this is the most up to date working #2

Merged
MassiveAtoms merged 26 commits from moretables into master 2020-04-17 16:47:27 +00:00
44 changed files with 40831 additions and 61 deletions
Showing only changes of commit 24ff483dd6 - Show all commits

View File

@@ -58,6 +58,7 @@
"thread": "cpp", "thread": "cpp",
"cinttypes": "cpp", "cinttypes": "cpp",
"typeinfo": "cpp", "typeinfo": "cpp",
"variant": "cpp" "variant": "cpp",
"sparse_hash_map": "cpp"
} }
} }

View File

@@ -3,12 +3,29 @@ project(another_studproject)
set(CMAKE_CXX_STANDARD 17) set(CMAKE_CXX_STANDARD 17)
set(CMAKE_CXX_FLAGS "-O3 -flto=thin -march=native") set(CMAKE_CXX_FLAGS "-O3 -flto=thin -march=native")
add_executable(another_studproject
# Process Abseil's CMake build system
add_subdirectory(./src/includes/3thparty/abseil-cpp
./src/includes/3thparty/tsl
)
add_executable(studproject
./src/includes/generator.h ./src/includes/generator.h
./src/generator.cpp ./src/generator.cpp
./src/includes/tests.h ./src/includes/tests.h
./src/includes/aggregate_tests.h ./src/includes/aggregate_tests.h
./src/includes/3thparty/emilib/loguru.cpp
main.cpp main.cpp
) )
target_link_libraries(studproject
absl::hash
absl::node_hash_map
absl::flat_hash_map
pthread
dl
)

131
main.cpp
View File

@@ -1,53 +1,116 @@
#include <iostream> #include <iostream>
#include <unordered_map>
#include <functional> #include <functional>
#include <fstream>
// #include <sparsehash/sparse_hash_map>
#include "./src/includes/aggregate_tests.h" #include "./src/includes/aggregate_tests.h"
// // we can use to switch the map implementations to that
// // we can add some cli handling so we can specify which maps to tests (or all)
// typedef std::unordered_map<int, int> intmap;
// typedef std::unordered_map<string, string> stringmap;
//
// // google sparse
// typedef google::sparse_hash_map<int, int> intmap; // typedef google::sparse_hash_map<int, int> intmap;
// typedef google::sparse_hash_map<std::string,std::string> stringmap // typedef google::sparse_hash_map<string,string> stringmap;
typedef std::unordered_map<int, int> intmap; //
typedef std::unordered_map<string, string> stringmap; // // google dense
// we can use ^ to switch the map implementations to that // typedef google::dense_hash_map<int, int> intmap;
// we can add some cli handling so we can specify which maps to tests (or all) // typedef google::dense_hash_map<string,string> stringmap;
//
// // abseil nodehashmap
typedef absl::node_hash_map<int, int> intmap;
typedef absl::node_hash_map<string,string> stringmap;
//
// // flat hashmap
// typedef absl::flat_hash_map<int, int> intmap;
// typedef absl::flat_hash_map<string,string> stringmap;
//
// // tessil flat hashmap
// typedef tsl::sparse_map<int, int> intmap;
// typedef tsl::sparse_map<string,string> stringmap;
//
// // Tessil tsl::array_map
// typedef tsl::array_map<int, int> intmap;
// typedef tsl::array_map<string,string> stringmap;
//
// // Tessil tsl::ordered_map
// typedef tsl::ordered_map<int, int> intmap;
// typedef tsl::ordered_map<string,string> stringmap;
//
// // Tessil tsl::robin_map
// typedef tsl::robin_map<int, int> intmap;
// typedef tsl::robin_map<string,string> stringmap;
//
// // Tessil hopscotch_map
// typedef tsl::hopscotch_map<int, int> intmap;
// typedef tsl::hopscotch_map<string,string> stringmap;
//
// // Boost::unordered_map
// typedef boost::unordered_map<int, int> intmap;
// typedef boost::unordered_map<string,string> stringmap;
//
// // skarupke's unordered map
// typedef ska::unordered_map<int, int> intmap;
// typedef ska::unordered_map<string,string> stringmap;
//
// // skarupke's bytell hash map
// typedef ska::bytell_hash_map<int, int> intmap;
// typedef ska::bytell_hash_map<string,string> stringmap;
//
// // skarupke's flat hash map
// typedef ska::flat_hash_map<int, int> intmap;
// typedef ska::flat_hash_map<string,string> stringmap;
//
// // greg7mdp's flat hash map
// typedef phmap::parallel_flat_hash_map<int, int> intmap;
// typedef phmap::parallel_flat_hash_map<string,string> stringmap;
//
// // greg7mdp's hash map
// typedef phmap::parallel_node_hash_map<int, int> intmap;
// typedef phmap::parallel_node_hash_map<string,string> stringmap;
// // emilib's hash map
// typedef emilib::HashMap<int, int> intmap;
// typedef emilib::HashMap<string,string> stringmap;
// // martin flat map
// typedef robin_hood::unordered_flat_map<int, int> intmap;
// typedef robin_hood::unordered_flat_map<string,string> stringmap;
// // martin flat map
// typedef robin_hood::unordered_node_map<int, int> intmap;
// typedef robin_hood::unordered_node_map<string,string> stringmap;
int main() { int main() {
time_point<steady_clock> start_test = steady_clock::now(); time_point<steady_clock> start_test = steady_clock::now();
// string_test(stringmap{}, 1); // process gets killed for sizes >35000 // string_test(stringmap{}, 1); // process gets killed for sizes >35000
int_test_aggregate(intmap{}, 30); int_test_aggregate(intmap{}, 2);
string_test_aggregate(stringmap{}, 30); string_test_aggregate(stringmap{}, 2);
time_point<steady_clock> end_test = steady_clock::now(); time_point<steady_clock> end_test = steady_clock::now();
std::cout << "\n\n 30 runs for all tests for 1 map: " << duration_cast<seconds>(end_test-start_test).count() << " seconds\n\n"; std::cout << "\n\n 30 runs for all tests for 1 map: " << duration_cast<seconds>(end_test-start_test).count() << " seconds\n\n";
// test takes 52 mins for 10 runs for one hashmap // test takes 2hrs for 30 runs for one hashmap
// so it'll take ~3 hours per map if we want 30 runs per test
/* if the other maps have about the same operation times ************ /* if the other maps have about the same operation times ************
// possible maps to bench. priorities are that the interface must be the same/similar to unordered_map
// maps to benchmark: // and that we don't have to jump through hoops to get it to work
1. Google dense_hash_map 1. Google dense_hash_map [y] https://github.com/sparsehash/sparsehash
2. Google sparse_hash_map 2. Google sparse_hash_map [y]
3. abseil node_hash_map [y] https://abseil.io/docs/cpp/tools/cmake-installs
4. abseil flat_hash_map [y]
5. Tessil/sparse-map/ [y] header only implementation for all tessil
6. Tessil/hopscotch-map[y]
7. tessil/robin-map[y] [y]
8. Boost unordered_map [y] just install boost with your package manager
9. skarupke/flat_hash_map [y] header only implementation
10. skarupke /bytell_hash_map [y]
11. skarupke/unordered_map [y]
12. greg7mdp/parallel-hashmap/paralel_flat [y] header only
13. greg7mdp/parallel-hashmap/paralel_node [y]
17. emilk/emilib emilib::hashmap [y] header only
18. martinus robin_hood::unordered_node_map [y]
19. martinus/robin_hood/ flatmap [y]
3. folly F14ValueMap 3. folly F14ValueMap
4. folly F14NodeMap 4. folly F14NodeMap
5. Tessil/ordered-map 5. Tessil/ordered-map [n] something is wrong with this one, verrrrry slow
6. Tessil/array-hash 6. Tessil/array-hash[n] (not with a small modification of the insert function)
7. Tessil/hopscotch-map
8. Tessil/sparse-map/
9. abseil node_hash_map
10. abseil flat_hash_map
11. Glib GHashTable
12. Boost unordered_map
13. Qt QHash
14. skarupke/flat_hash_map
15. greg7mdp/sparsepp
16. greg7mdp /parallel-hashmap (phmap::flat_hash_map and phmap::node_hash_map)
17. emilk/emilib emilib::hashmap
18. martinus robin_hood::unordered_node_map
19. martinus/robin-hood-hashing/
20. skarupke /flat_hash_map
*/ */
} }

View File

@@ -0,0 +1,305 @@
int_insert, 'google::dense_hash_map<int, int>', 26, 34, 64, 40, 40, 50, 40, 44, 51, 45, 77, 47, 51, 57
int_succ_lookup, 'google::dense_hash_map<int, int>', 10, 18, 30, 20, 18, 22, 21, 23, 24, 23, 27, 24, 25, 26
int_nosucc_lookup, 'google::dense_hash_map<int, int>', 31, 33, 62, 54, 43, 40, 43, 49, 56, 42, 53, 52, 55, 59
int_delete, 'google::dense_hash_map<int, int>', 13, 11, 26, 38, 16, 13, 15, 17, 22, 15, 32, 19, 23, 24
int_insert, 'google::dense_hash_map<int, int>', 19, 53, 38, 36, 40, 36, 40, 43, 51, 41, 44, 48, 52, 59
int_succ_lookup, 'google::dense_hash_map<int, int>', 7, 19, 20, 17, 18, 20, 21, 22, 24, 23, 24, 24, 27, 26
int_nosucc_lookup, 'google::dense_hash_map<int, int>', 23, 72, 39, 36, 43, 40, 43, 50, 56, 42, 50, 49, 57, 59
int_delete, 'google::dense_hash_map<int, int>', 9, 35, 17, 13, 17, 16, 15, 21, 22, 17, 22, 18, 24, 24
int_insert, 'google::dense_hash_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 146, 155, 159, 175, 178, 161, 167, 179, 195, 185, 191, 202, 205, 231
int_succ_lookup, 'google::dense_hash_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 87, 98, 110, 106, 110, 117, 113, 112, 121, 117, 119, 119, 129, 128
int_nosucc_lookup, 'google::dense_hash_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 189, 160, 184, 170, 182, 200, 189, 184, 192, 170, 188, 185, 199, 193
int_delete, 'google::dense_hash_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 91, 91, 113, 119, 108, 134, 103, 104, 110, 105, 108, 109, 118, 131
int_insert, 'google::dense_hash_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 213, 154, 148, 169, 185, 162, 170, 175, 192, 180, 186, 197, 206, 214
int_succ_lookup, 'google::dense_hash_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 122, 91, 98, 103, 109, 101, 107, 107, 114, 114, 120, 123, 127, 141
int_nosucc_lookup, 'google::dense_hash_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 234, 166, 159, 174, 183, 160, 173, 181, 184, 169, 183, 194, 200, 194
int_delete, 'google::dense_hash_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 126, 90, 89, 111, 105, 94, 96, 102, 112, 111, 110, 111, 123, 124
int_insert, 'absl::node_hash_map<int, int>', 101, 116, 91, 90, 101, 99, 107, 106, 114, 114, 123, 161, 138, 130
int_succ_lookup, 'absl::node_hash_map<int, int>', 24, 87, 40, 40, 52, 48, 49, 49, 58, 59, 61, 68, 61, 73
int_nosucc_lookup, 'absl::node_hash_map<int, int>', 464, 141, 90, 95, 99, 98, 100, 105, 112, 114, 118, 134, 144, 132
int_delete, 'absl::node_hash_map<int, int>', 140, 257, 139, 126, 138, 145, 146, 145, 189, 182, 179, 222, 201, 270
int_insert, 'absl::node_hash_map<int, int>', 73, 110, 83, 90, 103, 99, 101, 105, 116, 118, 120, 130, 142, 134
int_succ_lookup, 'absl::node_hash_map<int, int>', 19, 64, 38, 40, 52, 47, 50, 51, 62, 61, 61, 61, 61, 70
int_nosucc_lookup, 'absl::node_hash_map<int, int>', 502, 192, 90, 90, 101, 99, 111, 105, 125, 117, 122, 127, 141, 126
int_delete, 'absl::node_hash_map<int, int>', 95, 269, 110, 121, 144, 139, 175, 146, 190, 187, 187, 187, 194, 222
int_insert, 'absl::node_hash_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 127, 163, 171, 180, 190, 187, 193, 226, 208, 235, 243, 286, 287, 228
int_succ_lookup, 'absl::node_hash_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 185, 164, 173, 178, 204, 197, 219, 206, 231, 236, 240, 290, 240, 278
int_nosucc_lookup, 'absl::node_hash_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 938, 139, 133, 145, 145, 152, 333, 205, 167, 189, 187, 268, 221, 183
int_delete, 'absl::node_hash_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 244, 223, 191, 190, 208, 211, 326, 303, 250, 253, 252, 292, 259, 289
int_insert, 'absl::node_hash_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 130, 148, 169, 174, 187, 197, 191, 203, 220, 211, 218, 237, 259, 232
int_succ_lookup, 'absl::node_hash_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 106, 142, 169, 178, 194, 199, 199, 199, 248, 236, 239, 247, 243, 286
int_nosucc_lookup, 'absl::node_hash_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 844, 133, 129, 140, 144, 146, 147, 158, 164, 164, 168, 178, 200, 188
int_delete, 'absl::node_hash_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 223, 163, 179, 187, 213, 210, 233, 225, 244, 249, 275, 260, 335, 296
int_insert, 'absl::flat_hash_map<int, int>', 42, 53, 45, 44, 55, 45, 41, 41, 55, 55, 52, 58, 69, 71
int_succ_lookup, 'absl::flat_hash_map<int, int>', 25, 58, 53, 31, 68, 29, 25, 24, 35, 34, 35, 35, 34, 52
int_nosucc_lookup, 'absl::flat_hash_map<int, int>', 334, 76, 54, 59, 73, 58, 50, 56, 67, 64, 63, 69, 79, 83
int_delete, 'absl::flat_hash_map<int, int>', 101, 61, 58, 51, 60, 48, 33, 35, 51, 46, 47, 48, 47, 69
int_insert, 'absl::flat_hash_map<int, int>', 43, 29, 76, 40, 51, 38, 38, 45, 86, 52, 52, 57, 69, 70
int_succ_lookup, 'absl::flat_hash_map<int, int>', 16, 10, 52, 26, 40, 25, 24, 26, 56, 33, 38, 34, 35, 44
int_nosucc_lookup, 'absl::flat_hash_map<int, int>', 188, 36, 74, 63, 63, 50, 49, 55, 65, 61, 65, 68, 79, 80
int_delete, 'absl::flat_hash_map<int, int>', 29, 26, 157, 59, 57, 32, 32, 36, 48, 45, 49, 49, 46, 66
int_insert, 'absl::flat_hash_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 129, 155, 198, 174, 188, 187, 188, 194, 212, 213, 216, 224, 239, 240
int_succ_lookup, 'absl::flat_hash_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 88, 148, 140, 115, 139, 133, 134, 135, 164, 165, 164, 164, 164, 193
int_nosucc_lookup, 'absl::flat_hash_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 978, 157, 178, 135, 146, 146, 149, 155, 171, 170, 168, 177, 195, 199
int_delete, 'absl::flat_hash_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 193, 141, 139, 100, 130, 132, 130, 134, 162, 158, 159, 161, 162, 196
int_insert, 'absl::flat_hash_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 263, 181, 166, 169, 184, 187, 191, 194, 210, 209, 213, 220, 236, 243
