template<class M>
|
||||
iterator insert_or_assign(const_iterator hint, const key_type& k, M&& obj) {
|
||||
return m_ht.insert_or_assign(hint, k, std::forward<M>(obj));
|
||||
}
|
||||
|
||||
template<class M>
|
||||
iterator insert_or_assign(const_iterator hint, key_type&& k, M&& obj) {
|
||||
return m_ht.insert_or_assign(hint, std::move(k), std::forward<M>(obj));
|
||||
}
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Due to the way elements are stored, emplace will need to move or copy the key-value once.
|
||||
* The method is equivalent to insert(value_type(std::forward<Args>(args)...));
|
||||
*
|
||||
* Mainly here for compatibility with the std::unordered_map interface.
|
||||
*/
|
||||
template<class... Args>
|
||||
std::pair<iterator, bool> emplace(Args&&... args) {
|
||||
return m_ht.emplace(std::forward<Args>(args)...);
|
||||
}
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Due to the way elements are stored, emplace_hint will need to move or copy the key-value once.
|
||||
* The method is equivalent to insert(hint, value_type(std::forward<Args>(args)...));
|
||||
*
|
||||
* Mainly here for compatibility with the std::unordered_map interface.
|
||||
*/
|
||||
template<class... Args>
|
||||
iterator emplace_hint(const_iterator hint, Args&&... args) {
|
||||
return m_ht.emplace_hint(hint, std::forward<Args>(args)...);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
template<class... Args>
|
||||
std::pair<iterator, bool> try_emplace(const key_type& k, Args&&... args) {
|
||||
return m_ht.try_emplace(k, std::forward<Args>(args)...);
|
||||
}
|
||||
|
||||
template<class... Args>
|
||||
std::pair<iterator, bool> try_emplace(key_type&& k, Args&&... args) {
|
||||
return m_ht.try_emplace(std::move(k), std::forward<Args>(args)...);
|
||||
}
|
||||
|
||||
template<class... Args>
|
||||
iterator try_emplace(const_iterator hint, const key_type& k, Args&&... args) {
|
||||
return m_ht.try_emplace_hint(hint, k, std::forward<Args>(args)...);
|
||||
}
|
||||
|
||||
template<class... Args>
|
||||
iterator try_emplace(const_iterator hint, key_type&& k, Args&&... args) {
|
||||
return m_ht.try_emplace_hint(hint, std::move(k), std::forward<Args>(args)...);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
iterator erase(iterator pos) { return m_ht.erase(pos); }
|
||||
iterator erase(const_iterator pos) { return m_ht.erase(pos); }
|
||||
iterator erase(const_iterator first, const_iterator last) { return m_ht.erase(first, last); }
|
||||
size_type erase(const key_type& key) { return m_ht.erase(key); }
|
||||
|
||||
/**
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup to the value if you already have the hash.
|
||||
*/
|
||||
size_type erase(const key_type& key, std::size_t precalculated_hash) {
|
||||
return m_ht.erase(key, precalculated_hash);
|
||||
}
|
||||
|
||||
/**
|
||||
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
|
||||
* If so, K must be hashable and comparable to Key.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
size_type erase(const K& key) { return m_ht.erase(key); }
|
||||
|
||||
/**
|
||||
* @copydoc erase(const K& key)
|
||||
*
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup to the value if you already have the hash.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
size_type erase(const K& key, std::size_t precalculated_hash) {
|
||||
return m_ht.erase(key, precalculated_hash);
|
||||
}
|
||||
|
||||
|
||||
|
||||
void swap(robin_map& other) { other.m_ht.swap(m_ht); }
|
||||
|
||||
|
||||
|
||||
/*
|
||||
* Lookup
|
||||
*/
|
||||
T& at(const Key& key) { return m_ht.at(key); }
|
||||
|
||||
/**
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
|
||||
*/
|
||||
T& at(const Key& key, std::size_t precalculated_hash) { return m_ht.at(key, precalculated_hash); }
|
||||
|
||||
|
||||
const T& at(const Key& key) const { return m_ht.at(key); }
|
||||
|
||||
/**
|
||||
* @copydoc at(const Key& key, std::size_t precalculated_hash)
|
||||
*/
|
||||
const T& at(const Key& key, std::size_t precalculated_hash) const { return m_ht.at(key, precalculated_hash); }
|
||||
|
||||
|
||||
/**
|
||||
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
|
||||
* If so, K must be hashable and comparable to Key.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
T& at(const K& key) { return m_ht.at(key); }
|
||||
|
||||
/**
|
||||
* @copydoc at(const K& key)
|
||||
*
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
T& at(const K& key, std::size_t precalculated_hash) { return m_ht.at(key, precalculated_hash); }
|
||||
|
||||
|
||||
/**
|
||||
* @copydoc at(const K& key)
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
const T& at(const K& key) const { return m_ht.at(key); }
|
||||
|
||||
/**
|
||||
* @copydoc at(const K& key, std::size_t precalculated_hash)
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
const T& at(const K& key, std::size_t precalculated_hash) const { return m_ht.at(key, precalculated_hash); }
|
||||
|
||||
|
||||
|
||||
|
||||
T& operator[](const Key& key) { return m_ht[key]; }
|
||||
T& operator[](Key&& key) { return m_ht[std::move(key)]; }
|
||||
|
||||
|
||||
|
||||
|
||||
size_type count(const Key& key) const { return m_ht.count(key); }
|
||||
|
||||
/**
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
|
||||
*/
|
||||
size_type count(const Key& key, std::size_t precalculated_hash) const {
|
||||
return m_ht.count(key, precalculated_hash);
|
||||
}
|
||||
|
||||
/**
|
||||
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
|
||||
* If so, K must be hashable and comparable to Key.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
size_type count(const K& key) const { return m_ht.count(key); }
|
||||
|
||||
/**
|
||||
* @copydoc count(const K& key) const
|
||||
*
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
size_type count(const K& key, std::size_t precalculated_hash) const { return m_ht.count(key, precalculated_hash); }
|
||||
|
||||
|
||||
|
||||
|
||||
iterator find(const Key& key) { return m_ht.find(key); }
|
||||
|
||||
/**
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
|
||||
*/
|
||||
iterator find(const Key& key, std::size_t precalculated_hash) { return m_ht.find(key, precalculated_hash); }
|
||||
|
||||
const_iterator find(const Key& key) const { return m_ht.find(key); }
|
||||
|
||||
/**
|
||||
* @copydoc find(const Key& key, std::size_t precalculated_hash)
|
||||
*/
|
||||
const_iterator find(const Key& key, std::size_t precalculated_hash) const {
|
||||
return m_ht.find(key, precalculated_hash);
|
||||
}
|
||||
|
||||
/**
|
||||
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
|
||||
* If so, K must be hashable and comparable to Key.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
iterator find(const K& key) { return m_ht.find(key); }
|
||||
|
||||
/**
|
||||
* @copydoc find(const K& key)
|
||||
*
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
iterator find(const K& key, std::size_t precalculated_hash) { return m_ht.find(key, precalculated_hash); }
|
||||
|
||||
/**
|
||||
* @copydoc find(const K& key)
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
const_iterator find(const K& key) const { return m_ht.find(key); }
|
||||
|
||||
/**
|
||||
* @copydoc find(const K& key)
|
||||
*
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
const_iterator find(const K& key, std::size_t precalculated_hash) const {
|
||||
return m_ht.find(key, precalculated_hash);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
bool contains(const Key& key) const { return m_ht.contains(key); }
|
||||
|
||||
/**
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
|
||||
*/
|
||||
bool contains(const Key& key, std::size_t precalculated_hash) const {
|
||||
return m_ht.contains(key, precalculated_hash);
|
||||
}
|
||||
|
||||
/**
|
||||
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
|
||||
* If so, K must be hashable and comparable to Key.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
bool contains(const K& key) const { return m_ht.contains(key); }
|
||||
|
||||
/**
|
||||
* @copydoc contains(const K& key) const
|
||||
*
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
bool contains(const K& key, std::size_t precalculated_hash) const {
|
||||
return m_ht.contains(key, precalculated_hash);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
std::pair<iterator, iterator> equal_range(const Key& key) { return m_ht.equal_range(key); }
|
||||
|
||||
/**
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
|
||||
*/
|
||||
std::pair<iterator, iterator> equal_range(const Key& key, std::size_t precalculated_hash) {
|
||||
return m_ht.equal_range(key, precalculated_hash);
|
||||
}
|
||||
|
||||
std::pair<const_iterator, const_iterator> equal_range(const Key& key) const { return m_ht.equal_range(key); }
|
||||
|
||||
/**
|
||||
* @copydoc equal_range(const Key& key, std::size_t precalculated_hash)
|
||||
*/
|
||||
std::pair<const_iterator, const_iterator> equal_range(const Key& key, std::size_t precalculated_hash) const {
|
||||
return m_ht.equal_range(key, precalculated_hash);
|
||||
}
|
||||
|
||||
/**
|
||||
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
|
||||
* If so, K must be hashable and comparable to Key.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
std::pair<iterator, iterator> equal_range(const K& key) { return m_ht.equal_range(key); }
|
||||
|
||||
|
||||
/**
|
||||
* @copydoc equal_range(const K& key)
|
||||
*
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
std::pair<iterator, iterator> equal_range(const K& key, std::size_t precalculated_hash) {
|
||||
return m_ht.equal_range(key, precalculated_hash);
|
||||
}
|
||||
|
||||
/**
|
||||
* @copydoc equal_range(const K& key)
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
std::pair<const_iterator, const_iterator> equal_range(const K& key) const { return m_ht.equal_range(key); }
|
||||
|
||||
/**
|
||||
* @copydoc equal_range(const K& key, std::size_t precalculated_hash)
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
std::pair<const_iterator, const_iterator> equal_range(const K& key, std::size_t precalculated_hash) const {
|
||||
return m_ht.equal_range(key, precalculated_hash);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
/*
|
||||
* Bucket interface
|
||||
*/
|
||||
size_type bucket_count() const { return m_ht.bucket_count(); }
|
||||
size_type max_bucket_count() const { return m_ht.max_bucket_count(); }
|
||||
|
||||
|
||||
/*
|
||||
* Hash policy
|
||||
*/
|
||||
float load_factor() const { return m_ht.load_factor(); }
|
||||
|
||||
float min_load_factor() const { return m_ht.min_load_factor(); }
|
||||
float max_load_factor() const { return m_ht.max_load_factor(); }
|
||||
|
||||
/**
|
||||
* Set the `min_load_factor` to `ml`. When the `load_factor` of the map goes
|
||||
* below `min_load_factor` after some erase operations, the map will be
|
||||
* shrunk when an insertion occurs. The erase method itself never shrinks
|
||||
* the map.
|
||||
*
|
||||
* The default value of `min_load_factor` is 0.0f, the map never shrinks by default.
|
||||
*/
|
||||
void min_load_factor(float ml) { m_ht.min_load_factor(ml); }
|
||||
void max_load_factor(float ml) { m_ht.max_load_factor(ml); }
|
||||
|
||||
void rehash(size_type count) { m_ht.rehash(count); }
|
||||
void reserve(size_type count) { m_ht.reserve(count); }
|
||||
|
||||
|
||||
/*
|
||||
* Observers
|
||||
*/
|
||||
hasher hash_function() const { return m_ht.hash_function(); }
|
||||
key_equal key_eq() const { return m_ht.key_eq(); }
|
||||
|
||||
/*
|
||||
* Other
|
||||
*/
|
||||
|
||||
/**
|
||||
* Convert a const_iterator to an iterator.
|
||||
*/
|
||||
iterator mutable_iterator(const_iterator pos) {
|
||||
return m_ht.mutable_iterator(pos);
|
||||
}
|
||||
|
||||
friend bool operator==(const robin_map& lhs, const robin_map& rhs) {
|
||||
if(lhs.size() != rhs.size()) {
|
||||
return false;
|
||||
}
|
||||
|
||||
for(const auto& element_lhs: lhs) {
|
||||
const auto it_element_rhs = rhs.find(element_lhs.first);
|
||||
if(it_element_rhs == rhs.cend() || element_lhs.second != it_element_rhs->second) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
friend bool operator!=(const robin_map& lhs, const robin_map& rhs) {
|
||||
return !operator==(lhs, rhs);
|
||||
}
|
||||
|
||||
friend void swap(robin_map& lhs, robin_map& rhs) {
|
||||
lhs.swap(rhs);
|
||||
}
|
||||
|
||||
private:
|
||||
ht m_ht;
|
||||
};
|
||||
|
||||
|
||||
/**
|
||||
* Same as `tsl::robin_map<Key, T, Hash, KeyEqual, Allocator, StoreHash, tsl::rh::prime_growth_policy>`.