int_succ_lookup, 'absl::flat_hash_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 173, 136, 115, 115, 135, 135, 138, 136, 164, 164, 165, 169, 165, 193
int_nosucc_lookup, 'absl::flat_hash_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 576, 223, 129, 142, 145, 143, 211, 297, 168, 163, 174, 175, 193, 193
int_delete, 'absl::flat_hash_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 123, 132, 101, 104, 134, 129, 180, 137, 177, 160, 159, 159, 157, 195
int_insert, 'absl::flat_hash_map<int, int>', 42, 32, 92, 48, 35, 36, 40, 41, 50, 51, 54, 56, 71, 71
int_succ_lookup, 'absl::flat_hash_map<int, int>', 19, 20, 68, 26, 24, 24, 26, 25, 34, 35, 38, 35, 36, 46
int_nosucc_lookup, 'absl::flat_hash_map<int, int>', 312, 40, 58, 57, 52, 48, 52, 50, 63, 62, 65, 71, 77, 78
int_delete, 'absl::flat_hash_map<int, int>', 55, 28, 177, 37, 30, 29, 35, 30, 46, 52, 45, 54, 45, 71
int_insert, 'absl::flat_hash_map<int, int>', 27, 31, 30, 37, 36, 39, 37, 41, 50, 52, 54, 58, 71, 71
int_succ_lookup, 'absl::flat_hash_map<int, int>', 8, 12, 16, 23, 25, 26, 29, 25, 34, 35, 41, 36, 36, 52
int_nosucc_lookup, 'absl::flat_hash_map<int, int>', 173, 39, 38, 51, 49, 51, 51, 51, 62, 65, 66, 67, 82, 80
int_delete, 'absl::flat_hash_map<int, int>', 19, 25, 22, 62, 32, 29, 30, 31, 44, 45, 57, 45, 52, 73
int_insert, 'absl::flat_hash_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 183, 178, 155, 154, 193, 187, 189, 193, 208, 223, 217, 222, 238, 243
int_succ_lookup, 'absl::flat_hash_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 104, 171, 111, 114, 138, 136, 153, 141, 166, 164, 165, 165, 168, 192
int_nosucc_lookup, 'absl::flat_hash_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 347, 127, 126, 132, 144, 144, 145, 168, 164, 163, 169, 174, 188, 195
int_delete, 'absl::flat_hash_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 102, 101, 94, 96, 133, 134, 131, 137, 159, 155, 159, 161, 158, 188
int_insert, 'absl::flat_hash_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 186, 140, 154, 159, 185, 182, 187, 214, 207, 257, 214, 220, 292, 240
int_succ_lookup, 'absl::flat_hash_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 150, 101, 112, 114, 136, 137, 138, 138, 156, 219, 164, 165, 200, 195
int_nosucc_lookup, 'absl::flat_hash_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 370, 122, 127, 131, 138, 141, 150, 149, 163, 274, 169, 173, 269, 206
int_delete, 'absl::flat_hash_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 127, 83, 93, 100, 132, 133, 128, 125, 154, 221, 159, 158, 206, 212
int_insert, 'tsl::sparse_map<int, int>', 67, 88, 108, 81, 94, 97, 118, 118, 142, 142, 143, 151, 159, 171
int_succ_lookup, 'tsl::sparse_map<int, int>', 20, 35, 36, 32, 36, 42, 50, 50, 59, 68, 68, 72, 76, 80
int_nosucc_lookup, 'tsl::sparse_map<int, int>', 79, 130, 112, 90, 103, 111, 127, 133, 151, 161, 166, 178, 176, 202
int_delete, 'tsl::sparse_map<int, int>', 32, 42, 54, 41, 56, 51, 54, 65, 69, 72, 80, 82, 85, 101
int_insert, 'tsl::sparse_map<int, int>', 65, 103, 107, 98, 90, 155, 128, 137, 127, 155, 140, 175, 153, 159
int_succ_lookup, 'tsl::sparse_map<int, int>', 20, 29, 71, 33, 36, 120, 49, 53, 56, 70, 66, 73, 72, 76
int_nosucc_lookup, 'tsl::sparse_map<int, int>', 74, 85, 121, 88, 101, 147, 120, 130, 140, 151, 158, 173, 177, 184
int_delete, 'tsl::sparse_map<int, int>', 31, 36, 68, 41, 48, 53, 54, 59, 67, 72, 76, 82, 89, 90
int_insert, 'tsl::sparse_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 344, 626, 395, 487, 589, 462, 509, 545, 654, 467, 504, 556, 648, 679
int_succ_lookup, 'tsl::sparse_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 94, 151, 119, 125, 133, 135, 139, 145, 159, 154, 164, 167, 175, 178
int_nosucc_lookup, 'tsl::sparse_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 650, 576, 600, 494, 580, 461, 516, 552, 653, 472, 519, 549, 621, 676
int_delete, 'tsl::sparse_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 325, 380, 376, 313, 360, 285, 322, 344, 400, 310, 336, 365, 395, 426
int_insert, 'tsl::sparse_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 547, 407, 391, 469, 549, 432, 477, 569, 603, 474, 514, 559, 602, 649
int_succ_lookup, 'tsl::sparse_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 71, 103, 115, 122, 130, 136, 137, 162, 150, 158, 161, 166, 169, 178
int_nosucc_lookup, 'tsl::sparse_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 493, 443, 382, 478, 565, 428, 470, 709, 603, 468, 509, 544, 596, 641
int_delete, 'tsl::sparse_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 253, 265, 256, 301, 356, 287, 312, 387, 396, 315, 349, 366, 392, 427
int_insert, 'tsl::sparse_map<int, int>', 69, 234, 77, 145, 102, 108, 114, 117, 139, 143, 148, 157, 276, 192
int_succ_lookup, 'tsl::sparse_map<int, int>', 21, 52, 36, 79, 38, 47, 47, 50, 56, 67, 72, 77, 75, 87
int_nosucc_lookup, 'tsl::sparse_map<int, int>', 90, 135, 85, 127, 103, 113, 125, 135, 152, 154, 164, 178, 187, 183
int_delete, 'tsl::sparse_map<int, int>', 56, 49, 38, 44, 48, 50, 55, 60, 71, 71, 77, 96, 90, 95
int_insert, 'tsl::sparse_map<int, int>', 67, 87, 102, 153, 89, 119, 129, 135, 133, 137, 158, 152, 181, 159
int_succ_lookup, 'tsl::sparse_map<int, int>', 19, 28, 53, 23, 35, 47, 49, 89, 59, 66, 73, 102, 77, 80
int_nosucc_lookup, 'tsl::sparse_map<int, int>', 72, 89, 92, 85, 97, 115, 119, 184, 151, 148, 172, 180, 290, 178
int_delete, 'tsl::sparse_map<int, int>', 31, 66, 49, 40, 52, 53, 56, 63, 72, 72, 79, 85, 87, 93
int_insert, 'tsl::sparse_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 323, 451, 559, 481, 558, 464, 513, 561, 640, 486, 527, 576, 675, 708
int_succ_lookup, 'tsl::sparse_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 67, 159, 154, 120, 141, 136, 141, 153, 181, 167, 173, 177, 187, 191
int_nosucc_lookup, 'tsl::sparse_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 614, 628, 449, 501, 560, 479, 518, 568, 962, 478, 537, 577, 661, 714
int_delete, 'tsl::sparse_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 245, 309, 251, 312, 377, 296, 311, 391, 431, 326, 352, 383, 415, 449
int_insert, 'tsl::sparse_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 547, 418, 406, 495, 576, 454, 494, 554, 641, 485, 544, 588, 633, 668
int_succ_lookup, 'tsl::sparse_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 69, 101, 116, 128, 136, 139, 151, 150, 165, 167, 169, 176, 184, 190
int_nosucc_lookup, 'tsl::sparse_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 546, 446, 408, 511, 591, 447, 504, 550, 634, 488, 536, 583, 643, 662
int_delete, 'tsl::sparse_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 340, 279, 262, 321, 372, 301, 329, 361, 423, 328, 367, 386, 417, 441
int_insert, 'tsl::robin_map<int, int>', 18, 25, 37, 36, 35, 28, 31, 31, 41, 26, 30, 33, 39, 53
int_succ_lookup, 'tsl::robin_map<int, int>', 9, 25, 21, 20, 20, 23, 24, 24, 24, 20, 29, 24, 24, 26
int_nosucc_lookup, 'tsl::robin_map<int, int>', 23, 44, 28, 33, 39, 32, 30, 34, 42, 29, 32, 38, 38, 49
int_delete, 'tsl::robin_map<int, int>', 21, 51, 24, 24, 31, 22, 30, 27, 35, 23, 26, 29, 34, 68
int_insert, 'tsl::robin_map<int, int>', 22, 34, 31, 36, 61, 26, 32, 30, 39, 27, 32, 33, 37, 42
int_succ_lookup, 'tsl::robin_map<int, int>', 11, 24, 27, 22, 24, 24, 37, 24, 24, 24, 25, 25, 25, 28
int_nosucc_lookup, 'tsl::robin_map<int, int>', 26, 38, 30, 33, 36, 33, 31, 36, 45, 34, 33, 35, 40, 46
int_delete, 'tsl::robin_map<int, int>', 23, 41, 25, 33, 30, 21, 25, 28, 36, 25, 27, 31, 33, 38
int_insert, 'tsl::robin_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 199, 145, 149, 172, 182, 166, 174, 176, 238, 173, 218, 193, 206, 209
int_succ_lookup, 'tsl::robin_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 95, 97, 100, 108, 114, 110, 112, 109, 180, 113, 161, 127, 130, 133
int_nosucc_lookup, 'tsl::robin_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 174, 128, 119, 133, 149, 126, 136, 140, 250, 132, 211, 159, 165, 174
int_delete, 'tsl::robin_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 126, 112, 100, 119, 150, 104, 114, 167, 141, 108, 183, 135, 169, 157
int_insert, 'tsl::robin_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 140, 166, 149, 165, 177, 157, 180, 180, 195, 179, 188, 208, 213, 211
int_succ_lookup, 'tsl::robin_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 90, 133, 105, 104, 114, 109, 113, 115, 122, 119, 122, 150, 134, 139
int_nosucc_lookup, 'tsl::robin_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 125, 153, 116, 134, 149, 129, 137, 143, 165, 141, 145, 149, 161, 171
int_delete, 'tsl::robin_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 105, 116, 95, 117, 157, 109, 118, 127, 149, 117, 127, 165, 148, 159
int_insert, 'tsl::hopscotch_map<int, int>', 43, 47, 135, 85, 62, 72, 89, 103, 66, 78, 94, 115, 163, 114
int_succ_lookup, 'tsl::hopscotch_map<int, int>', 11, 12, 69, 24, 20, 23, 29, 30, 22, 25, 28, 33, 42, 40
int_nosucc_lookup, 'tsl::hopscotch_map<int, int>', 437, 56, 114, 87, 64, 76, 87, 111, 67, 80, 96, 123, 182, 110
int_delete, 'tsl::hopscotch_map<int, int>', 26, 14, 24, 24, 20, 24, 27, 34, 24, 26, 32, 37, 47, 32
int_insert, 'tsl::hopscotch_map<int, int>', 56, 76, 89, 77, 62, 168, 97, 178, 67, 80, 93, 114, 164, 70
int_succ_lookup, 'tsl::hopscotch_map<int, int>', 14, 23, 20, 23, 21, 62, 26, 30, 22, 25, 28, 35, 40, 24
int_nosucc_lookup, 'tsl::hopscotch_map<int, int>', 232, 103, 76, 84, 64, 122, 91, 122, 65, 81, 95, 121, 172, 73
int_delete, 'tsl::hopscotch_map<int, int>', 19, 41, 20, 25, 20, 41, 31, 36, 21, 26, 29, 36, 54, 25
int_insert, 'tsl::hopscotch_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 230, 167, 163, 190, 161, 167, 181, 207, 172, 188, 204, 341, 314, 260
int_succ_lookup, 'tsl::hopscotch_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 156, 98, 99, 113, 100, 108, 109, 118, 114, 115, 123, 208, 142, 148
int_nosucc_lookup, 'tsl::hopscotch_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 887, 194, 151, 194, 141, 162, 174, 206, 162, 172, 199, 302, 336, 192
int_delete, 'tsl::hopscotch_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 143, 90, 90, 104, 100, 100, 107, 113, 101, 113, 117, 217, 136, 112
int_insert, 'tsl::hopscotch_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 140, 170, 162, 186, 157, 216, 185, 206, 173, 226, 205, 274, 322, 185
int_succ_lookup, 'tsl::hopscotch_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 74, 98, 98, 109, 103, 116, 112, 114, 112, 136, 123, 181, 145, 119
int_nosucc_lookup, 'tsl::hopscotch_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 623, 190, 152, 194, 149, 174, 175, 207, 147, 185, 195, 261, 347, 161
int_delete, 'tsl::hopscotch_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 83, 92, 94, 139, 101, 102, 109, 112, 107, 109, 116, 126, 152, 252
int_insert, 'boost::unordered::unordered_map<int, int>', 175, 206, 424, 392, 373, 430, 290, 255, 369, 404, 268, 214, 222, 316
int_succ_lookup, 'boost::unordered::unordered_map<int, int>', 66, 56, 153, 223, 89, 143, 84, 74, 208, 154, 85, 124, 79, 79
int_nosucc_lookup, 'boost::unordered::unordered_map<int, int>', 263, 164, 248, 286, 201, 348, 309, 204, 384, 257, 259, 275, 223, 233
int_delete, 'boost::unordered::unordered_map<int, int>', 393, 144, 217, 320, 237, 342, 414, 265, 336, 408, 433, 539, 409, 338
int_insert, 'boost::unordered::unordered_map<int, int>', 159, 323, 316, 207, 294, 469, 369, 347, 300, 326, 311, 243, 318, 300
int_succ_lookup, 'boost::unordered::unordered_map<int, int>', 67, 200, 84, 154, 153, 201, 136, 128, 87, 160, 169, 174, 176, 241
int_nosucc_lookup, 'boost::unordered::unordered_map<int, int>', 155, 367, 212, 211, 287, 304, 398, 219, 274, 343, 338, 447, 255, 363
int_delete, 'boost::unordered::unordered_map<int, int>', 293, 486, 282, 224, 332, 472, 311, 326, 447, 377, 388, 374, 295, 345
int_insert, 'boost::unordered::unordered_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 446, 614, 504, 317, 415, 347, 787, 761, 534, 390, 502, 428, 509, 712
int_succ_lookup, 'boost::unordered::unordered_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 308, 506, 427, 284, 268, 373, 514, 491, 417, 367, 488, 388, 317, 326
int_nosucc_lookup, 'boost::unordered::unordered_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 445, 405, 398, 370, 294, 464, 562, 326, 516, 502, 324, 528, 624, 564
int_delete, 'boost::unordered::unordered_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 363, 482, 436, 472, 384, 359, 683, 498, 516, 393, 549, 442, 672, 706
int_insert, 'boost::unordered::unordered_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 315, 538, 328, 377, 462, 270, 385, 429, 560, 416, 497, 570, 474, 581
int_succ_lookup, 'boost::unordered::unordered_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 306, 249, 338, 348, 433, 326, 318, 381, 313, 410, 292, 306, 529, 330
int_nosucc_lookup, 'boost::unordered::unordered_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 504, 285, 511, 417, 624, 384, 417, 482, 306, 450, 262, 511, 336, 616
int_delete, 'boost::unordered::unordered_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 459, 495, 417, 348, 393, 748, 346, 409, 478, 434, 439, 590, 443, 659
int_insert, 'ska::unordered_map<int, int>', 135, 168, 222, 129, 158, 137, 138, 165, 178, 144, 153, 163, 180, 297
int_succ_lookup, 'ska::unordered_map<int, int>', 41, 79, 60, 33, 38, 35, 36, 39, 43, 40, 43, 44, 45, 98
int_nosucc_lookup, 'ska::unordered_map<int, int>', 212, 141, 199, 127, 195, 134, 139, 157, 170, 144, 209, 163, 175, 273
int_delete, 'ska::unordered_map<int, int>', 206, 157, 120, 107, 152, 137, 179, 152, 171, 151, 180, 193, 185, 253
int_insert, 'ska::unordered_map<int, int>', 94, 203, 115, 130, 286, 169, 145, 156, 186, 150, 214, 167, 179, 202
int_succ_lookup, 'ska::unordered_map<int, int>', 23, 76, 32, 47, 82, 46, 52, 39, 61, 38, 44, 46, 43, 47
int_nosucc_lookup, 'ska::unordered_map<int, int>', 78, 185, 109, 169, 231, 131, 173, 155, 219, 147, 262, 181, 173, 184
int_delete, 'ska::unordered_map<int, int>', 57, 219, 100, 134, 283, 129, 152, 141, 181, 153, 154, 169, 160, 170
int_insert, 'ska::unordered_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 184, 182, 221, 241, 240, 230, 293, 253, 260, 233, 236, 249, 270, 451
int_succ_lookup, 'ska::unordered_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 115, 147, 195, 191, 185, 180, 246, 193, 196, 198, 191, 195, 240, 355
int_nosucc_lookup, 'ska::unordered_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 146, 242, 234, 248, 257, 229, 312, 264, 269, 241, 270, 278, 287, 427
int_delete, 'ska::unordered_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 138, 217, 210, 206, 227, 194, 228, 228, 221, 199, 214, 217, 224, 352
int_insert, 'ska::unordered_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 154, 212, 345, 218, 268, 350, 239, 337, 247, 221, 252, 237, 249, 269
int_succ_lookup, 'ska::unordered_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 132, 165, 294, 192, 187, 241, 185, 310, 196, 216, 201, 196, 206, 236
int_nosucc_lookup, 'ska::unordered_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 258, 199, 335, 218, 224, 309, 252, 356, 239, 217, 225, 231, 248, 329
int_delete, 'ska::unordered_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 212, 190, 186, 214, 214, 248, 205, 284, 210, 209, 242, 213, 222, 290
int_insert, 'ska::bytell_hash_map<int, int>', 60, 50, 71, 62, 54, 71, 76, 90, 68, 78, 120, 117, 150, 100
int_succ_lookup, 'ska::bytell_hash_map<int, int>', 14, 9, 20, 14, 20, 27, 23, 23, 25, 26, 29, 29, 30, 38
int_nosucc_lookup, 'ska::bytell_hash_map<int, int>', 118, 56, 91, 68, 54, 70, 74, 103, 67, 75, 93, 115, 184, 104
int_delete, 'ska::bytell_hash_map<int, int>', 27, 19, 36, 27, 26, 35, 29, 41, 33, 37, 40, 51, 67, 39
int_insert, 'ska::bytell_hash_map<int, int>', 44, 113, 53, 106, 75, 61, 89, 155, 78, 78, 99, 118, 177, 80
int_succ_lookup, 'ska::bytell_hash_map<int, int>', 8, 40, 21, 20, 29, 21, 24, 45, 26, 28, 28, 30, 44, 28
int_nosucc_lookup, 'ska::bytell_hash_map<int, int>', 66, 111, 66, 79, 78, 64, 81, 160, 67, 77, 93, 113, 218, 70
int_delete, 'ska::bytell_hash_map<int, int>', 20, 24, 26, 26, 32, 27, 33, 75, 29, 34, 40, 48, 66, 37
int_insert, 'ska::bytell_hash_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 170, 191, 176, 198, 185, 190, 213, 222, 197, 205, 216, 240, 367, 210
int_succ_lookup, 'ska::bytell_hash_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 230, 116, 107, 118, 122, 106, 124, 120, 123, 135, 121, 127, 176, 124
int_nosucc_lookup, 'ska::bytell_hash_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 267, 192, 212, 195, 137, 161, 201, 207, 142, 159, 196, 368, 372, 162
int_delete, 'ska::bytell_hash_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 97, 116, 114, 132, 112, 122, 121, 131, 121, 122, 135, 234, 201, 132
int_insert, 'ska::bytell_hash_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 214, 186, 175, 197, 175, 189, 255, 247, 188, 201, 255, 241, 589, 209
int_succ_lookup, 'ska::bytell_hash_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 83, 97, 103, 95, 120, 115, 155, 123, 120, 121, 130, 135, 153, 131
int_nosucc_lookup, 'ska::bytell_hash_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 191, 177, 172, 171, 195, 160, 210, 218, 169, 171, 190, 219, 299, 235
int_delete, 'ska::bytell_hash_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 218, 104, 109, 102, 115, 121, 131, 134, 126, 128, 135, 142, 152, 157
int_insert, 'ska::flat_hash_map<int, int>', 60, 30, 84, 41, 51, 41, 46, 48, 54, 57, 49, 52, 66, 70
int_succ_lookup, 'ska::flat_hash_map<int, int>', 28, 12, 60, 19, 21, 22, 30, 24, 24, 27, 26, 27, 28, 27
int_nosucc_lookup, 'ska::flat_hash_map<int, int>', 49, 33, 58, 45, 49, 48, 77, 51, 60, 50, 52, 59, 59, 62
int_delete, 'ska::flat_hash_map<int, int>', 23, 18, 29, 23, 28, 21, 36, 27, 35, 24, 30, 30, 38, 36
int_insert, 'ska::flat_hash_map<int, int>', 25, 79, 43, 43, 49, 44, 49, 48, 52, 45, 49, 50, 52, 70
int_succ_lookup, 'ska::flat_hash_map<int, int>', 8, 19, 66, 19, 21, 23, 29, 24, 24, 25, 26, 28, 26, 26
int_nosucc_lookup, 'ska::flat_hash_map<int, int>', 27, 63, 85, 50, 61, 45, 101, 71, 59, 52, 47, 57, 55, 60
int_delete, 'ska::flat_hash_map<int, int>', 15, 46, 30, 25, 45, 20, 47, 51, 35, 25, 25, 30, 38, 35
int_insert, 'ska::flat_hash_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 170, 180, 169, 162, 180, 158, 174, 173, 261, 176, 181, 190, 277, 203
int_succ_lookup, 'ska::flat_hash_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 187, 109, 114, 101, 109, 102, 106, 109, 121, 113, 115, 122, 170, 129
int_nosucc_lookup, 'ska::flat_hash_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 211, 135, 161, 138, 152, 147, 123, 146, 158, 136, 139, 145, 171, 170
int_delete, 'ska::flat_hash_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 135, 129, 127, 121, 144, 128, 109, 119, 143, 118, 148, 138, 145, 147
int_insert, 'ska::flat_hash_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 137, 149, 144, 163, 176, 158, 251, 171, 188, 179, 184, 186, 203, 203
int_succ_lookup, 'ska::flat_hash_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 112, 98, 78, 109, 145, 105, 174, 109, 117, 114, 120, 116, 125, 137
int_nosucc_lookup, 'ska::flat_hash_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 222, 135, 99, 130, 198, 130, 137, 140, 153, 130, 170, 148, 154, 172
int_delete, 'ska::flat_hash_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 178, 104, 74, 115, 159, 101, 132, 119, 138, 108, 125, 127, 139, 157
int_insert, 'phmap::parallel_flat_hash_map<int, int>', 47, 45, 60, 58, 55, 56, 69, 75, 72, 71, 129, 93, 112, 98
int_succ_lookup, 'phmap::parallel_flat_hash_map<int, int>', 12, 12, 48, 21, 32, 29, 32, 30, 40, 43, 52, 58, 48, 55
int_nosucc_lookup, 'phmap::parallel_flat_hash_map<int, int>', 158, 54, 66, 64, 59, 60, 67, 74, 78, 76, 86, 123, 128, 93
int_delete, 'phmap::parallel_flat_hash_map<int, int>', 48, 25, 39, 32, 38, 32, 41, 37, 53, 51, 62, 70, 63, 78
int_insert, 'phmap::parallel_flat_hash_map<int, int>', 59, 152, 61, 49, 81, 55, 57, 69, 67, 78, 82, 86, 128, 89
int_succ_lookup, 'phmap::parallel_flat_hash_map<int, int>', 22, 99, 41, 17, 36, 28, 27, 30, 38, 48, 52, 40, 67, 53
int_nosucc_lookup, 'phmap::parallel_flat_hash_map<int, int>', 197, 98, 123, 60, 61, 60, 69, 79, 72, 104, 88, 95, 207, 117
int_delete, 'phmap::parallel_flat_hash_map<int, int>', 48, 44, 70, 35, 37, 36, 38, 42, 58, 73, 60, 91, 85, 95
int_insert, 'phmap::parallel_flat_hash_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 309, 245, 199, 231, 222, 230, 237, 261, 252, 427, 268, 287, 335, 325
int_succ_lookup, 'phmap::parallel_flat_hash_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 139, 147, 120, 131, 156, 160, 147, 164, 174, 271, 170, 179, 178, 205
int_nosucc_lookup, 'phmap::parallel_flat_hash_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 957, 200, 166, 172, 183, 179, 171, 194, 200, 364, 200, 261, 284, 236
int_delete, 'phmap::parallel_flat_hash_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 259, 117, 116, 117, 135, 133, 135, 183, 165, 265, 169, 183, 208, 197
int_insert, 'phmap::parallel_flat_hash_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 281, 247, 200, 236, 225, 224, 246, 247, 247, 266, 267, 392, 330, 277
int_succ_lookup, 'phmap::parallel_flat_hash_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 175, 152, 125, 130, 111, 140, 140, 142, 196, 168, 172, 249, 180, 201
int_nosucc_lookup, 'phmap::parallel_flat_hash_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 617, 188, 151, 204, 149, 166, 172, 173, 200, 204, 218, 251, 240, 224
int_delete, 'phmap::parallel_flat_hash_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 123, 131, 113, 123, 104, 128, 179, 122, 162, 174, 212, 178, 230, 201
int_insert, 'phmap::parallel_node_hash_map<int, int>', 259, 122, 136, 137, 168, 162, 179, 174, 165, 169, 192, 197, 260, 214
int_succ_lookup, 'phmap::parallel_node_hash_map<int, int>', 32, 40, 51, 56, 82, 70, 69, 70, 71, 79, 75, 98, 84, 90
int_nosucc_lookup, 'phmap::parallel_node_hash_map<int, int>', 533, 181, 131, 158, 165, 164, 175, 180, 182, 176, 193, 218, 262, 248
int_delete, 'phmap::parallel_node_hash_map<int, int>', 112, 122, 123, 183, 168, 173, 191, 192, 236, 210, 207, 230, 249, 249
int_insert, 'phmap::parallel_node_hash_map<int, int>', 91, 140, 114, 141, 144, 141, 306, 183, 156, 284, 182, 379, 243, 205
int_succ_lookup, 'phmap::parallel_node_hash_map<int, int>', 24, 55, 48, 52, 79, 66, 63, 66, 71, 102, 83, 79, 102, 100
int_nosucc_lookup, 'phmap::parallel_node_hash_map<int, int>', 389, 392, 123, 147, 143, 150, 178, 182, 177, 201, 183, 210, 796, 211
int_delete, 'phmap::parallel_node_hash_map<int, int>', 105, 171, 126, 138, 173, 151, 206, 175, 229, 229, 208, 224, 261, 252
int_insert, 'phmap::parallel_node_hash_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 177, 238, 276, 277, 245, 284, 303, 313, 283, 296, 320, 366, 426, 358
int_succ_lookup, 'phmap::parallel_node_hash_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 101, 143, 174, 171, 197, 215, 212, 219, 237, 230, 245, 257, 270, 276
int_nosucc_lookup, 'phmap::parallel_node_hash_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 971, 221, 224, 228, 222, 219, 243, 259, 246, 257, 272, 315, 364, 313
int_delete, 'phmap::parallel_node_hash_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 147, 157, 198, 201, 247, 223, 251, 255, 279, 262, 259, 297, 298, 300
int_insert, 'phmap::parallel_node_hash_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 210, 241, 242, 282, 264, 282, 292, 343, 288, 443, 324, 395, 423, 314
int_succ_lookup, 'phmap::parallel_node_hash_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 148, 142, 173, 208, 202, 240, 207, 217, 244, 388, 241, 267, 267, 282
int_nosucc_lookup, 'phmap::parallel_node_hash_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 1011, 225, 221, 248, 219, 250, 246, 284, 291, 569, 276, 384, 376, 281
int_delete, 'phmap::parallel_node_hash_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 138, 168, 220, 212, 224, 230, 237, 248, 412, 463, 264, 295, 299, 297
int_insert, 'emilib::HashMap<int, int>', 23, 20, 22, 24, 26, 35, 29, 31, 40, 44, 37, 40, 45, 49
int_succ_lookup, 'emilib::HashMap<int, int>', 11, 14, 14, 20, 21, 25, 26, 27, 33, 33, 31, 36, 34, 34
int_nosucc_lookup, 'emilib::HashMap<int, int>', 26, 21, 28, 28, 28, 38, 31, 36, 40, 53, 36, 41, 43, 47
int_delete, 'emilib::HashMap<int, int>', 9, 8, 11, 15, 14, 18, 16, 19, 21, 26, 21, 23, 29, 26
int_insert, 'emilib::HashMap<int, int>', 15, 16, 22, 22, 29, 80, 121, 33, 37, 50, 39, 39, 45, 51
int_succ_lookup, 'emilib::HashMap<int, int>', 9, 12, 13, 19, 24, 28, 46, 28, 33, 34, 32, 31, 43, 36
int_nosucc_lookup, 'emilib::HashMap<int, int>', 18, 18, 24, 23, 31, 37, 37, 32, 39, 50, 37, 38, 54, 50
int_delete, 'emilib::HashMap<int, int>', 6, 7, 10, 11, 15, 17, 61, 17, 21, 25, 21, 22, 28, 26
int_insert, 'emilib::HashMap<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 134, 138, 161, 155, 156, 159, 163, 165, 182, 178, 174, 177, 488, 182
int_succ_lookup, 'emilib::HashMap<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 80, 93, 106, 118, 108, 114, 110, 111, 116, 119, 117, 120, 341, 133
int_nosucc_lookup, 'emilib::HashMap<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 169, 120, 121, 142, 124, 125, 129, 129, 130, 141, 138, 151, 179, 147
int_delete, 'emilib::HashMap<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 127, 84, 91, 115, 106, 102, 103, 101, 105, 124, 114, 112, 153, 123
int_insert, 'emilib::HashMap<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 183, 137, 146, 154, 147, 161, 154, 159, 168, 173, 170, 174, 179, 181
int_succ_lookup, 'emilib::HashMap<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 138, 90, 101, 101, 105, 125, 104, 106, 120, 118, 120, 127, 122, 129
int_nosucc_lookup, 'emilib::HashMap<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 208, 111, 121, 111, 123, 137, 121, 122, 135, 134, 138, 139, 144, 142
int_delete, 'emilib::HashMap<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 94, 79, 94, 87, 95, 105, 101, 100, 153, 115, 111, 114, 115, 124
int_insert, 'robin_hood::detail::Table<true, 80, int, int, robin_hood::hash<int>, std::equal_to<int> >', 102, 126, 38, 112, 81, 144, 120, 168, 69, 163, 130, 135, 112, 91
int_succ_lookup, 'robin_hood::detail::Table<true, 80, int, int, robin_hood::hash<int>, std::equal_to<int> >', 35, 53, 22, 65, 33, 61, 30, 127, 73, 51, 52, 119, 179, 43
int_nosucc_lookup, 'robin_hood::detail::Table<true, 80, int, int, robin_hood::hash<int>, std::equal_to<int> >', 266, 366, 38, 911, 40, 84, 93, 167, 67, 103, 82, 113, 114, 83
int_delete, 'robin_hood::detail::Table<true, 80, int, int, robin_hood::hash<int>, std::equal_to<int> >', 22, 25, 64, 40, 35, 99, 118, 276, 44, 98, 104, 207, 185, 103
int_insert, 'robin_hood::detail::Table<true, 80, int, int, robin_hood::hash<int>, std::equal_to<int> >', 89, 87, 50, 97, 66, 42, 84, 151, 180, 78, 218, 101, 58, 135