|
||||
*/
|
||||
template<class Key,
|
||||
class T,
|
||||
class Hash = std::hash<Key>,
|
||||
class KeyEqual = std::equal_to<Key>,
|
||||
class Allocator = std::allocator<std::pair<Key, T>>,
|
||||
bool StoreHash = false>
|
||||
using robin_pg_map = robin_map<Key, T, Hash, KeyEqual, Allocator, StoreHash, tsl::rh::prime_growth_policy>;
|
||||
|
||||
} // end namespace tsl
|
||||
|
||||
#endif
|
582
src/includes/3thparty/tsl/robin_set.h
Normal file
582
src/includes/3thparty/tsl/robin_set.h
Normal file
@@ -0,0 +1,582 @@
|
||||
/**
|
||||
* MIT License
|
||||
*
|
||||
* Copyright (c) 2017 Tessil
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
* of this software and associated documentation files (the "Software"), to deal
|
||||
* in the Software without restriction, including without limitation the rights
|
||||
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
* copies of the Software, and to permit persons to whom the Software is
|
||||
* furnished to do so, subject to the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice shall be included in all
|
||||
* copies or substantial portions of the Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
* SOFTWARE.
|
||||
*/
|
||||
#ifndef TSL_ROBIN_SET_H
|
||||
#define TSL_ROBIN_SET_H
|
||||
|
||||
|
||||
#include <cstddef>
|
||||
#include <functional>
|
||||
#include <initializer_list>
|
||||
#include <memory>
|
||||
#include <type_traits>
|
||||
#include <utility>
|
||||
#include "robin_hash.h"
|
||||
|
||||
|
||||
namespace tsl {
|
||||
|
||||
|
||||
/**
|
||||
* Implementation of a hash set using open-adressing and the robin hood hashing algorithm with backward shift deletion.
|
||||
*
|
||||
* For operations modifying the hash set (insert, erase, rehash, ...), the strong exception guarantee
|
||||
* is only guaranteed when the expression `std::is_nothrow_swappable<Key>::value &&
|
||||
* std::is_nothrow_move_constructible<Key>::value` is true, otherwise if an exception
|
||||
* is thrown during the swap or the move, the hash set may end up in a undefined state. Per the standard
|
||||
* a `Key` with a noexcept copy constructor and no move constructor also satisfies the
|
||||
* `std::is_nothrow_move_constructible<Key>::value` criterion (and will thus guarantee the
|
||||
* strong exception for the set).
|
||||
*
|
||||
* When `StoreHash` is true, 32 bits of the hash are stored alongside the values. It can improve
|
||||
* the performance during lookups if the `KeyEqual` function takes time (or engenders a cache-miss for example)
|
||||
* as we then compare the stored hashes before comparing the keys. When `tsl::rh::power_of_two_growth_policy` is used
|
||||
* as `GrowthPolicy`, it may also speed-up the rehash process as we can avoid to recalculate the hash.
|
||||
* When it is detected that storing the hash will not incur any memory penality due to alignement (i.e.
|
||||
* `sizeof(tsl::detail_robin_hash::bucket_entry<ValueType, true>) ==
|
||||
* sizeof(tsl::detail_robin_hash::bucket_entry<ValueType, false>)`) and `tsl::rh::power_of_two_growth_policy` is
|
||||
* used, the hash will be stored even if `StoreHash` is false so that we can speed-up the rehash (but it will
|
||||
* not be used on lookups unless `StoreHash` is true).
|
||||
*
|
||||
* `GrowthPolicy` defines how the set grows and consequently how a hash value is mapped to a bucket.
|
||||
* By default the set uses `tsl::rh::power_of_two_growth_policy`. This policy keeps the number of buckets
|
||||
* to a power of two and uses a mask to set the hash to a bucket instead of the slow modulo.
|
||||
* Other growth policies are available and you may define your own growth policy,
|
||||
* check `tsl::rh::power_of_two_growth_policy` for the interface.
|
||||
*
|
||||
* `Key` must be swappable.
|
||||
*
|
||||
* `Key` must be copy and/or move constructible.
|
||||
*
|
||||
* If the destructor of `Key` throws an exception, the behaviour of the class is undefined.
|
||||
*
|
||||
* Iterators invalidation:
|
||||
* - clear, operator=, reserve, rehash: always invalidate the iterators.
|
||||
* - insert, emplace, emplace_hint, operator[]: if there is an effective insert, invalidate the iterators.
|
||||
* - erase: always invalidate the iterators.
|
||||
*/
|
||||
template<class Key,
|
||||
class Hash = std::hash<Key>,
|
||||
class KeyEqual = std::equal_to<Key>,
|
||||
class Allocator = std::allocator<Key>,
|
||||
bool StoreHash = false,
|
||||
class GrowthPolicy = tsl::rh::power_of_two_growth_policy<2>>
|
||||
class robin_set {
|
||||
private:
|
||||
template<typename U>
|
||||
using has_is_transparent = tsl::detail_robin_hash::has_is_transparent<U>;
|
||||
|
||||
class KeySelect {
|
||||
public:
|
||||
using key_type = Key;
|
||||
|
||||
const key_type& operator()(const Key& key) const noexcept {
|
||||
return key;
|
||||
}
|
||||
|
||||
key_type& operator()(Key& key) noexcept {
|
||||
return key;
|
||||
}
|
||||
};
|
||||
|
||||
using ht = detail_robin_hash::robin_hash<Key, KeySelect, void,
|
||||
Hash, KeyEqual, Allocator, StoreHash, GrowthPolicy>;
|
||||
|
||||
public:
|
||||
using key_type = typename ht::key_type;
|
||||
using value_type = typename ht::value_type;
|
||||
using size_type = typename ht::size_type;
|
||||
using difference_type = typename ht::difference_type;
|
||||
using hasher = typename ht::hasher;
|
||||
using key_equal = typename ht::key_equal;
|
||||
using allocator_type = typename ht::allocator_type;
|
||||
using reference = typename ht::reference;
|
||||
using const_reference = typename ht::const_reference;
|
||||
using pointer = typename ht::pointer;
|
||||
using const_pointer = typename ht::const_pointer;
|
||||
using iterator = typename ht::iterator;
|
||||
using const_iterator = typename ht::const_iterator;
|
||||
|
||||
|
||||
/*
|
||||
* Constructors
|
||||
*/
|
||||
robin_set(): robin_set(ht::DEFAULT_INIT_BUCKETS_SIZE) {
|
||||
}
|
||||
|
||||
explicit robin_set(size_type bucket_count,
|
||||
const Hash& hash = Hash(),
|
||||
const KeyEqual& equal = KeyEqual(),
|
||||
const Allocator& alloc = Allocator()):
|
||||
m_ht(bucket_count, hash, equal, alloc)
|
||||
{
|
||||
}
|
||||
|
||||
robin_set(size_type bucket_count,
|
||||
const Allocator& alloc): robin_set(bucket_count, Hash(), KeyEqual(), alloc)
|
||||
{
|
||||
}
|
||||
|
||||
robin_set(size_type bucket_count,
|
||||
const Hash& hash,
|
||||
const Allocator& alloc): robin_set(bucket_count, hash, KeyEqual(), alloc)
|
||||
{
|
||||
}
|
||||
|
||||
explicit robin_set(const Allocator& alloc): robin_set(ht::DEFAULT_INIT_BUCKETS_SIZE, alloc) {
|
||||
}
|
||||
|
||||
template<class InputIt>
|
||||
robin_set(InputIt first, InputIt last,
|
||||
size_type bucket_count = ht::DEFAULT_INIT_BUCKETS_SIZE,
|
||||
const Hash& hash = Hash(),
|
||||
const KeyEqual& equal = KeyEqual(),
|
||||
const Allocator& alloc = Allocator()): robin_set(bucket_count, hash, equal, alloc)
|
||||
{
|
||||
insert(first, last);
|
||||
}
|
||||
|
||||
template<class InputIt>
|
||||
robin_set(InputIt first, InputIt last,
|
||||
size_type bucket_count,
|
||||
const Allocator& alloc): robin_set(first, last, bucket_count, Hash(), KeyEqual(), alloc)
|
||||
{
|
||||
}
|
||||
|
||||
template<class InputIt>
|
||||
robin_set(InputIt first, InputIt last,
|
||||
size_type bucket_count,
|
||||
const Hash& hash,
|
||||
const Allocator& alloc): robin_set(first, last, bucket_count, hash, KeyEqual(), alloc)
|
||||
{
|
||||
}
|
||||
|
||||
robin_set(std::initializer_list<value_type> init,
|
||||
size_type bucket_count = ht::DEFAULT_INIT_BUCKETS_SIZE,
|
||||
const Hash& hash = Hash(),
|
||||
const KeyEqual& equal = KeyEqual(),
|
||||
const Allocator& alloc = Allocator()):
|
||||
robin_set(init.begin(), init.end(), bucket_count, hash, equal, alloc)
|
||||
{
|
||||
}
|
||||
|
||||
robin_set(std::initializer_list<value_type> init,
|
||||
size_type bucket_count,
|
||||
const Allocator& alloc):
|
||||
robin_set(init.begin(), init.end(), bucket_count, Hash(), KeyEqual(), alloc)
|
||||
{
|
||||
}
|
||||
|
||||
robin_set(std::initializer_list<value_type> init,
|
||||
size_type bucket_count,
|
||||
const Hash& hash,
|
||||
const Allocator& alloc):
|
||||
robin_set(init.begin(), init.end(), bucket_count, hash, KeyEqual(), alloc)
|
||||
{
|
||||
}
|
||||
|
||||
|
||||
robin_set& operator=(std::initializer_list<value_type> ilist) {
|
||||
m_ht.clear();
|
||||
|
||||
m_ht.reserve(ilist.size());
|
||||
m_ht.insert(ilist.begin(), ilist.end());
|
||||
|
||||
return *this;
|
||||
}
|
||||
|
||||
allocator_type get_allocator() const { return m_ht.get_allocator(); }
|
||||
|
||||
|
||||
/*
|
||||
* Iterators
|
||||
*/
|
||||
iterator begin() noexcept { return m_ht.begin(); }
|
||||
const_iterator begin() const noexcept { return m_ht.begin(); }
|
||||
const_iterator cbegin() const noexcept { return m_ht.cbegin(); }
|
||||
|
||||
iterator end() noexcept { return m_ht.end(); }
|
||||
const_iterator end() const noexcept { return m_ht.end(); }
|
||||
const_iterator cend() const noexcept { return m_ht.cend(); }
|
||||
|
||||
|
||||
/*
|
||||
* Capacity
|
||||
*/
|
||||
bool empty() const noexcept { return m_ht.empty(); }
|
||||
size_type size() const noexcept { return m_ht.size(); }
|
||||
size_type max_size() const noexcept { return m_ht.max_size(); }
|
||||
|
||||
/*
|
||||
* Modifiers
|
||||
*/
|
||||
void clear() noexcept { m_ht.clear(); }
|
||||
|
||||
|
||||
|
||||
|
||||
std::pair<iterator, bool> insert(const value_type& value) {
|
||||
return m_ht.insert(value);
|
||||
}
|
||||
|
||||
std::pair<iterator, bool> insert(value_type&& value) {
|
||||
return m_ht.insert(std::move(value));
|
||||
}
|
||||
|
||||
iterator insert(const_iterator hint, const value_type& value) {
|
||||
return m_ht.insert_hint(hint, value);
|
||||
}
|
||||
|
||||
iterator insert(const_iterator hint, value_type&& value) {
|
||||
return m_ht.insert_hint(hint, std::move(value));
|
||||
}
|
||||
|
||||
template<class InputIt>
|
||||
void insert(InputIt first, InputIt last) {
|
||||
m_ht.insert(first, last);
|
||||
}
|
||||
|
||||
void insert(std::initializer_list<value_type> ilist) {
|
||||
m_ht.insert(ilist.begin(), ilist.end());
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Due to the way elements are stored, emplace will need to move or copy the key-value once.
|
||||
* The method is equivalent to insert(value_type(std::forward<Args>(args)...));
|
||||
*
|
||||
* Mainly here for compatibility with the std::unordered_map interface.
|
||||
*/
|
||||
template<class... Args>
|
||||
std::pair<iterator, bool> emplace(Args&&... args) {
|
||||
return m_ht.emplace(std::forward<Args>(args)...);
|
||||
}
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Due to the way elements are stored, emplace_hint will need to move or copy the key-value once.
|
||||
* The method is equivalent to insert(hint, value_type(std::forward<Args>(args)...));
|
||||
*
|
||||
* Mainly here for compatibility with the std::unordered_map interface.
|
||||
*/
|
||||
template<class... Args>
|
||||
iterator emplace_hint(const_iterator hint, Args&&... args) {
|
||||
return m_ht.emplace_hint(hint, std::forward<Args>(args)...);
|
||||
}
|
||||
|
||||
|
||||
|
||||
iterator erase(iterator pos) { return m_ht.erase(pos); }
|
||||
iterator erase(const_iterator pos) { return m_ht.erase(pos); }
|
||||
iterator erase(const_iterator first, const_iterator last) { return m_ht.erase(first, last); }
|
||||
size_type erase(const key_type& key) { return m_ht.erase(key); }
|
||||
|
||||
/**
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup to the value if you already have the hash.