int_succ_lookup, 'robin_hood::detail::Table<true, 80, int, int, robin_hood::hash<int>, std::equal_to<int> >', 40, 63, 49, 30, 29, 34, 35, 104, 79, 38, 88, 74, 37, 85
int_nosucc_lookup, 'robin_hood::detail::Table<true, 80, int, int, robin_hood::hash<int>, std::equal_to<int> >', 245, 298, 94, 552, 40, 87, 90, 110, 92, 77, 176, 124, 70, 89
int_delete, 'robin_hood::detail::Table<true, 80, int, int, robin_hood::hash<int>, std::equal_to<int> >', 105, 77, 62, 126, 65, 79, 111, 77, 132, 176, 136, 118, 64, 131
int_insert, 'robin_hood::detail::Table<true, 80, std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char>, robin_hood::hash<std::__cxx11::basic_string<char> >, std::equal_to<std::__cxx11::basic_string<char> > >', 495, 480, 352, 848, 246, 185, 347, 315, 176, 174, 240, 353, 150, 180
int_succ_lookup, 'robin_hood::detail::Table<true, 80, std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char>, robin_hood::hash<std::__cxx11::basic_string<char> >, std::equal_to<std::__cxx11::basic_string<char> > >', 247, 224, 202, 241, 200, 190, 80, 121, 121, 112, 125, 127, 119, 89
int_nosucc_lookup, 'robin_hood::detail::Table<true, 80, std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char>, robin_hood::hash<std::__cxx11::basic_string<char> >, std::equal_to<std::__cxx11::basic_string<char> > >', 981, 2163, 456, 5086, 252, 204, 179, 314, 184, 185, 216, 367, 131, 115
int_delete, 'robin_hood::detail::Table<true, 80, std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char>, robin_hood::hash<std::__cxx11::basic_string<char> >, std::equal_to<std::__cxx11::basic_string<char> > >', 135, 149, 263, 287, 253, 238, 153, 268, 133, 173, 194, 475, 133, 111
int_insert, 'robin_hood::detail::Table<true, 80, std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char>, robin_hood::hash<std::__cxx11::basic_string<char> >, std::equal_to<std::__cxx11::basic_string<char> > >', 261, 278, 141, 408, 141, 158, 203, 300, 262, 275, 392, 503, 315, 543
int_succ_lookup, 'robin_hood::detail::Table<true, 80, std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char>, robin_hood::hash<std::__cxx11::basic_string<char> >, std::equal_to<std::__cxx11::basic_string<char> > >', 124, 84, 93, 73, 98, 108, 109, 119, 114, 216, 136, 195, 265, 305
int_nosucc_lookup, 'robin_hood::detail::Table<true, 80, std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char>, robin_hood::hash<std::__cxx11::basic_string<char> >, std::equal_to<std::__cxx11::basic_string<char> > >', 530, 763, 277, 2340, 128, 158, 202, 341, 256, 544, 355, 541, 377, 315
int_delete, 'robin_hood::detail::Table<true, 80, std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char>, robin_hood::hash<std::__cxx11::basic_string<char> >, std::equal_to<std::__cxx11::basic_string<char> > >', 82, 114, 196, 83, 127, 176, 239, 285, 259, 355, 405, 643, 296, 298
int_insert, 'robin_hood::detail::Table<false, 80, int, int, robin_hood::hash<int>, std::equal_to<int> >', 58, 147, 92, 239, 73, 172, 123, 237, 151, 151, 192, 187, 72, 230
int_succ_lookup, 'robin_hood::detail::Table<false, 80, int, int, robin_hood::hash<int>, std::equal_to<int> >', 24, 69, 47, 105, 123, 235, 77, 67, 212, 65, 69, 74, 103, 146
int_nosucc_lookup, 'robin_hood::detail::Table<false, 80, int, int, robin_hood::hash<int>, std::equal_to<int> >', 343, 1310, 71, 1802, 89, 104, 107, 145, 118, 136, 131, 194, 83, 134
int_delete, 'robin_hood::detail::Table<false, 80, int, int, robin_hood::hash<int>, std::equal_to<int> >', 44, 60, 106, 155, 255, 262, 163, 219, 171, 222, 226, 244, 276, 297
int_insert, 'robin_hood::detail::Table<false, 80, int, int, robin_hood::hash<int>, std::equal_to<int> >', 146, 76, 42, 197, 122, 96, 163, 172, 85, 227, 150, 180, 108, 173
int_succ_lookup, 'robin_hood::detail::Table<false, 80, int, int, robin_hood::hash<int>, std::equal_to<int> >', 68, 80, 51, 80, 166, 67, 60, 133, 108, 161, 159, 131, 89, 164
int_nosucc_lookup, 'robin_hood::detail::Table<false, 80, int, int, robin_hood::hash<int>, std::equal_to<int> >', 451, 1078, 99, 1906, 89, 168, 105, 151, 125, 202, 95, 315, 58, 160
int_delete, 'robin_hood::detail::Table<false, 80, int, int, robin_hood::hash<int>, std::equal_to<int> >', 83, 220, 123, 221, 206, 151, 151, 288, 319, 260, 238, 456, 268, 230
int_insert, 'robin_hood::detail::Table<false, 80, std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char>, robin_hood::hash<std::__cxx11::basic_string<char> >, std::equal_to<std::__cxx11::basic_string<char> > >', 188, 229, 240, 326, 312, 271, 325, 465, 264, 203, 312, 422, 258, 395
int_succ_lookup, 'robin_hood::detail::Table<false, 80, std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char>, robin_hood::hash<std::__cxx11::basic_string<char> >, std::equal_to<std::__cxx11::basic_string<char> > >', 105, 250, 349, 256, 320, 244, 311, 333, 254, 331, 320, 355, 271, 217
int_nosucc_lookup, 'robin_hood::detail::Table<false, 80, std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char>, robin_hood::hash<std::__cxx11::basic_string<char> >, std::equal_to<std::__cxx11::basic_string<char> > >', 939, 1950, 232, 4612, 253, 133, 326, 327, 273, 290, 368, 293, 224, 150
int_delete, 'robin_hood::detail::Table<false, 80, std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char>, robin_hood::hash<std::__cxx11::basic_string<char> >, std::equal_to<std::__cxx11::basic_string<char> > >', 174, 260, 254, 305, 310, 297, 289, 546, 324, 345, 328, 383, 282, 204
int_insert, 'robin_hood::detail::Table<false, 80, std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char>, robin_hood::hash<std::__cxx11::basic_string<char> >, std::equal_to<std::__cxx11::basic_string<char> > >', 317, 336, 242, 295, 196, 216, 298, 412, 401, 256, 455, 296, 202, 284
int_succ_lookup, 'robin_hood::detail::Table<false, 80, std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char>, robin_hood::hash<std::__cxx11::basic_string<char> >, std::equal_to<std::__cxx11::basic_string<char> > >', 236, 194, 293, 240, 321, 283, 252, 328, 422, 280, 265, 321, 239, 274
int_nosucc_lookup, 'robin_hood::detail::Table<false, 80, std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char>, robin_hood::hash<std::__cxx11::basic_string<char> >, std::equal_to<std::__cxx11::basic_string<char> > >', 1039, 1621, 155, 3866, 176, 170, 308, 420, 231, 321, 283, 322, 209, 182
int_delete, 'robin_hood::detail::Table<false, 80, std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char>, robin_hood::hash<std::__cxx11::basic_string<char> >, std::equal_to<std::__cxx11::basic_string<char> > >', 294, 265, 183, 409, 445, 274, 433, 364, 316, 397, 410, 328, 333, 322
int_insert, 'robin_hood::detail::Table<false, 80, int, int, robin_hood::hash<int>, std::equal_to<int> >', 74, 109, 108, 124, 60, 69, 65, 86, 47, 74, 77, 108, 52, 134
int_succ_lookup, 'robin_hood::detail::Table<false, 80, int, int, robin_hood::hash<int>, std::equal_to<int> >', 37, 137, 155, 90, 73, 80, 52, 54, 48, 57, 55, 63, 57, 61
int_nosucc_lookup, 'robin_hood::detail::Table<false, 80, int, int, robin_hood::hash<int>, std::equal_to<int> >', 324, 936, 89, 2001, 67, 88, 69, 95, 48, 79, 81, 112, 54, 79
int_delete, 'robin_hood::detail::Table<false, 80, int, int, robin_hood::hash<int>, std::equal_to<int> >', 57, 144, 125, 160, 121, 152, 109, 133, 124, 133, 142, 162, 140, 180
int_insert, 'robin_hood::detail::Table<false, 80, int, int, robin_hood::hash<int>, std::equal_to<int> >', 45, 89, 74, 74, 46, 166, 88, 128, 102, 147, 224, 229, 243, 72
int_succ_lookup, 'robin_hood::detail::Table<false, 80, int, int, robin_hood::hash<int>, std::equal_to<int> >', 39, 66, 86, 128, 73, 130, 56, 65, 70, 155, 116, 65, 146, 59
int_nosucc_lookup, 'robin_hood::detail::Table<false, 80, int, int, robin_hood::hash<int>, std::equal_to<int> >', 415, 930, 64, 1715, 68, 94, 100, 183, 117, 79, 156, 160, 160, 59
int_delete, 'robin_hood::detail::Table<false, 80, int, int, robin_hood::hash<int>, std::equal_to<int> >', 29, 55, 67, 107, 102, 236, 134, 167, 199, 191, 269, 309, 183, 199
int_insert, 'robin_hood::detail::Table<false, 80, std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char>, robin_hood::hash<std::__cxx11::basic_string<char> >, std::equal_to<std::__cxx11::basic_string<char> > >', 185, 258, 320, 245, 211, 218, 251, 273, 260, 273, 271, 473, 143, 354
int_succ_lookup, 'robin_hood::detail::Table<false, 80, std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char>, robin_hood::hash<std::__cxx11::basic_string<char> >, std::equal_to<std::__cxx11::basic_string<char> > >', 120, 284, 314, 179, 290, 253, 253, 223, 226, 299, 317, 366, 189, 360
int_nosucc_lookup, 'robin_hood::detail::Table<false, 80, std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char>, robin_hood::hash<std::__cxx11::basic_string<char> >, std::equal_to<std::__cxx11::basic_string<char> > >', 743, 1682, 221, 3335, 251, 144, 132, 287, 201, 254, 559, 333, 173, 206
int_delete, 'robin_hood::detail::Table<false, 80, std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char>, robin_hood::hash<std::__cxx11::basic_string<char> >, std::equal_to<std::__cxx11::basic_string<char> > >', 90, 156, 239, 228, 253, 235, 288, 307, 229, 282, 289, 277, 186, 276
int_insert, 'robin_hood::detail::Table<false, 80, std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char>, robin_hood::hash<std::__cxx11::basic_string<char> >, std::equal_to<std::__cxx11::basic_string<char> > >', 188, 176, 128, 171, 134, 142, 160, 183, 141, 151, 235, 198, 137, 160
int_succ_lookup, 'robin_hood::detail::Table<false, 80, std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char>, robin_hood::hash<std::__cxx11::basic_string<char> >, std::equal_to<std::__cxx11::basic_string<char> > >', 118, 158, 142, 148, 156, 160, 166, 171, 172, 177, 237, 194, 193, 240
int_nosucc_lookup, 'robin_hood::detail::Table<false, 80, std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char>, robin_hood::hash<std::__cxx11::basic_string<char> >, std::equal_to<std::__cxx11::basic_string<char> > >', 669, 1179, 96, 2382, 107, 112, 131, 161, 132, 142, 178, 207, 141, 188
int_delete, 'robin_hood::detail::Table<false, 80, std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char>, robin_hood::hash<std::__cxx11::basic_string<char> >, std::equal_to<std::__cxx11::basic_string<char> > >', 108, 126, 154, 161, 147, 152, 196, 197, 176, 184, 199, 216, 194, 234
int_insert, 'absl::node_hash_map<int, int>', 136, 129, 113, 106, 117, 211, 122, 131, 140, 121, 142, 215, 171, 149
int_succ_lookup, 'absl::node_hash_map<int, int>', 61, 81, 127, 53, 59, 145, 64, 64, 71, 66, 76, 147, 74, 80
int_nosucc_lookup, 'absl::node_hash_map<int, int>', 801, 170, 269, 109, 115, 205, 118, 122, 131, 120, 133, 225, 156, 140
int_delete, 'absl::node_hash_map<int, int>', 164, 189, 308, 164, 188, 256, 203, 204, 228, 199, 231, 325, 290, 256
int_insert, 'absl::node_hash_map<int, int>', 96, 128, 137, 283, 114, 115, 118, 312, 129, 137, 137, 141, 249, 229
int_succ_lookup, 'absl::node_hash_map<int, int>', 29, 79, 127, 310, 58, 58, 64, 146, 74, 73, 75, 75, 133, 165
int_nosucc_lookup, 'absl::node_hash_map<int, int>', 411, 137, 160, 263, 115, 117, 118, 292, 130, 131, 134, 142, 257, 231
int_delete, 'absl::node_hash_map<int, int>', 92, 168, 166, 270, 236, 208, 214, 385, 416, 236, 238, 250, 279, 288
int_insert, 'absl::node_hash_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 140, 157, 297, 183, 189, 202, 205, 211, 386, 333, 258, 281, 315, 378
int_succ_lookup, 'absl::node_hash_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 114, 154, 361, 182, 205, 233, 272, 228, 275, 387, 261, 259, 272, 529
int_nosucc_lookup, 'absl::node_hash_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 846, 367, 210, 186, 180, 204, 216, 282, 463, 496, 252, 274, 296, 399
int_delete, 'absl::node_hash_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 181, 232, 224, 192, 218, 251, 261, 340, 425, 460, 290, 297, 299, 466
int_insert, 'absl::node_hash_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 332, 351, 180, 308, 210, 445, 214, 245, 336, 490, 226, 245, 263, 578
int_succ_lookup, 'absl::node_hash_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 161, 212, 192, 248, 238, 430, 252, 209, 304, 331, 264, 263, 268, 402
int_nosucc_lookup, 'absl::node_hash_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 1630, 385, 182, 393, 208, 425, 209, 210, 369, 464, 234, 251, 284, 606
int_delete, 'absl::node_hash_map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >', 362, 347, 213, 410, 267, 336, 253, 243, 464, 491, 287, 299, 299, 642
1 int_insert 'google::dense_hash_map<int int>' 26 34 64 40 40 50 40 44 51 45 77 47 51 57
1 int_insert 'google::dense_hash_map<int int>' 26 34 64 40 40 50 40 44 51 45 77 47 51 57
2 int_succ_lookup 'google::dense_hash_map<int int>' 10 18 30 20 18 22 21 23 24 23 27 24 25 26
3 int_nosucc_lookup 'google::dense_hash_map<int int>' 31 33 62 54 43 40 43 49 56 42 53 52 55 59
4 int_delete 'google::dense_hash_map<int int>' 13 11 26 38 16 13 15 17 22 15 32 19 23 24
5 int_insert 'google::dense_hash_map<int int>' 19 53 38 36 40 36 40 43 51 41 44 48 52 59
6 int_succ_lookup 'google::dense_hash_map<int int>' 7 19 20 17 18 20 21 22 24 23 24 24 27 26
7 int_nosucc_lookup 'google::dense_hash_map<int int>' 23 72 39 36 43 40 43 50 56 42 50 49 57 59
8 int_delete 'google::dense_hash_map<int int>' 9 35 17 13 17 16 15 21 22 17 22 18 24 24
9 int_insert 'google::dense_hash_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 146 155 159 175 178 161 167 179 195 185 191 202 205 231
10 int_succ_lookup 'google::dense_hash_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 87 98 110 106 110 117 113 112 121 117 119 119 129 128
11 int_nosucc_lookup 'google::dense_hash_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 189 160 184 170 182 200 189 184 192 170 188 185 199 193
12 int_delete 'google::dense_hash_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 91 91 113 119 108 134 103 104 110 105 108 109 118 131
13 int_insert 'google::dense_hash_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 213 154 148 169 185 162 170 175 192 180 186 197 206 214
14 int_succ_lookup 'google::dense_hash_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 122 91 98 103 109 101 107 107 114 114 120 123 127 141
15 int_nosucc_lookup 'google::dense_hash_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 234 166 159 174 183 160 173 181 184 169 183 194 200 194
16 int_delete 'google::dense_hash_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 126 90 89 111 105 94 96 102 112 111 110 111 123 124
17 int_insert 'absl::node_hash_map<int int>' 101 116 91 90 101 99 107 106 114 114 123 161 138 130
18 int_succ_lookup 'absl::node_hash_map<int int>' 24 87 40 40 52 48 49 49 58 59 61 68 61 73
19 int_nosucc_lookup 'absl::node_hash_map<int int>' 464 141 90 95 99 98 100 105 112 114 118 134 144 132
20 int_delete 'absl::node_hash_map<int int>' 140 257 139 126 138 145 146 145 189 182 179 222 201 270
21 int_insert 'absl::node_hash_map<int int>' 73 110 83 90 103 99 101 105 116 118 120 130 142 134
22 int_succ_lookup 'absl::node_hash_map<int int>' 19 64 38 40 52 47 50 51 62 61 61 61 61 70
23 int_nosucc_lookup 'absl::node_hash_map<int int>' 502 192 90 90 101 99 111 105 125 117 122 127 141 126
24 int_delete 'absl::node_hash_map<int int>' 95 269 110 121 144 139 175 146 190 187 187 187 194 222
25 int_insert 'absl::node_hash_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 127 163 171 180 190 187 193 226 208 235 243 286 287 228
26 int_succ_lookup 'absl::node_hash_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 185 164 173 178 204 197 219 206 231 236 240 290 240 278
27 int_nosucc_lookup 'absl::node_hash_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 938 139 133 145 145 152 333 205 167 189 187 268 221 183
28 int_delete 'absl::node_hash_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 244 223 191 190 208 211 326 303 250 253 252 292 259 289
29 int_insert 'absl::node_hash_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 130 148 169 174 187 197 191 203 220 211 218 237 259 232
30 int_succ_lookup 'absl::node_hash_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 106 142 169 178 194 199 199 199 248 236 239 247 243 286
31 int_nosucc_lookup 'absl::node_hash_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 844 133 129 140 144 146 147 158 164 164 168 178 200 188
32 int_delete 'absl::node_hash_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 223 163 179 187 213 210 233 225 244 249 275 260 335 296
33 int_insert 'absl::flat_hash_map<int int>' 42 53 45 44 55 45 41 41 55 55 52 58 69 71
34 int_succ_lookup 'absl::flat_hash_map<int int>' 25 58 53 31 68 29 25 24 35 34 35 35 34 52
35 int_nosucc_lookup 'absl::flat_hash_map<int int>' 334 76 54 59 73 58 50 56 67 64 63 69 79 83
36 int_delete 'absl::flat_hash_map<int int>' 101 61 58 51 60 48 33 35 51 46 47 48 47 69
37 int_insert 'absl::flat_hash_map<int int>' 43 29 76 40 51 38 38 45 86 52 52 57 69 70
38 int_succ_lookup 'absl::flat_hash_map<int int>' 16 10 52 26 40 25 24 26 56 33 38 34 35 44
39 int_nosucc_lookup 'absl::flat_hash_map<int int>' 188 36 74 63 63 50 49 55 65 61 65 68 79 80
40 int_delete 'absl::flat_hash_map<int int>' 29 26 157 59 57 32 32 36 48 45 49 49 46 66
41 int_insert 'absl::flat_hash_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 129 155 198 174 188 187 188 194 212 213 216 224 239 240
42 int_succ_lookup 'absl::flat_hash_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 88 148 140 115 139 133 134 135 164 165 164 164 164 193
43 int_nosucc_lookup 'absl::flat_hash_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 978 157 178 135 146 146 149 155 171 170 168 177 195 199
44 int_delete 'absl::flat_hash_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 193 141 139 100 130 132 130 134 162 158 159 161 162 196
45 int_insert 'absl::flat_hash_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 263 181 166 169 184 187 191 194 210 209 213 220 236 243
46 int_succ_lookup 'absl::flat_hash_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 173 136 115 115 135 135 138 136 164 164 165 169 165 193
47 int_nosucc_lookup 'absl::flat_hash_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 576 223 129 142 145 143 211 297 168 163 174 175 193 193
48 int_delete 'absl::flat_hash_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 123 132 101 104 134 129 180 137 177 160 159 159 157 195
49 int_insert 'absl::flat_hash_map<int int>' 42 32 92 48 35 36 40 41 50 51 54 56 71 71
50 int_succ_lookup 'absl::flat_hash_map<int int>' 19 20 68 26 24 24 26 25 34 35 38 35 36 46
51 int_nosucc_lookup 'absl::flat_hash_map<int int>' 312 40 58 57 52 48 52 50 63 62 65 71 77 78
52 int_delete 'absl::flat_hash_map<int int>' 55 28 177 37 30 29 35 30 46 52 45 54 45 71
53 int_insert 'absl::flat_hash_map<int int>' 27 31 30 37 36 39 37 41 50 52 54 58 71 71
54 int_succ_lookup 'absl::flat_hash_map<int int>' 8 12 16 23 25 26 29 25 34 35 41 36 36 52
55 int_nosucc_lookup 'absl::flat_hash_map<int int>' 173 39 38 51 49 51 51 51 62 65 66 67 82 80
56 int_delete 'absl::flat_hash_map<int int>' 19 25 22 62 32 29 30 31 44 45 57 45 52 73
57 int_insert 'absl::flat_hash_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 183 178 155 154 193 187 189 193 208 223 217 222 238 243
58 int_succ_lookup 'absl::flat_hash_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 104 171 111 114 138 136 153 141 166 164 165 165 168 192
59 int_nosucc_lookup 'absl::flat_hash_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 347 127 126 132 144 144 145 168 164 163 169 174 188 195
60 int_delete 'absl::flat_hash_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 102 101 94 96 133 134 131 137 159 155 159 161 158 188
61 int_insert 'absl::flat_hash_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 186 140 154 159 185 182 187 214 207 257 214 220 292 240
62 int_succ_lookup 'absl::flat_hash_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 150 101 112 114 136 137 138 138 156 219 164 165 200 195
63 int_nosucc_lookup 'absl::flat_hash_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 370 122 127 131 138 141 150 149 163 274 169 173 269 206
64 int_delete 'absl::flat_hash_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 127 83 93 100 132 133 128 125 154 221 159 158 206 212
65 int_insert 'tsl::sparse_map<int int>' 67 88 108 81 94 97 118 118 142 142 143 151 159 171
66 int_succ_lookup 'tsl::sparse_map<int int>' 20 35 36 32 36 42 50 50 59 68 68 72 76 80
67 int_nosucc_lookup 'tsl::sparse_map<int int>' 79 130 112 90 103 111 127 133 151 161 166 178 176 202
68 int_delete 'tsl::sparse_map<int int>' 32 42 54 41 56 51 54 65 69 72 80 82 85 101
69 int_insert 'tsl::sparse_map<int int>' 65 103 107 98 90 155 128 137 127 155 140 175 153 159
70 int_succ_lookup 'tsl::sparse_map<int int>' 20 29 71 33 36 120 49 53 56 70 66 73 72 76
71 int_nosucc_lookup 'tsl::sparse_map<int int>' 74 85 121 88 101 147 120 130 140 151 158 173 177 184
72 int_delete 'tsl::sparse_map<int int>' 31 36 68 41 48 53 54 59 67 72 76 82 89 90
73 int_insert 'tsl::sparse_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 344 626 395 487 589 462 509 545 654 467 504 556 648 679
74 int_succ_lookup 'tsl::sparse_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 94 151 119 125 133 135 139 145 159 154 164 167 175 178
75 int_nosucc_lookup 'tsl::sparse_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 650 576 600 494 580 461 516 552 653 472 519 549 621 676
76 int_delete 'tsl::sparse_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 325 380 376 313 360 285 322 344 400 310 336 365 395 426
77 int_insert 'tsl::sparse_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 547 407 391 469 549 432 477 569 603 474 514 559 602 649
78 int_succ_lookup 'tsl::sparse_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 71 103 115 122 130 136 137 162 150 158 161 166 169 178
79 int_nosucc_lookup 'tsl::sparse_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 493 443 382 478 565 428 470 709 603 468 509 544 596 641
80 int_delete 'tsl::sparse_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 253 265 256 301 356 287 312 387 396 315 349 366 392 427
81 int_insert 'tsl::sparse_map<int int>' 69 234 77 145 102 108 114 117 139 143 148 157 276 192
82 int_succ_lookup 'tsl::sparse_map<int int>' 21 52 36 79 38 47 47 50 56 67 72 77 75 87
83 int_nosucc_lookup 'tsl::sparse_map<int int>' 90 135 85 127 103 113 125 135 152 154 164 178 187 183
84 int_delete 'tsl::sparse_map<int int>' 56 49 38 44 48 50 55 60 71 71 77 96 90 95
85 int_insert 'tsl::sparse_map<int int>' 67 87 102 153 89 119 129 135 133 137 158 152 181 159
86 int_succ_lookup 'tsl::sparse_map<int int>' 19 28 53 23 35 47 49 89 59 66 73 102 77 80
87 int_nosucc_lookup 'tsl::sparse_map<int int>' 72 89 92 85 97 115 119 184 151 148 172 180 290 178
88 int_delete 'tsl::sparse_map<int int>' 31 66 49 40 52 53 56 63 72 72 79 85 87 93
89 int_insert 'tsl::sparse_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 323 451 559 481 558 464 513 561 640 486 527 576 675 708
90 int_succ_lookup 'tsl::sparse_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 67 159 154 120 141 136 141 153 181 167 173 177 187 191
91 int_nosucc_lookup 'tsl::sparse_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 614 628 449 501 560 479 518 568 962 478 537 577 661 714
92 int_delete 'tsl::sparse_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 245 309 251 312 377 296 311 391 431 326 352 383 415 449
93 int_insert 'tsl::sparse_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 547 418 406 495 576 454 494 554 641 485 544 588 633 668
94 int_succ_lookup 'tsl::sparse_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 69 101 116 128 136 139 151 150 165 167 169 176 184 190
95 int_nosucc_lookup 'tsl::sparse_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 546 446 408 511 591 447 504 550 634 488 536 583 643 662
96 int_delete 'tsl::sparse_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 340 279 262 321 372 301 329 361 423 328 367 386 417 441
97 int_insert 'tsl::robin_map<int int>' 18 25 37 36 35 28 31 31 41 26 30 33 39 53
98 int_succ_lookup 'tsl::robin_map<int int>' 9 25 21 20 20 23 24 24 24 20 29 24 24 26
99 int_nosucc_lookup 'tsl::robin_map<int int>' 23 44 28 33 39 32 30 34 42 29 32 38 38 49
100 int_delete 'tsl::robin_map<int int>' 21 51 24 24 31 22 30 27 35 23 26 29 34 68
101 int_insert 'tsl::robin_map<int int>' 22 34 31 36 61 26 32 30 39 27 32 33 37 42
102 int_succ_lookup 'tsl::robin_map<int int>' 11 24 27 22 24 24 37 24 24 24 25 25 25 28
103 int_nosucc_lookup 'tsl::robin_map<int int>' 26 38 30 33 36 33 31 36 45 34 33 35 40 46
104 int_delete 'tsl::robin_map<int int>' 23 41 25 33 30 21 25 28 36 25 27 31 33 38
105 int_insert 'tsl::robin_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 199 145 149 172 182 166 174 176 238 173 218 193 206 209
106 int_succ_lookup 'tsl::robin_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 95 97 100 108 114 110 112 109 180 113 161 127 130 133
107 int_nosucc_lookup 'tsl::robin_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 174 128 119 133 149 126 136 140 250 132 211 159 165 174
108 int_delete 'tsl::robin_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 126 112 100 119 150 104 114 167 141 108 183 135 169 157
109 int_insert 'tsl::robin_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 140 166 149 165 177 157 180 180 195 179 188 208 213 211
110 int_succ_lookup 'tsl::robin_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 90 133 105 104 114 109 113 115 122 119 122 150 134 139
111 int_nosucc_lookup 'tsl::robin_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 125 153 116 134 149 129 137 143 165 141 145 149 161 171
112 int_delete 'tsl::robin_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 105 116 95 117 157 109 118 127 149 117 127 165 148 159
113 int_insert 'tsl::hopscotch_map<int int>' 43 47 135 85 62 72 89 103 66 78 94 115 163 114
114 int_succ_lookup 'tsl::hopscotch_map<int int>' 11 12 69 24 20 23 29 30 22 25 28 33 42 40
115 int_nosucc_lookup 'tsl::hopscotch_map<int int>' 437 56 114 87 64 76 87 111 67 80 96 123 182 110
116 int_delete 'tsl::hopscotch_map<int int>' 26 14 24 24 20 24 27 34 24 26 32 37 47 32
117 int_insert 'tsl::hopscotch_map<int int>' 56 76 89 77 62 168 97 178 67 80 93 114 164 70
118 int_succ_lookup 'tsl::hopscotch_map<int int>' 14 23 20 23 21 62 26 30 22 25 28 35 40 24
119 int_nosucc_lookup 'tsl::hopscotch_map<int int>' 232 103 76 84 64 122 91 122 65 81 95 121 172 73
120 int_delete 'tsl::hopscotch_map<int int>' 19 41 20 25 20 41 31 36 21 26 29 36 54 25
121 int_insert 'tsl::hopscotch_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 230 167 163 190 161 167 181 207 172 188 204 341 314 260
122 int_succ_lookup 'tsl::hopscotch_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 156 98 99 113 100 108 109 118 114 115 123 208 142 148