|
||||
*/
|
||||
size_type erase(const key_type& key, std::size_t precalculated_hash) {
|
||||
return m_ht.erase(key, precalculated_hash);
|
||||
}
|
||||
|
||||
/**
|
||||
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
|
||||
* If so, K must be hashable and comparable to Key.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
size_type erase(const K& key) { return m_ht.erase(key); }
|
||||
|
||||
/**
|
||||
* @copydoc erase(const K& key)
|
||||
*
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup to the value if you already have the hash.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
size_type erase(const K& key, std::size_t precalculated_hash) {
|
||||
return m_ht.erase(key, precalculated_hash);
|
||||
}
|
||||
|
||||
|
||||
|
||||
void swap(robin_set& other) { other.m_ht.swap(m_ht); }
|
||||
|
||||
|
||||
|
||||
/*
|
||||
* Lookup
|
||||
*/
|
||||
size_type count(const Key& key) const { return m_ht.count(key); }
|
||||
|
||||
/**
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
|
||||
*/
|
||||
size_type count(const Key& key, std::size_t precalculated_hash) const { return m_ht.count(key, precalculated_hash); }
|
||||
|
||||
/**
|
||||
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
|
||||
* If so, K must be hashable and comparable to Key.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
size_type count(const K& key) const { return m_ht.count(key); }
|
||||
|
||||
/**
|
||||
* @copydoc count(const K& key) const
|
||||
*
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
size_type count(const K& key, std::size_t precalculated_hash) const { return m_ht.count(key, precalculated_hash); }
|
||||
|
||||
|
||||
|
||||
|
||||
iterator find(const Key& key) { return m_ht.find(key); }
|
||||
|
||||
/**
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
|
||||
*/
|
||||
iterator find(const Key& key, std::size_t precalculated_hash) { return m_ht.find(key, precalculated_hash); }
|
||||
|
||||
const_iterator find(const Key& key) const { return m_ht.find(key); }
|
||||
|
||||
/**
|
||||
* @copydoc find(const Key& key, std::size_t precalculated_hash)
|
||||
*/
|
||||
const_iterator find(const Key& key, std::size_t precalculated_hash) const { return m_ht.find(key, precalculated_hash); }
|
||||
|
||||
/**
|
||||
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
|
||||
* If so, K must be hashable and comparable to Key.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
iterator find(const K& key) { return m_ht.find(key); }
|
||||
|
||||
/**
|
||||
* @copydoc find(const K& key)
|
||||
*
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
iterator find(const K& key, std::size_t precalculated_hash) { return m_ht.find(key, precalculated_hash); }
|
||||
|
||||
/**
|
||||
* @copydoc find(const K& key)
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
const_iterator find(const K& key) const { return m_ht.find(key); }
|
||||
|
||||
/**
|
||||
* @copydoc find(const K& key)
|
||||
*
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
const_iterator find(const K& key, std::size_t precalculated_hash) const { return m_ht.find(key, precalculated_hash); }
|
||||
|
||||
|
||||
|
||||
|
||||
bool contains(const Key& key) const { return m_ht.contains(key); }
|
||||
|
||||
/**
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
|
||||
*/
|
||||
bool contains(const Key& key, std::size_t precalculated_hash) const {
|
||||
return m_ht.contains(key, precalculated_hash);
|
||||
}
|
||||
|
||||
/**
|
||||
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
|
||||
* If so, K must be hashable and comparable to Key.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
bool contains(const K& key) const { return m_ht.contains(key); }
|
||||
|
||||
/**
|
||||
* @copydoc contains(const K& key) const
|
||||
*
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
bool contains(const K& key, std::size_t precalculated_hash) const {
|
||||
return m_ht.contains(key, precalculated_hash);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
std::pair<iterator, iterator> equal_range(const Key& key) { return m_ht.equal_range(key); }
|
||||
|
||||
/**
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
|
||||
*/
|
||||
std::pair<iterator, iterator> equal_range(const Key& key, std::size_t precalculated_hash) {
|
||||
return m_ht.equal_range(key, precalculated_hash);
|
||||
}
|
||||
|
||||
std::pair<const_iterator, const_iterator> equal_range(const Key& key) const { return m_ht.equal_range(key); }
|
||||
|
||||
/**
|
||||
* @copydoc equal_range(const Key& key, std::size_t precalculated_hash)
|
||||
*/
|
||||
std::pair<const_iterator, const_iterator> equal_range(const Key& key, std::size_t precalculated_hash) const {
|
||||
return m_ht.equal_range(key, precalculated_hash);
|
||||
}
|
||||
|
||||
/**
|
||||
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
|
||||
* If so, K must be hashable and comparable to Key.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
std::pair<iterator, iterator> equal_range(const K& key) { return m_ht.equal_range(key); }
|
||||
|
||||
/**
|
||||
* @copydoc equal_range(const K& key)
|
||||
*
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
std::pair<iterator, iterator> equal_range(const K& key, std::size_t precalculated_hash) {
|
||||
return m_ht.equal_range(key, precalculated_hash);
|
||||
}
|
||||
|
||||
/**
|
||||
* @copydoc equal_range(const K& key)
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
std::pair<const_iterator, const_iterator> equal_range(const K& key) const { return m_ht.equal_range(key); }
|
||||
|
||||
/**
|
||||
* @copydoc equal_range(const K& key, std::size_t precalculated_hash)
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
std::pair<const_iterator, const_iterator> equal_range(const K& key, std::size_t precalculated_hash) const {
|
||||
return m_ht.equal_range(key, precalculated_hash);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
/*
|
||||
* Bucket interface
|
||||
*/
|
||||
size_type bucket_count() const { return m_ht.bucket_count(); }
|
||||
size_type max_bucket_count() const { return m_ht.max_bucket_count(); }
|
||||
|
||||
|
||||
/*
|
||||
* Hash policy
|
||||
*/
|
||||
float load_factor() const { return m_ht.load_factor(); }
|
||||
|
||||
float min_load_factor() const { return m_ht.min_load_factor(); }
|
||||
float max_load_factor() const { return m_ht.max_load_factor(); }
|
||||
|
||||
/**
|
||||
* Set the `min_load_factor` to `ml`. When the `load_factor` of the set goes
|
||||
* below `min_load_factor` after some erase operations, the set will be
|
||||
* shrunk when an insertion occurs. The erase method itself never shrinks
|
||||
* the set.
|
||||
*
|
||||
* The default value of `min_load_factor` is 0.0f, the set never shrinks by default.
|
||||
*/
|
||||
void min_load_factor(float ml) { m_ht.min_load_factor(ml); }
|
||||
void max_load_factor(float ml) { m_ht.max_load_factor(ml); }
|
||||
|
||||
void rehash(size_type count) { m_ht.rehash(count); }
|
||||
void reserve(size_type count) { m_ht.reserve(count); }
|
||||
|
||||
|
||||
/*
|
||||
* Observers
|
||||
*/
|
||||
hasher hash_function() const { return m_ht.hash_function(); }
|
||||
key_equal key_eq() const { return m_ht.key_eq(); }
|
||||
|
||||
|
||||
/*
|
||||
* Other
|
||||
*/
|
||||
|
||||
/**
|
||||
* Convert a const_iterator to an iterator.
|
||||
*/
|
||||
iterator mutable_iterator(const_iterator pos) {
|
||||
return m_ht.mutable_iterator(pos);
|
||||
}
|
||||
|
||||
friend bool operator==(const robin_set& lhs, const robin_set& rhs) {
|
||||
if(lhs.size() != rhs.size()) {
|
||||
return false;
|
||||
}
|
||||
|
||||
for(const auto& element_lhs: lhs) {
|
||||
const auto it_element_rhs = rhs.find(element_lhs);
|
||||
if(it_element_rhs == rhs.cend()) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
friend bool operator!=(const robin_set& lhs, const robin_set& rhs) {
|
||||
return !operator==(lhs, rhs);
|
||||
}
|
||||
|
||||
friend void swap(robin_set& lhs, robin_set& rhs) {
|
||||
lhs.swap(rhs);
|
||||
}
|
||||
|
||||
private:
|
||||
ht m_ht;
|
||||
};
|
||||
|
||||
|
||||
/**
|
||||
* Same as `tsl::robin_set<Key, Hash, KeyEqual, Allocator, StoreHash, tsl::rh::prime_growth_policy>`.
|
||||
*/
|
||||
template<class Key,
|
||||
class Hash = std::hash<Key>,
|
||||
class KeyEqual = std::equal_to<Key>,
|
||||
class Allocator = std::allocator<Key>,
|
||||
bool StoreHash = false>
|
||||
using robin_pg_set = robin_set<Key, Hash, KeyEqual, Allocator, StoreHash, tsl::rh::prime_growth_policy>;
|
||||
|
||||
} // end namespace tsl
|
||||
|
||||
#endif
|
||||
|
295
src/includes/3thparty/tsl/sparse_growth_policy.h
Normal file
295
src/includes/3thparty/tsl/sparse_growth_policy.h
Normal file
@@ -0,0 +1,295 @@
|
||||
/**
|
||||
* MIT License
|
||||
*
|
||||
* Copyright (c) 2017 Tessil
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
* of this software and associated documentation files (the "Software"), to deal
|
||||
* in the Software without restriction, including without limitation the rights
|
||||
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
* copies of the Software, and to permit persons to whom the Software is
|
||||
* furnished to do so, subject to the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice shall be included in all
|
||||
* copies or substantial portions of the Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
* SOFTWARE.
|
||||
*/
|
||||
#ifndef TSL_SPARSE_GROWTH_POLICY_H
|
||||
#define TSL_SPARSE_GROWTH_POLICY_H
|
||||
|
||||
|
||||
#include <algorithm>
|
||||
#include <array>
|
||||
#include <climits>
|
||||
#include <cmath>
|
||||
#include <cstddef>
|
||||
#include <iterator>
|
||||
#include <limits>
|
||||
#include <ratio>
|
||||
#include <stdexcept>
|
||||
|
||||
|
||||
namespace tsl {
|
||||
namespace sh {
|
||||
|
||||
/**
|
||||
* Grow the hash table by a factor of GrowthFactor keeping the bucket count to a power of two. It allows
|
||||
* the table to use a mask operation instead of a modulo operation to map a hash to a bucket.
|
||||
*
|
||||
* GrowthFactor must be a power of two >= 2.
|
||||
*/
|
||||
template<std::size_t GrowthFactor>
|
||||
class power_of_two_growth_policy {
|
||||
public:
|
||||
/**
|
||||
* Called on the hash table creation and on rehash. The number of buckets for the table is passed in parameter.
|
||||
* This number is a minimum, the policy may update this value with a higher value if needed (but not lower).
|
||||
*
|
||||
* If 0 is given, min_bucket_count_in_out must still be 0 after the policy creation and
|
||||
* bucket_for_hash must always return 0 in this case.
|
||||
*/
|
||||
explicit power_of_two_growth_policy(std::size_t& min_bucket_count_in_out) {
|
||||
if(min_bucket_count_in_out > max_bucket_count()) {
|
||||
throw std::length_error("The hash table exceeds its maxmimum size.");
|
||||
}
|
||||
|
||||
if(min_bucket_count_in_out > 0) {
|
||||
min_bucket_count_in_out = round_up_to_power_of_two(min_bucket_count_in_out);
|
||||
m_mask = min_bucket_count_in_out - 1;
|
||||
}
|
||||
else {
|
||||
m_mask = 0;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Return the bucket [0, bucket_count()) to which the hash belongs.
|
||||
* If bucket_count() is 0, it must always return 0.
|
||||
*/
|
||||
std::size_t bucket_for_hash(std::size_t hash) const noexcept {
|
||||
return hash & m_mask;
|
||||
}
|
||||
|
||||
/**
|
||||
* Return the number of buckets that should be used on next growth.
|
||||
*/
|
||||
std::size_t next_bucket_count() const {
|
||||
if((m_mask + 1) > max_bucket_count() / GrowthFactor) {
|
||||
throw std::length_error("The hash table exceeds its maxmimum size.");
|
||||
}
|
||||
|
||||
return (m_mask + 1) * GrowthFactor;
|
||||
}
|
||||
|
||||
/**
|
||||
* Return the maximum number of buckets supported by the policy.
|
||||
*/
|
||||
std::size_t max_bucket_count() const {
|
||||
// Largest power of two.
|
||||
return (std::numeric_limits<std::size_t>::max() / 2) + 1;
|
||||
}
|
||||
|
||||
/**
|
||||
* Reset the growth policy as if it was created with a bucket count of 0.
|
||||
* After a clear, the policy must always return 0 when bucket_for_hash is called.