123 int_nosucc_lookup 'tsl::hopscotch_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 887 194 151 194 141 162 174 206 162 172 199 302 336 192
124 int_delete 'tsl::hopscotch_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 143 90 90 104 100 100 107 113 101 113 117 217 136 112
125 int_insert 'tsl::hopscotch_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 140 170 162 186 157 216 185 206 173 226 205 274 322 185
126 int_succ_lookup 'tsl::hopscotch_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 74 98 98 109 103 116 112 114 112 136 123 181 145 119
127 int_nosucc_lookup 'tsl::hopscotch_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 623 190 152 194 149 174 175 207 147 185 195 261 347 161
128 int_delete 'tsl::hopscotch_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 83 92 94 139 101 102 109 112 107 109 116 126 152 252
129 int_insert 'boost::unordered::unordered_map<int int>' 175 206 424 392 373 430 290 255 369 404 268 214 222 316
130 int_succ_lookup 'boost::unordered::unordered_map<int int>' 66 56 153 223 89 143 84 74 208 154 85 124 79 79
131 int_nosucc_lookup 'boost::unordered::unordered_map<int int>' 263 164 248 286 201 348 309 204 384 257 259 275 223 233
132 int_delete 'boost::unordered::unordered_map<int int>' 393 144 217 320 237 342 414 265 336 408 433 539 409 338
133 int_insert 'boost::unordered::unordered_map<int int>' 159 323 316 207 294 469 369 347 300 326 311 243 318 300
134 int_succ_lookup 'boost::unordered::unordered_map<int int>' 67 200 84 154 153 201 136 128 87 160 169 174 176 241
135 int_nosucc_lookup 'boost::unordered::unordered_map<int int>' 155 367 212 211 287 304 398 219 274 343 338 447 255 363
136 int_delete 'boost::unordered::unordered_map<int int>' 293 486 282 224 332 472 311 326 447 377 388 374 295 345
137 int_insert 'boost::unordered::unordered_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 446 614 504 317 415 347 787 761 534 390 502 428 509 712
138 int_succ_lookup 'boost::unordered::unordered_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 308 506 427 284 268 373 514 491 417 367 488 388 317 326
139 int_nosucc_lookup 'boost::unordered::unordered_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 445 405 398 370 294 464 562 326 516 502 324 528 624 564
140 int_delete 'boost::unordered::unordered_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 363 482 436 472 384 359 683 498 516 393 549 442 672 706
141 int_insert 'boost::unordered::unordered_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 315 538 328 377 462 270 385 429 560 416 497 570 474 581
142 int_succ_lookup 'boost::unordered::unordered_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 306 249 338 348 433 326 318 381 313 410 292 306 529 330
143 int_nosucc_lookup 'boost::unordered::unordered_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 504 285 511 417 624 384 417 482 306 450 262 511 336 616
144 int_delete 'boost::unordered::unordered_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 459 495 417 348 393 748 346 409 478 434 439 590 443 659
145 int_insert 'ska::unordered_map<int int>' 135 168 222 129 158 137 138 165 178 144 153 163 180 297
146 int_succ_lookup 'ska::unordered_map<int int>' 41 79 60 33 38 35 36 39 43 40 43 44 45 98
147 int_nosucc_lookup 'ska::unordered_map<int int>' 212 141 199 127 195 134 139 157 170 144 209 163 175 273
148 int_delete 'ska::unordered_map<int int>' 206 157 120 107 152 137 179 152 171 151 180 193 185 253
149 int_insert 'ska::unordered_map<int int>' 94 203 115 130 286 169 145 156 186 150 214 167 179 202
150 int_succ_lookup 'ska::unordered_map<int int>' 23 76 32 47 82 46 52 39 61 38 44 46 43 47
151 int_nosucc_lookup 'ska::unordered_map<int int>' 78 185 109 169 231 131 173 155 219 147 262 181 173 184
152 int_delete 'ska::unordered_map<int int>' 57 219 100 134 283 129 152 141 181 153 154 169 160 170
153 int_insert 'ska::unordered_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 184 182 221 241 240 230 293 253 260 233 236 249 270 451
154 int_succ_lookup 'ska::unordered_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 115 147 195 191 185 180 246 193 196 198 191 195 240 355
155 int_nosucc_lookup 'ska::unordered_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 146 242 234 248 257 229 312 264 269 241 270 278 287 427
156 int_delete 'ska::unordered_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 138 217 210 206 227 194 228 228 221 199 214 217 224 352
157 int_insert 'ska::unordered_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 154 212 345 218 268 350 239 337 247 221 252 237 249 269
158 int_succ_lookup 'ska::unordered_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 132 165 294 192 187 241 185 310 196 216 201 196 206 236
159 int_nosucc_lookup 'ska::unordered_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 258 199 335 218 224 309 252 356 239 217 225 231 248 329
160 int_delete 'ska::unordered_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 212 190 186 214 214 248 205 284 210 209 242 213 222 290
161 int_insert 'ska::bytell_hash_map<int int>' 60 50 71 62 54 71 76 90 68 78 120 117 150 100
162 int_succ_lookup 'ska::bytell_hash_map<int int>' 14 9 20 14 20 27 23 23 25 26 29 29 30 38
163 int_nosucc_lookup 'ska::bytell_hash_map<int int>' 118 56 91 68 54 70 74 103 67 75 93 115 184 104
164 int_delete 'ska::bytell_hash_map<int int>' 27 19 36 27 26 35 29 41 33 37 40 51 67 39
165 int_insert 'ska::bytell_hash_map<int int>' 44 113 53 106 75 61 89 155 78 78 99 118 177 80
166 int_succ_lookup 'ska::bytell_hash_map<int int>' 8 40 21 20 29 21 24 45 26 28 28 30 44 28
167 int_nosucc_lookup 'ska::bytell_hash_map<int int>' 66 111 66 79 78 64 81 160 67 77 93 113 218 70
168 int_delete 'ska::bytell_hash_map<int int>' 20 24 26 26 32 27 33 75 29 34 40 48 66 37
169 int_insert 'ska::bytell_hash_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 170 191 176 198 185 190 213 222 197 205 216 240 367 210
170 int_succ_lookup 'ska::bytell_hash_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 230 116 107 118 122 106 124 120 123 135 121 127 176 124
171 int_nosucc_lookup 'ska::bytell_hash_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 267 192 212 195 137 161 201 207 142 159 196 368 372 162
172 int_delete 'ska::bytell_hash_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 97 116 114 132 112 122 121 131 121 122 135 234 201 132
173 int_insert 'ska::bytell_hash_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 214 186 175 197 175 189 255 247 188 201 255 241 589 209
174 int_succ_lookup 'ska::bytell_hash_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 83 97 103 95 120 115 155 123 120 121 130 135 153 131
175 int_nosucc_lookup 'ska::bytell_hash_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 191 177 172 171 195 160 210 218 169 171 190 219 299 235
176 int_delete 'ska::bytell_hash_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 218 104 109 102 115 121 131 134 126 128 135 142 152 157
177 int_insert 'ska::flat_hash_map<int int>' 60 30 84 41 51 41 46 48 54 57 49 52 66 70
178 int_succ_lookup 'ska::flat_hash_map<int int>' 28 12 60 19 21 22 30 24 24 27 26 27 28 27
179 int_nosucc_lookup 'ska::flat_hash_map<int int>' 49 33 58 45 49 48 77 51 60 50 52 59 59 62
180 int_delete 'ska::flat_hash_map<int int>' 23 18 29 23 28 21 36 27 35 24 30 30 38 36
181 int_insert 'ska::flat_hash_map<int int>' 25 79 43 43 49 44 49 48 52 45 49 50 52 70
182 int_succ_lookup 'ska::flat_hash_map<int int>' 8 19 66 19 21 23 29 24 24 25 26 28 26 26
183 int_nosucc_lookup 'ska::flat_hash_map<int int>' 27 63 85 50 61 45 101 71 59 52 47 57 55 60
184 int_delete 'ska::flat_hash_map<int int>' 15 46 30 25 45 20 47 51 35 25 25 30 38 35
185 int_insert 'ska::flat_hash_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 170 180 169 162 180 158 174 173 261 176 181 190 277 203
186 int_succ_lookup 'ska::flat_hash_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 187 109 114 101 109 102 106 109 121 113 115 122 170 129
187 int_nosucc_lookup 'ska::flat_hash_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 211 135 161 138 152 147 123 146 158 136 139 145 171 170
188 int_delete 'ska::flat_hash_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 135 129 127 121 144 128 109 119 143 118 148 138 145 147
189 int_insert 'ska::flat_hash_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 137 149 144 163 176 158 251 171 188 179 184 186 203 203
190 int_succ_lookup 'ska::flat_hash_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 112 98 78 109 145 105 174 109 117 114 120 116 125 137
191 int_nosucc_lookup 'ska::flat_hash_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 222 135 99 130 198 130 137 140 153 130 170 148 154 172
192 int_delete 'ska::flat_hash_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 178 104 74 115 159 101 132 119 138 108 125 127 139 157
193 int_insert 'phmap::parallel_flat_hash_map<int int>' 47 45 60 58 55 56 69 75 72 71 129 93 112 98
194 int_succ_lookup 'phmap::parallel_flat_hash_map<int int>' 12 12 48 21 32 29 32 30 40 43 52 58 48 55
195 int_nosucc_lookup 'phmap::parallel_flat_hash_map<int int>' 158 54 66 64 59 60 67 74 78 76 86 123 128 93
196 int_delete 'phmap::parallel_flat_hash_map<int int>' 48 25 39 32 38 32 41 37 53 51 62 70 63 78
197 int_insert 'phmap::parallel_flat_hash_map<int int>' 59 152 61 49 81 55 57 69 67 78 82 86 128 89
198 int_succ_lookup 'phmap::parallel_flat_hash_map<int int>' 22 99 41 17 36 28 27 30 38 48 52 40 67 53
199 int_nosucc_lookup 'phmap::parallel_flat_hash_map<int int>' 197 98 123 60 61 60 69 79 72 104 88 95 207 117
200 int_delete 'phmap::parallel_flat_hash_map<int int>' 48 44 70 35 37 36 38 42 58 73 60 91 85 95
201 int_insert 'phmap::parallel_flat_hash_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 309 245 199 231 222 230 237 261 252 427 268 287 335 325
202 int_succ_lookup 'phmap::parallel_flat_hash_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 139 147 120 131 156 160 147 164 174 271 170 179 178 205
203 int_nosucc_lookup 'phmap::parallel_flat_hash_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 957 200 166 172 183 179 171 194 200 364 200 261 284 236
204 int_delete 'phmap::parallel_flat_hash_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 259 117 116 117 135 133 135 183 165 265 169 183 208 197
205 int_insert 'phmap::parallel_flat_hash_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 281 247 200 236 225 224 246 247 247 266 267 392 330 277
206 int_succ_lookup 'phmap::parallel_flat_hash_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 175 152 125 130 111 140 140 142 196 168 172 249 180 201
207 int_nosucc_lookup 'phmap::parallel_flat_hash_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 617 188 151 204 149 166 172 173 200 204 218 251 240 224
208 int_delete 'phmap::parallel_flat_hash_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 123 131 113 123 104 128 179 122 162 174 212 178 230 201
209 int_insert 'phmap::parallel_node_hash_map<int int>' 259 122 136 137 168 162 179 174 165 169 192 197 260 214
210 int_succ_lookup 'phmap::parallel_node_hash_map<int int>' 32 40 51 56 82 70 69 70 71 79 75 98 84 90
211 int_nosucc_lookup 'phmap::parallel_node_hash_map<int int>' 533 181 131 158 165 164 175 180 182 176 193 218 262 248
212 int_delete 'phmap::parallel_node_hash_map<int int>' 112 122 123 183 168 173 191 192 236 210 207 230 249 249
213 int_insert 'phmap::parallel_node_hash_map<int int>' 91 140 114 141 144 141 306 183 156 284 182 379 243 205
214 int_succ_lookup 'phmap::parallel_node_hash_map<int int>' 24 55 48 52 79 66 63 66 71 102 83 79 102 100
215 int_nosucc_lookup 'phmap::parallel_node_hash_map<int int>' 389 392 123 147 143 150 178 182 177 201 183 210 796 211
216 int_delete 'phmap::parallel_node_hash_map<int int>' 105 171 126 138 173 151 206 175 229 229 208 224 261 252
217 int_insert 'phmap::parallel_node_hash_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 177 238 276 277 245 284 303 313 283 296 320 366 426 358
218 int_succ_lookup 'phmap::parallel_node_hash_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 101 143 174 171 197 215 212 219 237 230 245 257 270 276
219 int_nosucc_lookup 'phmap::parallel_node_hash_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 971 221 224 228 222 219 243 259 246 257 272 315 364 313
220 int_delete 'phmap::parallel_node_hash_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 147 157 198 201 247 223 251 255 279 262 259 297 298 300
221 int_insert 'phmap::parallel_node_hash_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 210 241 242 282 264 282 292 343 288 443 324 395 423 314
222 int_succ_lookup 'phmap::parallel_node_hash_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 148 142 173 208 202 240 207 217 244 388 241 267 267 282
223 int_nosucc_lookup 'phmap::parallel_node_hash_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 1011 225 221 248 219 250 246 284 291 569 276 384 376 281
224 int_delete 'phmap::parallel_node_hash_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 138 168 220 212 224 230 237 248 412 463 264 295 299 297
225 int_insert 'emilib::HashMap<int int>' 23 20 22 24 26 35 29 31 40 44 37 40 45 49
226 int_succ_lookup 'emilib::HashMap<int int>' 11 14 14 20 21 25 26 27 33 33 31 36 34 34
227 int_nosucc_lookup 'emilib::HashMap<int int>' 26 21 28 28 28 38 31 36 40 53 36 41 43 47
228 int_delete 'emilib::HashMap<int int>' 9 8 11 15 14 18 16 19 21 26 21 23 29 26
229 int_insert 'emilib::HashMap<int int>' 15 16 22 22 29 80 121 33 37 50 39 39 45 51
230 int_succ_lookup 'emilib::HashMap<int int>' 9 12 13 19 24 28 46 28 33 34 32 31 43 36
231 int_nosucc_lookup 'emilib::HashMap<int int>' 18 18 24 23 31 37 37 32 39 50 37 38 54 50
232 int_delete 'emilib::HashMap<int int>' 6 7 10 11 15 17 61 17 21 25 21 22 28 26
233 int_insert 'emilib::HashMap<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 134 138 161 155 156 159 163 165 182 178 174 177 488 182
234 int_succ_lookup 'emilib::HashMap<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 80 93 106 118 108 114 110 111 116 119 117 120 341 133
235 int_nosucc_lookup 'emilib::HashMap<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 169 120 121 142 124 125 129 129 130 141 138 151 179 147
236 int_delete 'emilib::HashMap<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 127 84 91 115 106 102 103 101 105 124 114 112 153 123
237 int_insert 'emilib::HashMap<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 183 137 146 154 147 161 154 159 168 173 170 174 179 181
238 int_succ_lookup 'emilib::HashMap<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 138 90 101 101 105 125 104 106 120 118 120 127 122 129
239 int_nosucc_lookup 'emilib::HashMap<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 208 111 121 111 123 137 121 122 135 134 138 139 144 142
240 int_delete 'emilib::HashMap<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 94 79 94 87 95 105 101 100 153 115 111 114 115 124
241 int_insert 'robin_hood::detail::Table<true 80 int int robin_hood::hash<int> std::equal_to<int> >' 102 126 38 112 81 144 120 168 69 163
242 int_succ_lookup 'robin_hood::detail::Table<true 80 int int robin_hood::hash<int> std::equal_to<int> >' 35 53 22 65 33 61 30 127 73 51
243 int_nosucc_lookup 'robin_hood::detail::Table<true 80 int int robin_hood::hash<int> std::equal_to<int> >' 266 366 38 911 40 84 93 167 67 103
244 int_delete 'robin_hood::detail::Table<true 80 int int robin_hood::hash<int> std::equal_to<int> >' 22 25 64 40 35 99 118 276 44 98
245 int_insert 'robin_hood::detail::Table<true 80 int int robin_hood::hash<int> std::equal_to<int> >' 89 87 50 97 66 42 84 151 180 78
246 int_succ_lookup 'robin_hood::detail::Table<true 80 int int robin_hood::hash<int> std::equal_to<int> >' 40 63 49 30 29 34 35 104 79 38
247 int_nosucc_lookup 'robin_hood::detail::Table<true 80 int int robin_hood::hash<int> std::equal_to<int> >' 245 298 94 552 40 87 90 110 92 77
248 int_delete 'robin_hood::detail::Table<true 80 int int robin_hood::hash<int> std::equal_to<int> >' 105 77 62 126 65 79 111 77 132 176
249 int_insert 'robin_hood::detail::Table<true 80 std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> robin_hood::hash<std::__cxx11::basic_string<char> > std::equal_to<std::__cxx11::basic_string<char> > >' 495 480 352 848 246 185 347 315 176 174
250 int_succ_lookup 'robin_hood::detail::Table<true 80 std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> robin_hood::hash<std::__cxx11::basic_string<char> > std::equal_to<std::__cxx11::basic_string<char> > >' 247 224 202 241 200 190 80 121 121 112
251 int_nosucc_lookup 'robin_hood::detail::Table<true 80 std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> robin_hood::hash<std::__cxx11::basic_string<char> > std::equal_to<std::__cxx11::basic_string<char> > >' 981 2163 456 5086 252 204 179 314 184 185
252 int_delete 'robin_hood::detail::Table<true 80 std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> robin_hood::hash<std::__cxx11::basic_string<char> > std::equal_to<std::__cxx11::basic_string<char> > >' 135 149 263 287 253 238 153 268 133 173
253 int_insert 'robin_hood::detail::Table<true 80 std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> robin_hood::hash<std::__cxx11::basic_string<char> > std::equal_to<std::__cxx11::basic_string<char> > >' 261 278 141 408 141 158 203 300 262 275
254 int_succ_lookup 'robin_hood::detail::Table<true 80 std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> robin_hood::hash<std::__cxx11::basic_string<char> > std::equal_to<std::__cxx11::basic_string<char> > >' 124 84 93 73 98 108 109 119 114 216
255 int_nosucc_lookup 'robin_hood::detail::Table<true 80 std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> robin_hood::hash<std::__cxx11::basic_string<char> > std::equal_to<std::__cxx11::basic_string<char> > >' 530 763 277 2340 128 158 202 341 256 544
256 int_delete 'robin_hood::detail::Table<true 80 std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> robin_hood::hash<std::__cxx11::basic_string<char> > std::equal_to<std::__cxx11::basic_string<char> > >' 82 114 196 83 127 176 239 285 259 355
257 int_insert 'robin_hood::detail::Table<false 80 int int robin_hood::hash<int> std::equal_to<int> >' 58 147 92 239 73 172 123 237 151 151
258 int_succ_lookup 'robin_hood::detail::Table<false 80 int int robin_hood::hash<int> std::equal_to<int> >' 24 69 47 105 123 235 77 67 212 65
259 int_nosucc_lookup 'robin_hood::detail::Table<false 80 int int robin_hood::hash<int> std::equal_to<int> >' 343 1310 71 1802 89 104 107 145 118 136
260 int_delete 'robin_hood::detail::Table<false 80 int int robin_hood::hash<int> std::equal_to<int> >' 44 60 106 155 255 262 163 219 171 222
261 int_insert 'robin_hood::detail::Table<false 80 int int robin_hood::hash<int> std::equal_to<int> >' 146 76 42 197 122 96 163 172 85 227
262 int_succ_lookup 'robin_hood::detail::Table<false 80 int int robin_hood::hash<int> std::equal_to<int> >' 68 80 51 80 166 67 60 133 108 161
263 int_nosucc_lookup 'robin_hood::detail::Table<false 80 int int robin_hood::hash<int> std::equal_to<int> >' 451 1078 99 1906 89 168 105 151 125 202
264 int_delete 'robin_hood::detail::Table<false 80 int int robin_hood::hash<int> std::equal_to<int> >' 83 220 123 221 206 151 151 288 319 260
265 int_insert 'robin_hood::detail::Table<false 80 std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> robin_hood::hash<std::__cxx11::basic_string<char> > std::equal_to<std::__cxx11::basic_string<char> > >' 188 229 240 326 312 271 325 465 264 203
266 int_succ_lookup 'robin_hood::detail::Table<false 80 std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> robin_hood::hash<std::__cxx11::basic_string<char> > std::equal_to<std::__cxx11::basic_string<char> > >' 105 250 349 256 320 244 311 333 254 331
267 int_nosucc_lookup 'robin_hood::detail::Table<false 80 std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> robin_hood::hash<std::__cxx11::basic_string<char> > std::equal_to<std::__cxx11::basic_string<char> > >' 939 1950 232 4612 253 133 326 327 273 290
268 int_delete 'robin_hood::detail::Table<false 80 std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> robin_hood::hash<std::__cxx11::basic_string<char> > std::equal_to<std::__cxx11::basic_string<char> > >' 174 260 254 305 310 297 289 546 324 345
269 int_insert 'robin_hood::detail::Table<false 80 std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> robin_hood::hash<std::__cxx11::basic_string<char> > std::equal_to<std::__cxx11::basic_string<char> > >' 317 336 242 295 196 216 298 412 401 256
270 int_succ_lookup 'robin_hood::detail::Table<false 80 std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> robin_hood::hash<std::__cxx11::basic_string<char> > std::equal_to<std::__cxx11::basic_string<char> > >' 236 194 293 240 321 283 252 328 422 280
271 int_nosucc_lookup 'robin_hood::detail::Table<false 80 std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> robin_hood::hash<std::__cxx11::basic_string<char> > std::equal_to<std::__cxx11::basic_string<char> > >' 1039 1621 155 3866 176 170 308 420 231 321
272 int_delete 'robin_hood::detail::Table<false 80 std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> robin_hood::hash<std::__cxx11::basic_string<char> > std::equal_to<std::__cxx11::basic_string<char> > >' 294 265 183 409 445 274 433 364 316 397
273 int_insert 'robin_hood::detail::Table<false 80 int int robin_hood::hash<int> std::equal_to<int> >' 74 109 108 124 60 69 65 86 47 74
274 int_succ_lookup 'robin_hood::detail::Table<false 80 int int robin_hood::hash<int> std::equal_to<int> >' 37 137 155 90 73 80 52 54 48 57
275 int_nosucc_lookup 'robin_hood::detail::Table<false 80 int int robin_hood::hash<int> std::equal_to<int> >' 324 936 89 2001 67 88 69 95 48 79
276 int_delete 'robin_hood::detail::Table<false 80 int int robin_hood::hash<int> std::equal_to<int> >' 57 144 125 160 121 152 109 133 124 133
277 int_insert 'robin_hood::detail::Table<false 80 int int robin_hood::hash<int> std::equal_to<int> >' 45 89 74 74 46 166 88 128 102 147
278 int_succ_lookup 'robin_hood::detail::Table<false 80 int int robin_hood::hash<int> std::equal_to<int> >' 39 66 86 128 73 130 56 65 70 155
279 int_nosucc_lookup 'robin_hood::detail::Table<false 80 int int robin_hood::hash<int> std::equal_to<int> >' 415 930 64 1715 68 94 100 183 117 79
280 int_delete 'robin_hood::detail::Table<false 80 int int robin_hood::hash<int> std::equal_to<int> >' 29 55 67 107 102 236 134 167 199 191
281 int_insert 'robin_hood::detail::Table<false 80 std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> robin_hood::hash<std::__cxx11::basic_string<char> > std::equal_to<std::__cxx11::basic_string<char> > >' 185 258 320 245 211 218 251 273 260 273
282 int_succ_lookup 'robin_hood::detail::Table<false 80 std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> robin_hood::hash<std::__cxx11::basic_string<char> > std::equal_to<std::__cxx11::basic_string<char> > >' 120 284 314 179 290 253 253 223 226 299
283 int_nosucc_lookup 'robin_hood::detail::Table<false 80 std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> robin_hood::hash<std::__cxx11::basic_string<char> > std::equal_to<std::__cxx11::basic_string<char> > >' 743 1682 221 3335 251 144 132 287 201 254
284 int_delete 'robin_hood::detail::Table<false 80 std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> robin_hood::hash<std::__cxx11::basic_string<char> > std::equal_to<std::__cxx11::basic_string<char> > >' 90 156 239 228 253 235 288 307 229 282
285 int_insert 'robin_hood::detail::Table<false 80 std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> robin_hood::hash<std::__cxx11::basic_string<char> > std::equal_to<std::__cxx11::basic_string<char> > >' 188 176 128 171 134 142 160 183 141 151
286 int_succ_lookup 'robin_hood::detail::Table<false 80 std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> robin_hood::hash<std::__cxx11::basic_string<char> > std::equal_to<std::__cxx11::basic_string<char> > >' 118 158 142 148 156 160 166 171 172 177
287 int_nosucc_lookup 'robin_hood::detail::Table<false 80 std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> robin_hood::hash<std::__cxx11::basic_string<char> > std::equal_to<std::__cxx11::basic_string<char> > >' 669 1179 96 2382 107 112 131 161 132 142
288 int_delete 'robin_hood::detail::Table<false 80 std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> robin_hood::hash<std::__cxx11::basic_string<char> > std::equal_to<std::__cxx11::basic_string<char> > >' 108 126 154 161 147 152 196 197 176 184
289 int_insert 'absl::node_hash_map<int int>' 136 129 113 106 117 211 122 131 140 121 142 215 171 149
290 int_succ_lookup 'absl::node_hash_map<int int>' 61 81 127 53 59 145 64 64 71 66 76 147 74 80
291 int_nosucc_lookup 'absl::node_hash_map<int int>' 801 170 269 109 115 205 118 122 131 120 133 225 156 140
292 int_delete 'absl::node_hash_map<int int>' 164 189 308 164 188 256 203 204 228 199 231 325 290 256
293 int_insert 'absl::node_hash_map<int int>' 96 128 137 283 114 115 118 312 129 137 137 141 249 229
294 int_succ_lookup 'absl::node_hash_map<int int>' 29 79 127 310 58 58 64 146 74 73 75 75 133 165
295 int_nosucc_lookup 'absl::node_hash_map<int int>' 411 137 160 263 115 117 118 292 130 131 134 142 257 231
296 int_delete 'absl::node_hash_map<int int>' 92 168 166 270 236 208 214 385 416 236 238 250 279 288
297 int_insert 'absl::node_hash_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 140 157 297 183 189 202 205 211 386 333 258 281 315 378
298 int_succ_lookup 'absl::node_hash_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 114 154 361 182 205 233 272 228 275 387 261 259 272 529
299 int_nosucc_lookup 'absl::node_hash_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 846 367 210 186 180 204 216 282 463 496 252 274 296 399
300 int_delete 'absl::node_hash_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 181 232 224 192 218 251 261 340 425 460 290 297 299 466
301 int_insert 'absl::node_hash_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 332 351 180 308 210 445 214 245 336 490 226 245 263 578
302 int_succ_lookup 'absl::node_hash_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 161 212 192 248 238 430 252 209 304 331 264 263 268 402
303 int_nosucc_lookup 'absl::node_hash_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 1630 385 182 393 208 425 209 210 369 464 234 251 284 606
304 int_delete 'absl::node_hash_map<std::__cxx11::basic_string<char> std::__cxx11::basic_string<char> >' 362 347 213 410 267 336 253 243 464 491 287 299 299 642
305

Submodule src/includes/3thparty/abseil-cpp added at 08a7e7bf97

View File

@@ -0,0 +1,666 @@
// By Emil Ernerfeldt 2014-2017
// LICENSE:
// This software is dual-licensed to the public domain and under the following
// license: you are granted a perpetual, irrevocable license to copy, modify,
// publish, and distribute this file as you see fit.