|
||||
*/
|
||||
void clear() noexcept {
|
||||
m_mask = 0;
|
||||
}
|
||||
|
||||
private:
|
||||
static std::size_t round_up_to_power_of_two(std::size_t value) {
|
||||
if(is_power_of_two(value)) {
|
||||
return value;
|
||||
}
|
||||
|
||||
if(value == 0) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
--value;
|
||||
for(std::size_t i = 1; i < sizeof(std::size_t) * CHAR_BIT; i *= 2) {
|
||||
value |= value >> i;
|
||||
}
|
||||
|
||||
return value + 1;
|
||||
}
|
||||
|
||||
static constexpr bool is_power_of_two(std::size_t value) {
|
||||
return value != 0 && (value & (value - 1)) == 0;
|
||||
}
|
||||
|
||||
protected:
|
||||
static_assert(is_power_of_two(GrowthFactor) && GrowthFactor >= 2, "GrowthFactor must be a power of two >= 2.");
|
||||
|
||||
std::size_t m_mask;
|
||||
};
|
||||
|
||||
|
||||
/**
|
||||
* Grow the hash table by GrowthFactor::num / GrowthFactor::den and use a modulo to map a hash
|
||||
* to a bucket. Slower but it can be useful if you want a slower growth.
|
||||
*/
|
||||
template<class GrowthFactor = std::ratio<3, 2>>
|
||||
class mod_growth_policy {
|
||||
public:
|
||||
explicit mod_growth_policy(std::size_t& min_bucket_count_in_out) {
|
||||
if(min_bucket_count_in_out > max_bucket_count()) {
|
||||
throw std::length_error("The hash table exceeds its maxmimum size.");
|
||||
}
|
||||
|
||||
if(min_bucket_count_in_out > 0) {
|
||||
m_mod = min_bucket_count_in_out;
|
||||
}
|
||||
else {
|
||||
m_mod = 1;
|
||||
}
|
||||
}
|
||||
|
||||
std::size_t bucket_for_hash(std::size_t hash) const noexcept {
|
||||
return hash % m_mod;
|
||||
}
|
||||
|
||||
std::size_t next_bucket_count() const {
|
||||
if(m_mod == max_bucket_count()) {
|
||||
throw std::length_error("The hash table exceeds its maxmimum size.");
|
||||
}
|
||||
|
||||
const double next_bucket_count = std::ceil(double(m_mod) * REHASH_SIZE_MULTIPLICATION_FACTOR);
|
||||
if(!std::isnormal(next_bucket_count)) {
|
||||
throw std::length_error("The hash table exceeds its maxmimum size.");
|
||||
}
|
||||
|
||||
if(next_bucket_count > double(max_bucket_count())) {
|
||||
return max_bucket_count();
|
||||
}
|
||||
else {
|
||||
return std::size_t(next_bucket_count);
|
||||
}
|
||||
}
|
||||
|
||||
std::size_t max_bucket_count() const {
|
||||
return MAX_BUCKET_COUNT;
|
||||
}
|
||||
|
||||
void clear() noexcept {
|
||||
m_mod = 1;
|
||||
}
|
||||
|
||||
private:
|
||||
static constexpr double REHASH_SIZE_MULTIPLICATION_FACTOR = 1.0 * GrowthFactor::num / GrowthFactor::den;
|
||||
static const std::size_t MAX_BUCKET_COUNT =
|
||||
std::size_t(double(
|
||||
std::numeric_limits<std::size_t>::max() / REHASH_SIZE_MULTIPLICATION_FACTOR
|
||||
));
|
||||
|
||||
static_assert(REHASH_SIZE_MULTIPLICATION_FACTOR >= 1.1, "Growth factor should be >= 1.1.");
|
||||
|
||||
std::size_t m_mod;
|
||||
};
|
||||
|
||||
|
||||
|
||||
namespace detail {
|
||||
|
||||
static constexpr const std::array<std::size_t, 40> PRIMES = {{
|
||||
1ul, 5ul, 17ul, 29ul, 37ul, 53ul, 67ul, 79ul, 97ul, 131ul, 193ul, 257ul, 389ul, 521ul, 769ul, 1031ul,
|
||||
1543ul, 2053ul, 3079ul, 6151ul, 12289ul, 24593ul, 49157ul, 98317ul, 196613ul, 393241ul, 786433ul,
|
||||
1572869ul, 3145739ul, 6291469ul, 12582917ul, 25165843ul, 50331653ul, 100663319ul, 201326611ul,
|
||||
402653189ul, 805306457ul, 1610612741ul, 3221225473ul, 4294967291ul
|
||||
}};
|
||||
|
||||
template<unsigned int IPrime>
|
||||
static constexpr std::size_t mod(std::size_t hash) { return hash % PRIMES[IPrime]; }
|
||||
|
||||
// MOD_PRIME[iprime](hash) returns hash % PRIMES[iprime]. This table allows for faster modulo as the
|
||||
// compiler can optimize the modulo code better with a constant known at the compilation.
|
||||
static constexpr const std::array<std::size_t(*)(std::size_t), 40> MOD_PRIME = {{
|
||||
&mod<0>, &mod<1>, &mod<2>, &mod<3>, &mod<4>, &mod<5>, &mod<6>, &mod<7>, &mod<8>, &mod<9>, &mod<10>,
|
||||
&mod<11>, &mod<12>, &mod<13>, &mod<14>, &mod<15>, &mod<16>, &mod<17>, &mod<18>, &mod<19>, &mod<20>,
|
||||
&mod<21>, &mod<22>, &mod<23>, &mod<24>, &mod<25>, &mod<26>, &mod<27>, &mod<28>, &mod<29>, &mod<30>,
|
||||
&mod<31>, &mod<32>, &mod<33>, &mod<34>, &mod<35>, &mod<36>, &mod<37> , &mod<38>, &mod<39>
|
||||
}};
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* Grow the hash table by using prime numbers as bucket count. Slower than tsl::sh::power_of_two_growth_policy in
|
||||
* general but will probably distribute the values around better in the buckets with a poor hash function.
|
||||
*
|
||||
* To allow the compiler to optimize the modulo operation, a lookup table is used with constant primes numbers.
|
||||
*
|
||||
* With a switch the code would look like:
|
||||
* \code
|
||||
* switch(iprime) { // iprime is the current prime of the hash table
|
||||
* case 0: hash % 5ul;
|
||||
* break;
|
||||
* case 1: hash % 17ul;
|
||||
* break;
|
||||
* case 2: hash % 29ul;
|
||||
* break;
|
||||
* ...
|
||||
* }
|
||||
* \endcode
|
||||
*
|
||||
* Due to the constant variable in the modulo the compiler is able to optimize the operation
|
||||
* by a series of multiplications, substractions and shifts.
|
||||
*
|
||||
* The 'hash % 5' could become something like 'hash - (hash * 0xCCCCCCCD) >> 34) * 5' in a 64 bits environement.
|
||||
*/
|
||||
class prime_growth_policy {
|
||||
public:
|
||||
explicit prime_growth_policy(std::size_t& min_bucket_count_in_out) {
|
||||
auto it_prime = std::lower_bound(detail::PRIMES.begin(),
|
||||
detail::PRIMES.end(), min_bucket_count_in_out);
|
||||
if(it_prime == detail::PRIMES.end()) {
|
||||
throw std::length_error("The hash table exceeds its maxmimum size.");
|
||||
}
|
||||
|
||||
m_iprime = static_cast<unsigned int>(std::distance(detail::PRIMES.begin(), it_prime));
|
||||
if(min_bucket_count_in_out > 0) {
|
||||
min_bucket_count_in_out = *it_prime;
|
||||
}
|
||||
else {
|
||||
min_bucket_count_in_out = 0;
|
||||
}
|
||||
}
|
||||
|
||||
std::size_t bucket_for_hash(std::size_t hash) const noexcept {
|
||||
return detail::MOD_PRIME[m_iprime](hash);
|
||||
}
|
||||
|
||||
std::size_t next_bucket_count() const {
|
||||
if(m_iprime + 1 >= detail::PRIMES.size()) {
|
||||
throw std::length_error("The hash table exceeds its maxmimum size.");
|
||||
}
|
||||
|
||||
return detail::PRIMES[m_iprime + 1];
|
||||
}
|
||||
|
||||
std::size_t max_bucket_count() const {
|
||||
return detail::PRIMES.back();
|
||||
}
|
||||
|
||||
void clear() noexcept {
|
||||
m_iprime = 0;
|
||||
}
|
||||
|
||||
private:
|
||||
unsigned int m_iprime;
|
||||
|
||||
static_assert(std::numeric_limits<decltype(m_iprime)>::max() >= detail::PRIMES.size(),
|
||||
"The type of m_iprime is not big enough.");
|
||||
};
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
2127
src/includes/3thparty/tsl/sparse_hash.h
Normal file
2127
src/includes/3thparty/tsl/sparse_hash.h
Normal file
File diff suppressed because it is too large
Load Diff
749
src/includes/3thparty/tsl/sparse_map.h
Normal file
749
src/includes/3thparty/tsl/sparse_map.h
Normal file
@@ -0,0 +1,749 @@
|
||||
/**
|
||||
* MIT License
|
||||
*
|
||||
* Copyright (c) 2017 Tessil
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
* of this software and associated documentation files (the "Software"), to deal
|
||||
* in the Software without restriction, including without limitation the rights
|
||||
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
* copies of the Software, and to permit persons to whom the Software is
|
||||
* furnished to do so, subject to the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice shall be included in all
|
||||
* copies or substantial portions of the Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
* SOFTWARE.
|
||||
*/
|
||||
#ifndef TSL_SPARSE_MAP_H
|
||||
#define TSL_SPARSE_MAP_H
|
||||
|
||||
|
||||
#include <cstddef>
|
||||
#include <functional>
|
||||
#include <initializer_list>
|
||||
#include <memory>
|
||||
#include <type_traits>
|
||||
#include <utility>
|
||||
#include "sparse_hash.h"
|
||||
|
||||
|
||||
namespace tsl {
|
||||
|
||||
|
||||
/**
|
||||
* Implementation of a sparse hash map using open-addressing with quadratic probing.
|
||||
* The goal on the hash map is to be the most memory efficient possible, even at low load factor,
|
||||
* while keeping reasonable performances.
|
||||
*
|
||||
* `GrowthPolicy` defines how the map grows and consequently how a hash value is mapped to a bucket.
|
||||
* By default the map uses `tsl::sh::power_of_two_growth_policy`. This policy keeps the number of buckets
|
||||
* to a power of two and uses a mask to map the hash to a bucket instead of the slow modulo.
|
||||
* Other growth policies are available and you may define your own growth policy,
|
||||
* check `tsl::sh::power_of_two_growth_policy` for the interface.
|
||||
*
|
||||
* `ExceptionSafety` defines the exception guarantee provided by the class. By default only the basic
|
||||
* exception safety is guaranteed which mean that all resources used by the hash map will be freed (no memory leaks)
|
||||
* but the hash map may end-up in an undefined state if an exception is thrown (undefined here means that some elements
|
||||
* may be missing). This can ONLY happen on rehash (either on insert or if `rehash` is called explicitly) and will
|
||||
* occur if the Allocator can't allocate memory (`std::bad_alloc`) or if the copy constructor (when a nothrow
|
||||
* move constructor is not available) throws an exception. This can be avoided by calling `reserve` beforehand.
|
||||
* This basic guarantee is similar to the one of `google::sparse_hash_map` and `spp::sparse_hash_map`.
|
||||
* It is possible to ask for the strong exception guarantee with `tsl::sh::exception_safety::strong`, the drawback
|
||||
* is that the map will be slower on rehashes and will also need more memory on rehashes.
|
||||
*
|
||||
* `Sparsity` defines how much the hash set will compromise between insertion speed and memory usage. A high
|
||||
* sparsity means less memory usage but longer insertion times, and vice-versa for low sparsity. The default
|
||||
* `tsl::sh::sparsity::medium` sparsity offers a good compromise. It doesn't change the lookup speed.
|
||||
*
|
||||
* `Key` and `T` must be nothrow move constructible and/or copy constructible.
|
||||
*
|
||||
* If the destructor of `Key` or `T` throws an exception, the behaviour of the class is undefined.
|
||||
*
|
||||
* Iterators invalidation:
|
||||
* - clear, operator=, reserve, rehash: always invalidate the iterators.
|
||||
* - insert, emplace, emplace_hint, operator[]: if there is an effective insert, invalidate the iterators.
|
||||
* - erase: always invalidate the iterators.
|
||||
*/
|
||||
template<class Key,
|
||||
class T,
|
||||
class Hash = std::hash<Key>,
|
||||
class KeyEqual = std::equal_to<Key>,
|
||||
class Allocator = std::allocator<std::pair<Key, T>>,
|
||||
class GrowthPolicy = tsl::sh::power_of_two_growth_policy<2>,
|
||||
tsl::sh::exception_safety ExceptionSafety = tsl::sh::exception_safety::basic,
|
||||
tsl::sh::sparsity Sparsity = tsl::sh::sparsity::medium>
|
||||
class sparse_map {
|
||||
private:
|
||||
template<typename U>
|
||||
using has_is_transparent = tsl::detail_sparse_hash::has_is_transparent<U>;
|
||||
|
||||
class KeySelect {
|
||||
public:
|
||||
using key_type = Key;
|
||||
|
||||
const key_type& operator()(const std::pair<Key, T>& key_value) const noexcept {
|
||||
return key_value.first;
|
||||
}
|
||||
|
||||
key_type& operator()(std::pair<Key, T>& key_value) noexcept {
|
||||
return key_value.first;
|
||||
}
|
||||
};
|
||||
|
||||
class ValueSelect {
|
||||
public:
|
||||
using value_type = T;
|
||||
|
||||
const value_type& operator()(const std::pair<Key, T>& key_value) const noexcept {
|
||||
return key_value.second;
|
||||
}
|
||||
|
||||
value_type& operator()(std::pair<Key, T>& key_value) noexcept {
|
||||
return key_value.second;
|
||||
}
|
||||
};
|
||||
|
||||
using ht = detail_sparse_hash::sparse_hash<std::pair<Key, T>, KeySelect, ValueSelect,
|
||||
Hash, KeyEqual, Allocator, GrowthPolicy,
|
||||
ExceptionSafety, Sparsity,
|
||||
tsl::sh::probing::quadratic>;
|
||||
|
||||
public:
|
||||
using key_type = typename ht::key_type;
|
||||
using mapped_type = T;
|
||||
using value_type = typename ht::value_type;
|
||||
using size_type = typename ht::size_type;
|
||||
using difference_type = typename ht::difference_type;
|
||||
using hasher = typename ht::hasher;
|
||||
using key_equal = typename ht::key_equal;
|
||||
using allocator_type = typename ht::allocator_type;
|
||||
using reference = typename ht::reference;
|
||||
using const_reference = typename ht::const_reference;
|
||||
using pointer = typename ht::pointer;
|
||||
using const_pointer = typename ht::const_pointer;
|
||||
using iterator = typename ht::iterator;
|
||||
using const_iterator = typename ht::const_iterator;
|
||||
|
||||
|
||||
public:
|
||||
/*
|
||||
* Constructors
|
||||
*/
|
||||
sparse_map(): sparse_map(ht::DEFAULT_INIT_BUCKET_COUNT) {
|
||||
}
|
||||
|
||||
explicit sparse_map(size_type bucket_count,
|
||||
const Hash& hash = Hash(),
|
||||
const KeyEqual& equal = KeyEqual(),
|
||||
const Allocator& alloc = Allocator()):
|
||||
m_ht(bucket_count, hash, equal, alloc, ht::DEFAULT_MAX_LOAD_FACTOR)
|
||||
{
|
||||
}
|
||||
|
||||
sparse_map(size_type bucket_count,
|
||||
const Allocator& alloc): sparse_map(bucket_count, Hash(), KeyEqual(), alloc)
|
||||
{
|
||||
}
|
||||
|
||||
sparse_map(size_type bucket_count,
|
||||
const Hash& hash,
|
||||
const Allocator& alloc): sparse_map(bucket_count, hash, KeyEqual(), alloc)
|
||||
{
|
||||
}
|
||||
|
||||
explicit sparse_map(const Allocator& alloc): sparse_map(ht::DEFAULT_INIT_BUCKET_COUNT, alloc) {
|
||||
}
|
||||
|
||||
template<class InputIt>
|
||||
sparse_map(InputIt first, InputIt last,
|
||||
size_type bucket_count = ht::DEFAULT_INIT_BUCKET_COUNT,
|
||||
const Hash& hash = Hash(),
|
||||
const KeyEqual& equal = KeyEqual(),
|
||||
const Allocator& alloc = Allocator()): sparse_map(bucket_count, hash, equal, alloc)
|
||||
{
|
||||
insert(first, last);
|
||||
}
|
||||
|
||||
template<class InputIt>
|
||||
sparse_map(InputIt first, InputIt last,
|
||||
size_type bucket_count,
|
||||
const Allocator& alloc): sparse_map(first, last, bucket_count, Hash(), KeyEqual(), alloc)
|
||||
{
|
||||
}
|
||||
|
||||
template<class InputIt>
|
||||
sparse_map(InputIt first, InputIt last,
|
||||
size_type bucket_count,
|
||||
const Hash& hash,
|
||||
const Allocator& alloc): sparse_map(first, last, bucket_count, hash, KeyEqual(), alloc)
|
||||
{
|
||||
}
|
||||
|
||||
sparse_map(std::initializer_list<value_type> init,
|
||||
size_type bucket_count = ht::DEFAULT_INIT_BUCKET_COUNT,
|
||||
const Hash& hash = Hash(),
|
||||
const KeyEqual& equal = KeyEqual(),
|
||||
const Allocator& alloc = Allocator()):
|
||||
sparse_map(init.begin(), init.end(), bucket_count, hash, equal, alloc)
|
||||
{
|
||||
}
|
||||
|
||||
sparse_map(std::initializer_list<value_type> init,
|
||||
size_type bucket_count,
|
||||
const Allocator& alloc):
|
||||
sparse_map(init.begin(), init.end(), bucket_count, Hash(), KeyEqual(), alloc)
|
||||
{
|
||||
}
|
||||
|
||||
sparse_map(std::initializer_list<value_type> init,
|
||||
size_type bucket_count,
|
||||
const Hash& hash,
|
||||
const Allocator& alloc):
|
||||
sparse_map(init.begin(), init.end(), bucket_count, hash, KeyEqual(), alloc)
|
||||
{
|
||||
}
|
||||
|
||||
sparse_map& operator=(std::initializer_list<value_type> ilist) {
|
||||
m_ht.clear();
|
||||
|
||||
m_ht.reserve(ilist.size());
|
||||
m_ht.insert(ilist.begin(), ilist.end());
|
||||
|
||||
return *this;
|
||||
}
|
||||
|
||||
allocator_type get_allocator() const { return m_ht.get_allocator(); }
|
||||
|
||||
|
||||
/*
|
||||
* Iterators
|
||||
*/
|
||||
iterator begin() noexcept { return m_ht.begin(); }
|
||||
const_iterator begin() const noexcept { return m_ht.begin(); }
|
||||
const_iterator cbegin() const noexcept { return m_ht.cbegin(); }
|
||||
|
||||
iterator end() noexcept { return m_ht.end(); }
|
||||
const_iterator end() const noexcept { return m_ht.end(); }
|
||||
const_iterator cend() const noexcept { return m_ht.cend(); }
|
||||
|
||||
|
||||
/*
|
||||
* Capacity
|
||||
*/
|
||||
bool empty() const noexcept { return m_ht.empty(); }
|
||||
size_type size() const noexcept { return m_ht.size(); }
|
||||
size_type max_size() const noexcept { return m_ht.max_size(); }
|
||||
|
||||
/*
|
||||
* Modifiers
|
||||
*/
|
||||
void clear() noexcept { m_ht.clear(); }
|
||||
|
||||
|
||||
|
||||
std::pair<iterator, bool> insert(const value_type& value) {
|
||||
return m_ht.insert(value);
|
||||
}
|
||||
|
||||
template<class P, typename std::enable_if<std::is_constructible<value_type, P&&>::value>::type* = nullptr>
|
||||
std::pair<iterator, bool> insert(P&& value) {
|
||||
return m_ht.emplace(std::forward<P>(value));
|
||||
}
|
||||
|
||||
std::pair<iterator, bool> insert(value_type&& value) {
|
||||
return m_ht.insert(std::move(value));
|
||||
}
|
||||
|
||||
|
||||
iterator insert(const_iterator hint, const value_type& value) {
|
||||
return m_ht.insert_hint(hint, value);
|
||||
}
|
||||
|
||||
template<class P, typename std::enable_if<std::is_constructible<value_type, P&&>::value>::type* = nullptr>
|
||||
iterator insert(const_iterator hint, P&& value) {
|
||||
return m_ht.emplace_hint(hint, std::forward<P>(value));
|
||||
}
|
||||
|
||||
iterator insert(const_iterator hint, value_type&& value) {
|
||||
return m_ht.insert_hint(hint, std::move(value));
|
||||
}
|
||||
|
||||
|
||||
template<class InputIt>
|
||||
void insert(InputIt first, InputIt last) {
|
||||
m_ht.insert(first, last);
|
||||
}
|
||||
|
||||
void insert(std::initializer_list<value_type> ilist) {
|
||||
m_ht.insert(ilist.begin(), ilist.end());
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
template<class M>
|
||||
std::pair<iterator, bool> insert_or_assign(const key_type& k, M&& obj) {
|
||||
return m_ht.insert_or_assign(k, std::forward<M>(obj));
|
||||
}
|
||||
|
||||
template<class M>
|
||||
std::pair<iterator, bool> insert_or_assign(key_type&& k, M&& obj) {
|
||||
return m_ht.insert_or_assign(std::move(k), std::forward<M>(obj));
|
||||
}
|
||||
|
||||
template<class M>
|
||||
iterator insert_or_assign(const_iterator hint, const key_type& k, M&& obj) {
|
||||
return m_ht.insert_or_assign(hint, k, std::forward<M>(obj));
|
||||
}
|
||||
|
||||
template<class M>
|
||||
iterator insert_or_assign(const_iterator hint, key_type&& k, M&& obj) {
|
||||
return m_ht.insert_or_assign(hint, std::move(k), std::forward<M>(obj));
|
||||
}
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Due to the way elements are stored, emplace will need to move or copy the key-value once.
|
||||
* The method is equivalent to `insert(value_type(std::forward<Args>(args)...));`.
|
||||
*
|
||||
* Mainly here for compatibility with the `std::unordered_map` interface.
|
||||
*/
|
||||
template<class... Args>
|
||||
std::pair<iterator, bool> emplace(Args&&... args) {
|
||||
return m_ht.emplace(std::forward<Args>(args)...);
|
||||
}
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Due to the way elements are stored, emplace_hint will need to move or copy the key-value once.
|
||||
* The method is equivalent to `insert(hint, value_type(std::forward<Args>(args)...));`.
|
||||
*
|
||||
* Mainly here for compatibility with the `std::unordered_map` interface.
|
||||
*/
|
||||
template<class... Args>
|
||||
iterator emplace_hint(const_iterator hint, Args&&... args) {
|
||||
return m_ht.emplace_hint(hint, std::forward<Args>(args)...);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
template<class... Args>
|
||||
std::pair<iterator, bool> try_emplace(const key_type& k, Args&&... args) {
|
||||
return m_ht.try_emplace(k, std::forward<Args>(args)...);
|
||||
}
|
||||
|
||||
template<class... Args>
|
||||
std::pair<iterator, bool> try_emplace(key_type&& k, Args&&... args) {
|
||||
return m_ht.try_emplace(std::move(k), std::forward<Args>(args)...);
|
||||
}
|
||||
|
||||
template<class... Args>
|
||||
iterator try_emplace(const_iterator hint, const key_type& k, Args&&... args) {
|
||||
return m_ht.try_emplace_hint(hint, k, std::forward<Args>(args)...);
|
||||
}
|
||||
|
||||
template<class... Args>
|
||||
iterator try_emplace(const_iterator hint, key_type&& k, Args&&... args) {
|
||||
return m_ht.try_emplace_hint(hint, std::move(k), std::forward<Args>(args)...);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
iterator erase(iterator pos) { return m_ht.erase(pos); }
|
||||
iterator erase(const_iterator pos) { return m_ht.erase(pos); }
|
||||
iterator erase(const_iterator first, const_iterator last) { return m_ht.erase(first, last); }
|
||||
size_type erase(const key_type& key) { return m_ht.erase(key); }
|
||||
|
||||
/**
|
||||
* Use the hash value `precalculated_hash` instead of hashing the key. The hash value should be the same
|
||||
* as `hash_function()(key)`, otherwise the behaviour is undefined. Useful to speed-up the lookup
|
||||
* if you already have the hash.
|
||||
*/
|
||||
size_type erase(const key_type& key, std::size_t precalculated_hash) {
|
||||
return m_ht.erase(key, precalculated_hash);
|
||||
}
|
||||
|
||||
/**
|
||||
* This overload only participates in the overload resolution if the typedef `KeyEqual::is_transparent` exists.
|
||||
* If so, `K` must be hashable and comparable to `Key`.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
size_type erase(const K& key) { return m_ht.erase(key); }
|
||||
|
||||
/**
|
||||
* @copydoc erase(const K& key)
|
||||
*
|
||||
* Use the hash value `precalculated_hash` instead of hashing the key. The hash value should be the same
|
||||
* as `hash_function()(key)`, otherwise the behaviour is undefined. Useful to speed-up the lookup
|
||||
* if you already have the hash.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
size_type erase(const K& key, std::size_t precalculated_hash) {
|
||||
return m_ht.erase(key, precalculated_hash);
|
||||
}
|
||||
|
||||
|
||||
|
||||
void swap(sparse_map& other) { other.m_ht.swap(m_ht); }
|
||||
|
||||
|
||||
|
||||
/*
|
||||
* Lookup
|
||||
*/
|
||||
T& at(const Key& key) { return m_ht.at(key); }
|
||||
|
||||
/**
|
||||
* Use the hash value `precalculated_hash` instead of hashing the key. The hash value should be the same
|
||||
* as `hash_function()(key)`, otherwise the behaviour is undefined. Useful to speed-up the lookup
|
||||
* if you already have the hash.
|
||||
*/
|
||||
T& at(const Key& key, std::size_t precalculated_hash) { return m_ht.at(key, precalculated_hash); }
|
||||
|
||||
|
||||
const T& at(const Key& key) const { return m_ht.at(key); }
|
||||
|
||||
/**
|
||||
* @copydoc at(const Key& key, std::size_t precalculated_hash)
|
||||
*/
|
||||
const T& at(const Key& key, std::size_t precalculated_hash) const { return m_ht.at(key, precalculated_hash); }
|
||||
|
||||
|
||||
/**
|
||||
* This overload only participates in the overload resolution if the typedef `KeyEqual::is_transparent` exists.
|
||||
* If so, `K` must be hashable and comparable to `Key`.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
T& at(const K& key) { return m_ht.at(key); }
|
||||
|
||||
/**
|
||||
* @copydoc at(const K& key)
|
||||
*
|
||||
* Use the hash value `precalculated_hash` instead of hashing the key. The hash value should be the same
|
||||
* as `hash_function()(key)`, otherwise the behaviour is undefined. Useful to speed-up the lookup
|
||||
* if you already have the hash.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
T& at(const K& key, std::size_t precalculated_hash) { return m_ht.at(key, precalculated_hash); }
|
||||
|
||||
|
||||
/**
|
||||
* @copydoc at(const K& key)
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
const T& at(const K& key) const { return m_ht.at(key); }
|
||||
|
||||
/**
|
||||
* @copydoc at(const K& key, std::size_t precalculated_hash)
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
const T& at(const K& key, std::size_t precalculated_hash) const { return m_ht.at(key, precalculated_hash); }
|
||||
|
||||
|
||||
|
||||
|
||||
T& operator[](const Key& key) { return m_ht[key]; }
|
||||
T& operator[](Key&& key) { return m_ht[std::move(key)]; }
|
||||
|
||||
|
||||
|
||||
|
||||
size_type count(const Key& key) const { return m_ht.count(key); }
|
||||
|
||||
/**
|
||||
* Use the hash value `precalculated_hash` instead of hashing the key. The hash value should be the same
|
||||
* as `hash_function()(key)`, otherwise the behaviour is undefined. Useful to speed-up the lookup
|
||||
* if you already have the hash.
|
||||
*/
|
||||
size_type count(const Key& key, std::size_t precalculated_hash) const {
|
||||
return m_ht.count(key, precalculated_hash);
|
||||
}
|
||||
|
||||
/**
|
||||
* This overload only participates in the overload resolution if the typedef `KeyEqual::is_transparent` exists.
|
||||
* If so, `K` must be hashable and comparable to `Key`.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
size_type count(const K& key) const { return m_ht.count(key); }
|
||||
|
||||
/**
|
||||
* @copydoc count(const K& key) const
|
||||
*
|
||||
* Use the hash value `precalculated_hash` instead of hashing the key. The hash value should be the same
|
||||
* as `hash_function()(key)`, otherwise the behaviour is undefined. Useful to speed-up the lookup
|
||||
* if you already have the hash.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
size_type count(const K& key, std::size_t precalculated_hash) const { return m_ht.count(key, precalculated_hash); }
|
||||
|
||||
|
||||
|
||||
|
||||
iterator find(const Key& key) { return m_ht.find(key); }
|
||||
|
||||
/**
|
||||
* Use the hash value `precalculated_hash` instead of hashing the key. The hash value should be the same
|
||||
* as `hash_function()(key)`, otherwise the behaviour is undefined. Useful to speed-up the lookup
|
||||
* if you already have the hash.
|
||||
*/
|
||||
iterator find(const Key& key, std::size_t precalculated_hash) { return m_ht.find(key, precalculated_hash); }
|
||||
|
||||
const_iterator find(const Key& key) const { return m_ht.find(key); }
|
||||
|
||||
/**
|
||||
* @copydoc find(const Key& key, std::size_t precalculated_hash)
|
||||
*/
|
||||
const_iterator find(const Key& key, std::size_t precalculated_hash) const {
|
||||
return m_ht.find(key, precalculated_hash);
|
||||
}
|
||||
|
||||
/**
|
||||
* This overload only participates in the overload resolution if the typedef `KeyEqual::is_transparent` exists.
|
||||
* If so, `K` must be hashable and comparable to `Key`.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
iterator find(const K& key) { return m_ht.find(key); }
|
||||
|
||||
/**
|
||||
* @copydoc find(const K& key)
|
||||
*
|
||||
* Use the hash value `precalculated_hash` instead of hashing the key. The hash value should be the same
|
||||
* as `hash_function()(key)`, otherwise the behaviour is undefined. Useful to speed-up the lookup
|
||||
* if you already have the hash.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
iterator find(const K& key, std::size_t precalculated_hash) { return m_ht.find(key, precalculated_hash); }
|
||||
|
||||
/**
|
||||
* @copydoc find(const K& key)
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
const_iterator find(const K& key) const { return m_ht.find(key); }
|
||||
|
||||
/**
|
||||
* @copydoc find(const K& key)
|
||||
*
|
||||
* Use the hash value `precalculated_hash` instead of hashing the key. The hash value should be the same
|
||||
* as `hash_function()(key)`, otherwise the behaviour is undefined. Useful to speed-up the lookup
|
||||
* if you already have the hash.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
const_iterator find(const K& key, std::size_t precalculated_hash) const {
|
||||
return m_ht.find(key, precalculated_hash);
|
||||
}
|
||||
|
||||
|
||||
|
||||
bool contains(const Key& key) const { return m_ht.contains(key); }
|
||||
|
||||
/**
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
|
||||
*/
|
||||
bool contains(const Key& key, std::size_t precalculated_hash) const {
|
||||
return m_ht.contains(key, precalculated_hash);
|
||||
}
|
||||
|
||||
/**
|
||||
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
|
||||
* If so, K must be hashable and comparable to Key.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
bool contains(const K& key) const { return m_ht.contains(key); }
|
||||
|
||||
/**
|
||||
* @copydoc contains(const K& key) const
|
||||
*
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
bool contains(const K& key, std::size_t precalculated_hash) const {
|
||||
return m_ht.contains(key, precalculated_hash);
|
||||
}
|
||||
|
||||
|
||||
|
||||
std::pair<iterator, iterator> equal_range(const Key& key) { return m_ht.equal_range(key); }
|
||||
|
||||
/**
|
||||
* Use the hash value `precalculated_hash` instead of hashing the key. The hash value should be the same
|
||||
* as `hash_function()(key)`, otherwise the behaviour is undefined. Useful to speed-up the lookup
|
||||
* if you already have the hash.
|
||||
*/
|
||||
std::pair<iterator, iterator> equal_range(const Key& key, std::size_t precalculated_hash) {
|
||||
return m_ht.equal_range(key, precalculated_hash);
|
||||
}
|
||||
|
||||
std::pair<const_iterator, const_iterator> equal_range(const Key& key) const { return m_ht.equal_range(key); }
|
||||
|
||||
/**
|
||||
* @copydoc equal_range(const Key& key, std::size_t precalculated_hash)
|
||||
*/
|
||||
std::pair<const_iterator, const_iterator> equal_range(const Key& key, std::size_t precalculated_hash) const {
|
||||
return m_ht.equal_range(key, precalculated_hash);
|
||||
}
|
||||
|
||||
/**
|
||||
* This overload only participates in the overload resolution if the typedef `KeyEqual::is_transparent` exists.
|
||||
* If so, `K` must be hashable and comparable to `Key`.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
std::pair<iterator, iterator> equal_range(const K& key) { return m_ht.equal_range(key); }
|
||||
|
||||
|
||||
/**
|
||||
* @copydoc equal_range(const K& key)
|
||||
*
|
||||
* Use the hash value `precalculated_hash` instead of hashing the key. The hash value should be the same
|
||||
* as `hash_function()(key)`, otherwise the behaviour is undefined. Useful to speed-up the lookup
|
||||
* if you already have the hash.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
std::pair<iterator, iterator> equal_range(const K& key, std::size_t precalculated_hash) {
|
||||
return m_ht.equal_range(key, precalculated_hash);
|
||||
}
|
||||
|
||||
/**
|
||||
* @copydoc equal_range(const K& key)
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
std::pair<const_iterator, const_iterator> equal_range(const K& key) const { return m_ht.equal_range(key); }
|
||||
|
||||
/**
|
||||
* @copydoc equal_range(const K& key, std::size_t precalculated_hash)
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
std::pair<const_iterator, const_iterator> equal_range(const K& key, std::size_t precalculated_hash) const {
|
||||
return m_ht.equal_range(key, precalculated_hash);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
/*
|
||||
* Bucket interface
|
||||
*/
|
||||
size_type bucket_count() const { return m_ht.bucket_count(); }
|
||||
size_type max_bucket_count() const { return m_ht.max_bucket_count(); }
|
||||
|
||||
|
||||
/*
|
||||
* Hash policy
|
||||
*/
|
||||
float load_factor() const { return m_ht.load_factor(); }
|
||||
float max_load_factor() const { return m_ht.max_load_factor(); }
|
||||
void max_load_factor(float ml) { m_ht.max_load_factor(ml); }
|
||||
|
||||
void rehash(size_type count) { m_ht.rehash(count); }
|
||||
void reserve(size_type count) { m_ht.reserve(count); }
|
||||
|
||||
|
||||
/*
|
||||
* Observers
|
||||
*/
|
||||
hasher hash_function() const { return m_ht.hash_function(); }
|
||||
key_equal key_eq() const { return m_ht.key_eq(); }
|
||||
|
||||
/*
|
||||
* Other
|
||||
*/
|
||||
|
||||
/**
|
||||
* Convert a `const_iterator` to an `iterator`.
|
||||
*/
|
||||
iterator mutable_iterator(const_iterator pos) {
|
||||
return m_ht.mutable_iterator(pos);
|
||||
}
|
||||
|
||||
/**
|
||||
* Serialize the map through the `serializer` parameter.
|
||||
*
|
||||
* The `serializer` parameter must be a function object that supports the following call:
|
||||
* - `template<typename U> void operator()(const U& value);` where the types `std::uint64_t`, `float` and `std::pair<Key, T>` must be supported for U.
|
||||
*
|
||||
* The implementation leaves binary compatibilty (endianness, IEEE 754 for floats, ...) of the types it serializes
|
||||
* in the hands of the `Serializer` function object if compatibilty is required.
|
||||
*/
|
||||
template<class Serializer>
|
||||
void serialize(Serializer& serializer) const {
|
||||
m_ht.serialize(serializer);
|
||||
}
|
||||
|
||||
/**
|
||||
* Deserialize a previouly serialized map through the `deserializer` parameter.
|
||||
*
|
||||
* The `deserializer` parameter must be a function object that supports the following calls:
|
||||
* - `template<typename U> U operator()();` where the types `std::uint64_t`, `float` and `std::pair<Key, T>` must be supported for U.
|
||||
*
|
||||
* If the deserialized hash map type is hash compatible with the serialized map, the deserialization process can be
|
||||
* sped up by setting `hash_compatible` to true. To be hash compatible, the Hash, KeyEqual and GrowthPolicy must behave the
|
||||
* same way than the ones used on the serialized map. The `std::size_t` must also be of the same size as the one on the platform used
|
||||
* to serialize the map. If these criteria are not met, the behaviour is undefined with `hash_compatible` sets to true.
|
||||
*
|
||||
* The behaviour is undefined if the type `Key` and `T` of the `sparse_map` are not the same as the
|
||||
* types used during serialization.
|
||||
*
|
||||
* The implementation leaves binary compatibilty (endianness, IEEE 754 for floats, size of int, ...) of the types it
|
||||
* deserializes in the hands of the `Deserializer` function object if compatibilty is required.
|
||||
*/
|
||||
template<class Deserializer>
|
||||
static sparse_map deserialize(Deserializer& deserializer, bool hash_compatible = false) {
|
||||
sparse_map map(0);
|
||||
map.m_ht.deserialize(deserializer, hash_compatible);
|
||||
|
||||
return map;
|
||||
}
|
||||
|
||||
friend bool operator==(const sparse_map& lhs, const sparse_map& rhs) {
|
||||
if(lhs.size() != rhs.size()) {
|
||||
return false;
|
||||
}
|
||||
|
||||
for(const auto& element_lhs: lhs) {
|
||||
const auto it_element_rhs = rhs.find(element_lhs.first);
|
||||
if(it_element_rhs == rhs.cend() || element_lhs.second != it_element_rhs->second) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
friend bool operator!=(const sparse_map& lhs, const sparse_map& rhs) {
|
||||
return !operator==(lhs, rhs);
|
||||
}
|
||||
|
||||
friend void swap(sparse_map& lhs, sparse_map& rhs) {
|
||||
lhs.swap(rhs);
|
||||
}
|
||||
|
||||
private:
|
||||
ht m_ht;
|
||||
};
|
||||
|
||||
|
||||
/**
|
||||
* Same as `tsl::sparse_map<Key, T, Hash, KeyEqual, Allocator, tsl::sh::prime_growth_policy>`.
|
||||
*/
|
||||
template<class Key,
|
||||
class T,
|
||||
class Hash = std::hash<Key>,
|
||||
class KeyEqual = std::equal_to<Key>,
|
||||
class Allocator = std::allocator<std::pair<Key, T>>>
|
||||
using sparse_pg_map = sparse_map<Key, T, Hash, KeyEqual, Allocator, tsl::sh::prime_growth_policy>;
|
||||
|
||||
} // end namespace tsl
|
||||
|
||||
#endif
|
612
src/includes/3thparty/tsl/sparse_set.h
Normal file
612
src/includes/3thparty/tsl/sparse_set.h
Normal file
@@ -0,0 +1,612 @@
|
||||
/**
|
||||
* MIT License
|
||||
*
|
||||
* Copyright (c) 2017 Tessil
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
* of this software and associated documentation files (the "Software"), to deal
|
||||
* in the Software without restriction, including without limitation the rights
|
||||
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
* copies of the Software, and to permit persons to whom the Software is
|
||||
* furnished to do so, subject to the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice shall be included in all
|
||||
* copies or substantial portions of the Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
* SOFTWARE.
|
||||
*/
|
||||
#ifndef TSL_SPARSE_SET_H
|
||||
#define TSL_SPARSE_SET_H
|
||||
|
||||
|
||||
#include <cstddef>
|
||||
#include <functional>
|
||||
#include <initializer_list>
|
||||
#include <memory>
|
||||
#include <type_traits>
|
||||
#include <utility>
|
||||
#include "sparse_hash.h"
|
||||
|
||||
|
||||
namespace tsl {
|
||||
|
||||
|
||||
/**
|
||||
* Implementation of a sparse hash set using open-addressing with quadratic probing.
|
||||
* The goal on the hash set is to be the most memory efficient possible, even at low load factor,
|
||||
* while keeping reasonable performances.
|
||||
*
|
||||
* `GrowthPolicy` defines how the set grows and consequently how a hash value is mapped to a bucket.
|
||||
* By default the set uses `tsl::sh::power_of_two_growth_policy`. This policy keeps the number of buckets
|
||||
* to a power of two and uses a mask to map the hash to a bucket instead of the slow modulo.
|
||||
* Other growth policies are available and you may define your own growth policy,
|
||||
* check `tsl::sh::power_of_two_growth_policy` for the interface.
|
||||
*
|
||||
* `ExceptionSafety` defines the exception guarantee provided by the class. By default only the basic
|
||||
* exception safety is guaranteed which mean that all resources used by the hash set will be freed (no memory leaks)
|
||||
* but the hash set may end-up in an undefined state if an exception is thrown (undefined here means that some elements
|
||||
* may be missing). This can ONLY happen on rehash (either on insert or if `rehash` is called explicitly) and will
|
||||
* occur if the Allocator can't allocate memory (`std::bad_alloc`) or if the copy constructor (when a nothrow
|
||||
* move constructor is not available) throws an exception. This can be avoided by calling `reserve` beforehand.
|
||||
* This basic guarantee is similar to the one of `google::sparse_hash_map` and `spp::sparse_hash_map`.
|
||||
* It is possible to ask for the strong exception guarantee with `tsl::sh::exception_safety::strong`, the drawback
|
||||
* is that the set will be slower on rehashes and will also need more memory on rehashes.
|
||||
*
|
||||
* `Sparsity` defines how much the hash set will compromise between insertion speed and memory usage. A high
|
||||
* sparsity means less memory usage but longer insertion times, and vice-versa for low sparsity. The default
|
||||
* `tsl::sh::sparsity::medium` sparsity offers a good compromise. It doesn't change the lookup speed.
|
||||
*
|
||||
* `Key` must be nothrow move constructible and/or copy constructible.
|
||||
*
|
||||
* If the destructor of `Key` throws an exception, the behaviour of the class is undefined.
|
||||
*
|
||||
* Iterators invalidation:
|
||||
* - clear, operator=, reserve, rehash: always invalidate the iterators.
|
||||
* - insert, emplace, emplace_hint: if there is an effective insert, invalidate the iterators.
|
||||
* - erase: always invalidate the iterators.
|
||||
*/
|
||||
template<class Key,
|
||||
class Hash = std::hash<Key>,
|
||||
class KeyEqual = std::equal_to<Key>,
|
||||
class Allocator = std::allocator<Key>,
|
||||
class GrowthPolicy = tsl::sh::power_of_two_growth_policy<2>,
|
||||
tsl::sh::exception_safety ExceptionSafety = tsl::sh::exception_safety::basic,
|
||||
tsl::sh::sparsity Sparsity = tsl::sh::sparsity::medium>
|
||||
class sparse_set {
|
||||
private:
|
||||
template<typename U>
|
||||
using has_is_transparent = tsl::detail_sparse_hash::has_is_transparent<U>;
|
||||
|
||||
class KeySelect {
|
||||
public:
|
||||
using key_type = Key;
|
||||
|
||||
const key_type& operator()(const Key& key) const noexcept {
|
||||
return key;
|
||||
}
|
||||
|
||||
key_type& operator()(Key& key) noexcept {
|
||||
return key;
|
||||
}
|
||||
};
|
||||
|
||||
using ht = detail_sparse_hash::sparse_hash<Key, KeySelect, void, Hash, KeyEqual, Allocator, GrowthPolicy,
|
||||
ExceptionSafety, Sparsity,
|
||||
tsl::sh::probing::quadratic>;
|
||||
|
||||
public:
|
||||
using key_type = typename ht::key_type;
|
||||
using value_type = typename ht::value_type;
|
||||
using size_type = typename ht::size_type;
|
||||
using difference_type = typename ht::difference_type;
|
||||
using hasher = typename ht::hasher;
|
||||
using key_equal = typename ht::key_equal;
|
||||
using allocator_type = typename ht::allocator_type;
|
||||
using reference = typename ht::reference;
|
||||
using const_reference = typename ht::const_reference;
|
||||
using pointer = typename ht::pointer;
|
||||
using const_pointer = typename ht::const_pointer;
|
||||
using iterator = typename ht::iterator;
|
||||
using const_iterator = typename ht::const_iterator;
|
||||
|
||||
|
||||
/*
|
||||
* Constructors
|
||||
*/
|
||||
sparse_set(): sparse_set(ht::DEFAULT_INIT_BUCKET_COUNT) {
|
||||
}
|
||||
|
||||
explicit sparse_set(size_type bucket_count,
|
||||
const Hash& hash = Hash(),
|
||||
const KeyEqual& equal = KeyEqual(),
|
||||
const Allocator& alloc = Allocator()):
|
||||
m_ht(bucket_count, hash, equal, alloc, ht::DEFAULT_MAX_LOAD_FACTOR)
|
||||
{
|
||||
}
|
||||
|
||||
sparse_set(size_type bucket_count,
|
||||
const Allocator& alloc): sparse_set(bucket_count, Hash(), KeyEqual(), alloc)
|
||||
{
|
||||
}
|
||||
|
||||
sparse_set(size_type bucket_count,
|
||||
const Hash& hash,
|
||||
const Allocator& alloc): sparse_set(bucket_count, hash, KeyEqual(), alloc)
|
||||
{
|
||||
}
|
||||
|
||||
explicit sparse_set(const Allocator& alloc): sparse_set(ht::DEFAULT_INIT_BUCKET_COUNT, alloc) {
|
||||
}
|
||||
|
||||
template<class InputIt>
|
||||
sparse_set(InputIt first, InputIt last,
|
||||
size_type bucket_count = ht::DEFAULT_INIT_BUCKET_COUNT,
|
||||
const Hash& hash = Hash(),
|
||||
const KeyEqual& equal = KeyEqual(),
|
||||
const Allocator& alloc = Allocator()): sparse_set(bucket_count, hash, equal, alloc)
|
||||
{
|
||||
insert(first, last);
|
||||
}
|
||||
|
||||
template<class InputIt>
|
||||
sparse_set(InputIt first, InputIt last,
|
||||
size_type bucket_count,
|
||||
const Allocator& alloc): sparse_set(first, last, bucket_count, Hash(), KeyEqual(), alloc)
|
||||
{
|
||||
}
|
||||
|
||||
template<class InputIt>
|
||||
sparse_set(InputIt first, InputIt last,
|
||||
size_type bucket_count,
|
||||
const Hash& hash,
|
||||
const Allocator& alloc): sparse_set(first, last, bucket_count, hash, KeyEqual(), alloc)
|
||||
{
|
||||
}
|
||||
|
||||
sparse_set(std::initializer_list<value_type> init,
|
||||
size_type bucket_count = ht::DEFAULT_INIT_BUCKET_COUNT,
|
||||
const Hash& hash = Hash(),
|
||||
const KeyEqual& equal = KeyEqual(),
|
||||
const Allocator& alloc = Allocator()):
|
||||
sparse_set(init.begin(), init.end(), bucket_count, hash, equal, alloc)
|
||||
{
|
||||
}
|
||||
|
||||
sparse_set(std::initializer_list<value_type> init,
|
||||
size_type bucket_count,
|
||||
const Allocator& alloc):
|
||||
sparse_set(init.begin(), init.end(), bucket_count, Hash(), KeyEqual(), alloc)
|
||||
{
|
||||
}
|
||||
|
||||
sparse_set(std::initializer_list<value_type> init,
|
||||
size_type bucket_count,
|
||||
const Hash& hash,
|
||||
const Allocator& alloc):
|
||||
sparse_set(init.begin(), init.end(), bucket_count, hash, KeyEqual(), alloc)
|
||||
{
|
||||
}
|
||||
|
||||
|
||||
sparse_set& operator=(std::initializer_list<value_type> ilist) {
|
||||
m_ht.clear();
|
||||
|
||||
m_ht.reserve(ilist.size());
|
||||
m_ht.insert(ilist.begin(), ilist.end());
|
||||
|
||||
return *this;
|
||||
}
|
||||
|
||||
allocator_type get_allocator() const { return m_ht.get_allocator(); }
|
||||
|
||||
|
||||
/*
|
||||
* Iterators
|
||||
*/
|
||||
iterator begin() noexcept { return m_ht.begin(); }
|
||||
const_iterator begin() const noexcept { return m_ht.begin(); }
|
||||
const_iterator cbegin() const noexcept { return m_ht.cbegin(); }
|
||||
|
||||
iterator end() noexcept { return m_ht.end(); }
|
||||
const_iterator end() const noexcept { return m_ht.end(); }
|
||||
const_iterator cend() const noexcept { return m_ht.cend(); }
|
||||
|
||||
|
||||
/*
|
||||
* Capacity
|
||||
*/
|
||||
bool empty() const noexcept { return m_ht.empty(); }
|
||||
size_type size() const noexcept { return m_ht.size(); }
|
||||
size_type max_size() const noexcept { return m_ht.max_size(); }
|
||||
|
||||
/*
|
||||
* Modifiers
|
||||
*/
|
||||
void clear() noexcept { m_ht.clear(); }
|
||||
|
||||
|
||||
|
||||
|
||||
std::pair<iterator, bool> insert(const value_type& value) {
|
||||
return m_ht.insert(value);
|
||||
}
|
||||
|
||||
std::pair<iterator, bool> insert(value_type&& value) {
|
||||
return m_ht.insert(std::move(value));
|
||||
}
|
||||
|
||||
iterator insert(const_iterator hint, const value_type& value) {
|
||||
return m_ht.insert_hint(hint, value);
|
||||
}
|
||||
|
||||
iterator insert(const_iterator hint, value_type&& value) {
|
||||
return m_ht.insert_hint(hint, std::move(value));
|
||||
}
|
||||
|
||||
template<class InputIt>
|
||||
void insert(InputIt first, InputIt last) {
|
||||
m_ht.insert(first, last);
|
||||
}
|
||||
|
||||
void insert(std::initializer_list<value_type> ilist) {
|
||||
m_ht.insert(ilist.begin(), ilist.end());
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Due to the way elements are stored, emplace will need to move or copy the key-value once.
|
||||
* The method is equivalent to `insert(value_type(std::forward<Args>(args)...));`.
|
||||
*
|
||||
* Mainly here for compatibility with the `std::unordered_map` interface.
|
||||
*/
|
||||
template<class... Args>
|
||||
std::pair<iterator, bool> emplace(Args&&... args) {
|
||||
return m_ht.emplace(std::forward<Args>(args)...);
|
||||
}
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Due to the way elements are stored, emplace_hint will need to move or copy the key-value once.
|
||||
* The method is equivalent to `insert(hint, value_type(std::forward<Args>(args)...));`.
|
||||
*
|
||||
* Mainly here for compatibility with the `std::unordered_map` interface.
|
||||
*/
|
||||
template<class... Args>
|
||||
iterator emplace_hint(const_iterator hint, Args&&... args) {
|
||||
return m_ht.emplace_hint(hint, std::forward<Args>(args)...);
|
||||
}
|
||||
|
||||
|
||||
|
||||
iterator erase(iterator pos) { return m_ht.erase(pos); }
|
||||
iterator erase(const_iterator pos) { return m_ht.erase(pos); }
|
||||
iterator erase(const_iterator first, const_iterator last) { return m_ht.erase(first, last); }
|
||||
size_type erase(const key_type& key) { return m_ht.erase(key); }
|
||||
|
||||
/**
|
||||
* Use the hash value `precalculated_hash` instead of hashing the key. The hash value should be the same
|
||||
* as `hash_function()(key)`, otherwise the behaviour is undefined. Useful to speed-up the lookup
|
||||
* if you already have the hash.
|
||||
*/
|
||||
size_type erase(const key_type& key, std::size_t precalculated_hash) {
|
||||
return m_ht.erase(key, precalculated_hash);
|
||||
}
|
||||
|
||||
/**
|
||||
* This overload only participates in the overload resolution if the typedef `KeyEqual::is_transparent` exists.
|
||||
* If so, `K` must be hashable and comparable to `Key`.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
size_type erase(const K& key) { return m_ht.erase(key); }
|
||||
|
||||
/**
|
||||
* @copydoc erase(const K& key)
|
||||
*
|
||||
* Use the hash value `precalculated_hash` instead of hashing the key. The hash value should be the same
|
||||
* as `hash_function()(key)`, otherwise the behaviour is undefined. Useful to speed-up the lookup
|
||||
* if you already have the hash.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
size_type erase(const K& key, std::size_t precalculated_hash) {
|
||||
return m_ht.erase(key, precalculated_hash);
|
||||
}
|
||||
|
||||
|
||||
|
||||
void swap(sparse_set& other) { other.m_ht.swap(m_ht); }
|
||||
|
||||
|
||||
|
||||
/*
|
||||
* Lookup
|
||||
*/
|
||||
size_type count(const Key& key) const { return m_ht.count(key); }
|
||||
|
||||
/**
|
||||
* Use the hash value `precalculated_hash` instead of hashing the key. The hash value should be the same
|
||||
* as `hash_function()(key)`, otherwise the behaviour is undefined. Useful to speed-up the lookup
|
||||
* if you already have the hash.
|
||||
*/
|
||||
size_type count(const Key& key, std::size_t precalculated_hash) const { return m_ht.count(key, precalculated_hash); }
|
||||
|
||||
/**
|
||||
* This overload only participates in the overload resolution if the typedef `KeyEqual::is_transparent` exists.
|
||||
* If so, `K` must be hashable and comparable to `Key`.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
size_type count(const K& key) const { return m_ht.count(key); }
|
||||
|
||||
/**
|
||||
* @copydoc count(const K& key) const
|
||||
*
|
||||
* Use the hash value `precalculated_hash` instead of hashing the key. The hash value should be the same
|
||||
* as `hash_function()(key)`, otherwise the behaviour is undefined. Useful to speed-up the lookup
|
||||
* if you already have the hash.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
size_type count(const K& key, std::size_t precalculated_hash) const { return m_ht.count(key, precalculated_hash); }
|
||||
|
||||
|
||||
|
||||
|
||||
iterator find(const Key& key) { return m_ht.find(key); }
|
||||
|
||||
/**
|
||||
* Use the hash value `precalculated_hash` instead of hashing the key. The hash value should be the same
|
||||
* as `hash_function()(key)`, otherwise the behaviour is undefined. Useful to speed-up the lookup
|
||||
* if you already have the hash.
|
||||
*/
|
||||
iterator find(const Key& key, std::size_t precalculated_hash) { return m_ht.find(key, precalculated_hash); }
|
||||
|
||||
const_iterator find(const Key& key) const { return m_ht.find(key); }
|
||||
|
||||
/**
|
||||
* @copydoc find(const Key& key, std::size_t precalculated_hash)
|
||||
*/
|
||||
const_iterator find(const Key& key, std::size_t precalculated_hash) const { return m_ht.find(key, precalculated_hash); }
|
||||
|
||||
/**
|
||||
* This overload only participates in the overload resolution if the typedef `KeyEqual::is_transparent` exists.
|
||||
* If so, `K` must be hashable and comparable to `Key`.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
iterator find(const K& key) { return m_ht.find(key); }
|
||||
|
||||
/**
|
||||
* @copydoc find(const K& key)
|
||||
*
|
||||
* Use the hash value `precalculated_hash` instead of hashing the key. The hash value should be the same
|
||||
* as `hash_function()(key)`, otherwise the behaviour is undefined. Useful to speed-up the lookup
|
||||
* if you already have the hash.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
iterator find(const K& key, std::size_t precalculated_hash) { return m_ht.find(key, precalculated_hash); }
|
||||
|
||||
/**
|
||||
* @copydoc find(const K& key)
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
const_iterator find(const K& key) const { return m_ht.find(key); }
|
||||
|
||||
/**
|
||||
* @copydoc find(const K& key)
|
||||
*
|
||||
* Use the hash value `precalculated_hash` instead of hashing the key. The hash value should be the same
|
||||
* as `hash_function()(key)`, otherwise the behaviour is undefined. Useful to speed-up the lookup
|
||||
* if you already have the hash.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
const_iterator find(const K& key, std::size_t precalculated_hash) const { return m_ht.find(key, precalculated_hash); }
|
||||
|
||||
|
||||
|
||||
bool contains(const Key& key) const { return m_ht.contains(key); }
|
||||
|
||||
/**
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
|
||||
*/
|
||||
bool contains(const Key& key, std::size_t precalculated_hash) const {
|
||||
return m_ht.contains(key, precalculated_hash);
|
||||
}
|
||||
|
||||
/**
|
||||
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
|
||||
* If so, K must be hashable and comparable to Key.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
bool contains(const K& key) const { return m_ht.contains(key); }
|
||||
|
||||
/**
|
||||
* @copydoc contains(const K& key) const
|
||||
*
|
||||
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
||||
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
bool contains(const K& key, std::size_t precalculated_hash) const {
|
||||
return m_ht.contains(key, precalculated_hash);
|
||||
}
|
||||
|
||||
|
||||
|
||||
std::pair<iterator, iterator> equal_range(const Key& key) { return m_ht.equal_range(key); }
|
||||
|
||||
/**
|
||||
* Use the hash value `precalculated_hash` instead of hashing the key. The hash value should be the same
|
||||
* as `hash_function()(key)`, otherwise the behaviour is undefined. Useful to speed-up the lookup
|
||||
* if you already have the hash.
|
||||
*/
|
||||
std::pair<iterator, iterator> equal_range(const Key& key, std::size_t precalculated_hash) {
|
||||
return m_ht.equal_range(key, precalculated_hash);
|
||||
}
|
||||
|
||||
std::pair<const_iterator, const_iterator> equal_range(const Key& key) const { return m_ht.equal_range(key); }
|
||||
|
||||
/**
|
||||
* @copydoc equal_range(const Key& key, std::size_t precalculated_hash)
|
||||
*/
|
||||
std::pair<const_iterator, const_iterator> equal_range(const Key& key, std::size_t precalculated_hash) const {
|
||||
return m_ht.equal_range(key, precalculated_hash);
|
||||
}
|
||||
|
||||
/**
|
||||
* This overload only participates in the overload resolution if the typedef `KeyEqual::is_transparent` exists.
|
||||
* If so, `K` must be hashable and comparable to `Key`.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
std::pair<iterator, iterator> equal_range(const K& key) { return m_ht.equal_range(key); }
|
||||
|
||||
/**
|
||||
* @copydoc equal_range(const K& key)
|
||||
*
|
||||
* Use the hash value `precalculated_hash` instead of hashing the key. The hash value should be the same
|
||||
* as `hash_function()(key)`, otherwise the behaviour is undefined. Useful to speed-up the lookup
|
||||
* if you already have the hash.
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
std::pair<iterator, iterator> equal_range(const K& key, std::size_t precalculated_hash) {
|
||||
return m_ht.equal_range(key, precalculated_hash);
|
||||
}
|
||||
|
||||
/**
|
||||
* @copydoc equal_range(const K& key)
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
std::pair<const_iterator, const_iterator> equal_range(const K& key) const { return m_ht.equal_range(key); }
|
||||
|
||||
/**
|
||||
* @copydoc equal_range(const K& key, std::size_t precalculated_hash)
|
||||
*/
|
||||
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
||||
std::pair<const_iterator, const_iterator> equal_range(const K& key, std::size_t precalculated_hash) const {
|
||||
return m_ht.equal_range(key, precalculated_hash);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
/*
|
||||
* Bucket interface
|
||||
*/
|
||||
size_type bucket_count() const { return m_ht.bucket_count(); }
|
||||
size_type max_bucket_count() const { return m_ht.max_bucket_count(); }
|
||||
|
||||
|
||||
/*
|
||||
* Hash policy
|
||||
*/
|
||||
float load_factor() const { return m_ht.load_factor(); }
|
||||
float max_load_factor() const { return m_ht.max_load_factor(); }
|
||||
void max_load_factor(float ml) { m_ht.max_load_factor(ml); }
|
||||
|
||||
void rehash(size_type count) { m_ht.rehash(count); }
|
||||
void reserve(size_type count) { m_ht.reserve(count); }
|
||||
|
||||
|
||||
/*
|
||||
* Observers
|
||||
*/
|
||||
hasher hash_function() const { return m_ht.hash_function(); }
|
||||
key_equal key_eq() const { return m_ht.key_eq(); }
|
||||
|
||||
|
||||
/*
|
||||
* Other
|
||||
*/
|
||||
|
||||
/**
|
||||
* Convert a `const_iterator` to an `iterator`.
|
||||
*/
|
||||
iterator mutable_iterator(const_iterator pos) {
|
||||
return m_ht.mutable_iterator(pos);
|
||||
}
|
||||
|
||||
/**
|
||||
* Serialize the set through the `serializer` parameter.
|
||||
*
|
||||
* The `serializer` parameter must be a function object that supports the following call:
|
||||
* - `void operator()(const U& value);` where the types `std::uint64_t`, `float` and `Key` must be supported for U.
|
||||
*
|
||||
* The implementation leaves binary compatibilty (endianness, IEEE 754 for floats, ...) of the types it serializes
|
||||
* in the hands of the `Serializer` function object if compatibilty is required.
|
||||
*/
|
||||
template<class Serializer>
|
||||
void serialize(Serializer& serializer) const {
|
||||
m_ht.serialize(serializer);
|
||||
}
|
||||
|
||||
/**
|
||||
* Deserialize a previouly serialized set through the `deserializer` parameter.
|
||||
*
|
||||
* The `deserializer` parameter must be a function object that supports the following calls:
|
||||
* - `template<typename U> U operator()();` where the types `std::uint64_t`, `float` and `Key` must be supported for U.
|
||||
*
|
||||
* If the deserialized hash set type is hash compatible with the serialized set, the deserialization process can be
|
||||
* sped up by setting `hash_compatible` to true. To be hash compatible, the Hash, KeyEqual and GrowthPolicy must behave the
|
||||
* same way than the ones used on the serialized set. The `std::size_t` must also be of the same size as the one on the platform used
|
||||
* to serialize the set. If these criteria are not met, the behaviour is undefined with `hash_compatible` sets to true.
|
||||
*
|
||||
* The behaviour is undefined if the type `Key` of the `sparse_set` is not the same as the
|
||||
* type used during serialization.
|
||||
*
|
||||
* The implementation leaves binary compatibilty (endianness, IEEE 754 for floats, size of int, ...) of the types it
|
||||
* deserializes in the hands of the `Deserializer` function object if compatibilty is required.
|
||||
*/
|
||||
template<class Deserializer>
|
||||
static sparse_set deserialize(Deserializer& deserializer, bool hash_compatible = false) {
|
||||
sparse_set set(0);
|
||||
set.m_ht.deserialize(deserializer, hash_compatible);
|
||||
|
||||
return set;
|
||||
}
|
||||
|
||||
friend bool operator==(const sparse_set& lhs, const sparse_set& rhs) {
|
||||
if(lhs.size() != rhs.size()) {
|
||||
return false;
|
||||
}
|
||||
|
||||
for(const auto& element_lhs: lhs) {
|
||||
const auto it_element_rhs = rhs.find(element_lhs);
|
||||
if(it_element_rhs == rhs.cend()) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
friend bool operator!=(const sparse_set& lhs, const sparse_set& rhs) {
|
||||
return !operator==(lhs, rhs);
|
||||
}
|
||||
|
||||
friend void swap(sparse_set& lhs, sparse_set& rhs) {
|
||||
lhs.swap(rhs);
|
||||
}
|
||||
|
||||
private:
|
||||
ht m_ht;
|
||||
};
|
||||
|
||||
|
||||
/**
|
||||
* Same as `tsl::sparse_set<Key, Hash, KeyEqual, Allocator, tsl::sh::prime_growth_policy>`.
|
||||
*/
|
||||
template<class Key,
|
||||
class Hash = std::hash<Key>,
|
||||
class KeyEqual = std::equal_to<Key>,
|
||||
class Allocator = std::allocator<Key>>
|
||||
using sparse_pg_set = sparse_set<Key, Hash, KeyEqual, Allocator, tsl::sh::prime_growth_policy>;
|
||||
|
||||
} // end namespace tsl
|
||||
|
||||
#endif
|
Reference in New Issue
Block a user