#pragma once
#include <cstdlib>
#include <iterator>
#include <utility>
#include "loguru.hpp"
namespace emilib {
/// like std::equal_to but no need to #include <functional>
template<typename T>
struct HashMapEqualTo
{
constexpr bool operator()(const T& lhs, const T& rhs) const
{
return lhs == rhs;
}
};
/// A cache-friendly hash table with open addressing, linear probing and power-of-two capacity
template <typename KeyT, typename ValueT, typename HashT = std::hash<KeyT>, typename EqT = HashMapEqualTo<KeyT>>
class HashMap
{
private:
using MyType = HashMap<KeyT, ValueT, HashT, EqT>;
using PairT = std::pair<KeyT, ValueT>;
public:
using size_type = size_t;
using value_type = PairT;
using reference = PairT&;
using const_reference = const PairT&;
class iterator
{
public:
using iterator_category = std::forward_iterator_tag;
using difference_type = size_t;
using distance_type = size_t;
using value_type = std::pair<KeyT, ValueT>;
using pointer = value_type*;
using reference = value_type&;
iterator() { }
iterator(MyType* hash_map, size_t bucket) : _map(hash_map), _bucket(bucket)
{
}
iterator& operator++()
{
this->goto_next_element();
return *this;
}
iterator operator++(int)
{
size_t old_index = _bucket;
this->goto_next_element();
return iterator(_map, old_index);
}
reference operator*() const
{
return _map->_pairs[_bucket];
}
pointer operator->() const
{
return _map->_pairs + _bucket;
}
bool operator==(const iterator& rhs) const
{
DCHECK_EQ_F(_map, rhs._map);
return this->_bucket == rhs._bucket;
}
bool operator!=(const iterator& rhs) const
{
DCHECK_EQ_F(_map, rhs._map);
return this->_bucket != rhs._bucket;
}
private:
void goto_next_element()
{
DCHECK_LT_F(_bucket, _map->_num_buckets);
do {
_bucket++;
} while (_bucket < _map->_num_buckets && _map->_states[_bucket] != State::FILLED);
}
//private:
// friend class MyType;
public:
MyType* _map;
size_t _bucket;
};
class const_iterator
{
public:
using iterator_category = std::forward_iterator_tag;
using difference_type = size_t;
using distance_type = size_t;
using value_type = const std::pair<KeyT, ValueT>;
using pointer = value_type*;
using reference = value_type&;
const_iterator() { }
const_iterator(iterator proto) : _map(proto._map), _bucket(proto._bucket)
{
}
const_iterator(const MyType* hash_map, size_t bucket) : _map(hash_map), _bucket(bucket)
{
}
const_iterator& operator++()
{
this->goto_next_element();
return *this;
}
const_iterator operator++(int)
{
size_t old_index = _bucket;
this->goto_next_element();
return const_iterator(_map, old_index);
}
reference operator*() const
{
return _map->_pairs[_bucket];
}
pointer operator->() const
{
return _map->_pairs + _bucket;
}
bool operator==(const const_iterator& rhs) const
{
DCHECK_EQ_F(_map, rhs._map);
return this->_bucket == rhs._bucket;
}
bool operator!=(const const_iterator& rhs) const
{
DCHECK_EQ_F(_map, rhs._map);
return this->_bucket != rhs._bucket;
}
private:
void goto_next_element()
{
DCHECK_LT_F(_bucket, _map->_num_buckets);
do {
_bucket++;
} while (_bucket < _map->_num_buckets && _map->_states[_bucket] != State::FILLED);
}
//private:
// friend class MyType;
public:
const MyType* _map;
size_t _bucket;
};
// ------------------------------------------------------------------------
HashMap() = default;
HashMap(const HashMap& other)
{
reserve(other.size());
insert(other.cbegin(), other.cend());
}
HashMap(HashMap&& other)
{
*this = std::move(other);
}
HashMap& operator=(const HashMap& other)
{
clear();
reserve(other.size());
insert(other.cbegin(), other.cend());
return *this;
}
void operator=(HashMap&& other)
{
this->swap(other);
}
~HashMap()
{
for (size_t bucket=0; bucket<_num_buckets; ++bucket) {
if (_states[bucket] == State::FILLED) {
_pairs[bucket].~PairT();
}
}
free(_states);
free(_pairs);
}
void swap(HashMap& other)
{
std::swap(_hasher, other._hasher);
std::swap(_eq, other._eq);
std::swap(_states, other._states);
std::swap(_pairs, other._pairs);
std::swap(_num_buckets, other._num_buckets);
std::swap(_num_filled, other._num_filled);
std::swap(_max_probe_length, other._max_probe_length);
std::swap(_mask, other._mask);
}
// -------------------------------------------------------------
iterator begin()
{
size_t bucket = 0;
while (bucket<_num_buckets && _states[bucket] != State::FILLED) {
++bucket;
}
return iterator(this, bucket);
}
const_iterator cbegin() const
{
size_t bucket = 0;
while (bucket<_num_buckets && _states[bucket] != State::FILLED) {
++bucket;
}
return const_iterator(this, bucket);
}
const_iterator begin() const
{
return cbegin();
}
iterator end()
{
return iterator(this, _num_buckets);
}
const_iterator cend() const
{
return const_iterator(this, _num_buckets);
}
const_iterator end() const
{
return cend();
}
size_t size() const
{
return _num_filled;
}
bool empty() const
{
return _num_filled==0;
}
// Returns the number of buckets.
size_t bucket_count() const
{
return _num_buckets;
}
/// Returns average number of elements per bucket.
float load_factor() const
{
return static_cast<float>(_num_filled) / static_cast<float>(_num_buckets);
}
// ------------------------------------------------------------
template<typename KeyLike>
iterator find(const KeyLike& key)
{
auto bucket = this->find_filled_bucket(key);
if (bucket == (size_t)-1) {
return this->end();
}
return iterator(this, bucket);
}
template<typename KeyLike>
const_iterator find(const KeyLike& key) const
{
auto bucket = this->find_filled_bucket(key);
if (bucket == (size_t)-1)
{
return this->end();
}
return const_iterator(this, bucket);
}
template<typename KeyLike>
bool contains(const KeyLike& k) const
{
return find_filled_bucket(k) != (size_t)-1;
}
template<typename KeyLike>
size_t count(const KeyLike& k) const
{
return find_filled_bucket(k) != (size_t)-1 ? 1 : 0;
}
/// Returns the matching ValueT or nullptr if k isn't found.
template<typename KeyLike>
ValueT* try_get(const KeyLike& k)
{
auto bucket = find_filled_bucket(k);
if (bucket != (size_t)-1) {
return &_pairs[bucket].second;
} else {
return nullptr;
}
}
/// Const version of the above
template<typename KeyLike>
const ValueT* try_get(const KeyLike& k) const
{
auto bucket = find_filled_bucket(k);
if (bucket != (size_t)-1) {
return &_pairs[bucket].second;
} else {
return nullptr;
}
}
/// Convenience function.
template<typename KeyLike>
const ValueT get_or_return_default(const KeyLike& k) const
{
const ValueT* ret = try_get(k);
if (ret) {
return *ret;
} else {
return ValueT();
}
}
// -----------------------------------------------------
/// Returns a pair consisting of an iterator to the inserted element
/// (or to the element that prevented the insertion)
/// and a bool denoting whether the insertion took place.
std::pair<iterator, bool> insert(const KeyT& key, const ValueT& value)
{
check_expand_need();
auto bucket = find_or_allocate(key);
if (_states[bucket] == State::FILLED) {
return { iterator(this, bucket), false };
} else {
_states[bucket] = State::FILLED;
new(_pairs + bucket) PairT(key, value);
_num_filled++;
return { iterator(this, bucket), true };
}
}
std::pair<iterator, bool> insert(const std::pair<KeyT, ValueT>& p)
{
return insert(p.first, p.second);
}
void insert(const_iterator begin, const_iterator end)
{
// TODO: reserve space exactly once.
for (; begin != end; ++begin) {
insert(begin->first, begin->second);
}
}
/// Same as above, but contains(key) MUST be false
void insert_unique(KeyT&& key, ValueT&& value)
{
DCHECK_F(!contains(key));
check_expand_need();
auto bucket = find_empty_bucket(key);
_states[bucket] = State::FILLED;
new(_pairs + bucket) PairT(std::move(key), std::move(value));
_num_filled++;
}
void insert_unique(std::pair<KeyT, ValueT>&& p)
{
insert_unique(std::move(p.first), std::move(p.second));
}
void insert_or_assign(const KeyT& key, ValueT&& value)
{
check_expand_need();
auto bucket = find_or_allocate(key);
// Check if inserting a new value rather than overwriting an old entry
if (_states[bucket] == State::FILLED) {
_pairs[bucket].second = value;
} else {
_states[bucket] = State::FILLED;
new(_pairs + bucket) PairT(key, value);
_num_filled++;
}
}
/// Return the old value or ValueT() if it didn't exist.
ValueT set_get(const KeyT& key, const ValueT& new_value)
{
check_expand_need();
auto bucket = find_or_allocate(key);
// Check if inserting a new value rather than overwriting an old entry
if (_states[bucket] == State::FILLED) {
ValueT old_value = _pairs[bucket].second;
_pairs[bucket] = new_value.second;
return old_value;
} else {
_states[bucket] = State::FILLED;
new(_pairs + bucket) PairT(key, new_value);
_num_filled++;
return ValueT();
}
}
/// Like std::map<KeyT,ValueT>::operator[].
ValueT& operator[](const KeyT& key)
{
check_expand_need();
auto bucket = find_or_allocate(key);
/* Check if inserting a new value rather than overwriting an old entry */
if (_states[bucket] != State::FILLED) {
_states[bucket] = State::FILLED;
new(_pairs + bucket) PairT(key, ValueT());
_num_filled++;
}
return _pairs[bucket].second;
}
// -------------------------------------------------------
/// Erase an element from the hash table.
/// return false if element was not found
bool erase(const KeyT& key)
{
auto bucket = find_filled_bucket(key);
if (bucket != (size_t)-1) {
_states[bucket] = State::ACTIVE;
_pairs[bucket].~PairT();
_num_filled -= 1;
return true;
} else {
return false;
}
}
/// Erase an element using an iterator.
/// Returns an iterator to the next element (or end()).
iterator erase(iterator it)
{
DCHECK_EQ_F(it._map, this);
DCHECK_LT_F(it._bucket, _num_buckets);
_states[it._bucket] = State::ACTIVE;
_pairs[it._bucket].~PairT();
_num_filled -= 1;
return ++it;
}
/// Remove all elements, keeping full capacity.
void clear()
{
for (size_t bucket=0; bucket<_num_buckets; ++bucket) {
if (_states[bucket] == State::FILLED) {
_states[bucket] = State::INACTIVE;
_pairs[bucket].~PairT();
}
}
_num_filled = 0;
_max_probe_length = -1;
}
/// Make room for this many elements
void reserve(size_t num_elems)
{
size_t required_buckets = num_elems + num_elems/2 + 1;
if (required_buckets <= _num_buckets) {
return;
}
size_t num_buckets = 4;
while (num_buckets < required_buckets) { num_buckets *= 2; }
auto new_states = (State*)malloc(num_buckets * sizeof(State));
auto new_pairs = (PairT*)malloc(num_buckets * sizeof(PairT));
if (!new_states || !new_pairs) {
free(new_states);
free(new_pairs);
throw std::bad_alloc();
}
//auto old_num_filled = _num_filled;
auto old_num_buckets = _num_buckets;
auto old_states = _states;
auto old_pairs = _pairs;
_num_filled = 0;
_num_buckets = num_buckets;
_mask = _num_buckets - 1;
_states = new_states;
_pairs = new_pairs;
std::fill_n(_states, num_buckets, State::INACTIVE);
_max_probe_length = -1;
for (size_t src_bucket=0; src_bucket<old_num_buckets; src_bucket++) {
if (old_states[src_bucket] == State::FILLED) {
auto& src_pair = old_pairs[src_bucket];
auto dst_bucket = find_empty_bucket(src_pair.first);
DCHECK_NE_F(dst_bucket, (size_t)-1);
DCHECK_NE_F(_states[dst_bucket], State::FILLED);
_states[dst_bucket] = State::FILLED;
new(_pairs + dst_bucket) PairT(std::move(src_pair));
_num_filled += 1;
src_pair.~PairT();
}
}
//DCHECK_EQ_F(old_num_filled, _num_filled);
free(old_states);
free(old_pairs);
}
private:
// Can we fit another element?
void check_expand_need()
{
reserve(_num_filled + 1);
}
// Find the bucket with this key, or return (size_t)-1
template<typename KeyLike>
size_t find_filled_bucket(const KeyLike& key) const
{
if (empty()) { return (size_t)-1; } // Optimization
auto hash_value = _hasher(key);
for (int offset=0; offset<=_max_probe_length; ++offset) {
auto bucket = (hash_value + offset) & _mask;
if (_states[bucket] == State::FILLED) {
if (_eq(_pairs[bucket].first, key)) {
return bucket;
}
} else if (_states[bucket] == State::INACTIVE) {
return (size_t)-1; // End of the chain!
}
}
return (size_t)-1;
}
// Find the bucket with this key, or return a good empty bucket to place the key in.
// In the latter case, the bucket is expected to be filled.
size_t find_or_allocate(const KeyT& key)
{
auto hash_value = _hasher(key);
size_t hole = (size_t)-1;
int offset=0;
for (; offset<=_max_probe_length; ++offset) {
auto bucket = (hash_value + offset) & _mask;
if (_states[bucket] == State::FILLED) {
if (_eq(_pairs[bucket].first, key)) {
return bucket;
}
} else if (_states[bucket] == State::INACTIVE) {
return bucket;
} else {
// ACTIVE: keep searching
if (hole == (size_t)-1) {
hole = bucket;
}
}
}
// No key found - but maybe a hole for it
DCHECK_EQ_F(offset, _max_probe_length+1);
if (hole != (size_t)-1) {
return hole;
}
// No hole found within _max_probe_length
for (; ; ++offset) {
auto bucket = (hash_value + offset) & _mask;
if (_states[bucket] != State::FILLED) {
_max_probe_length = offset;
return bucket;
}
}
}
// key is not in this map. Find a place to put it.
size_t find_empty_bucket(const KeyT& key)
{
auto hash_value = _hasher(key);
for (int offset=0; ; ++offset) {
auto bucket = (hash_value + offset) & _mask;
if (_states[bucket] != State::FILLED) {
if (offset > _max_probe_length) {
_max_probe_length = offset;
}
return bucket;
}
}
}
private:
enum class State : uint8_t
{
INACTIVE, // Never been touched
ACTIVE, // Is inside a search-chain, but is empty
FILLED // Is set with key/value
};
HashT _hasher;
EqT _eq;
State* _states = nullptr;
PairT* _pairs = nullptr;
size_t _num_buckets = 0;
size_t _num_filled = 0;
int _max_probe_length = -1; // Our longest bucket-brigade is this long. ONLY when we have zero elements is this ever negative (-1).
size_t _mask = 0; // _num_buckets minus one
};
} // namespace emilib

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,36 @@
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from conans import ConanFile, tools
import os
class SparseppConan(ConanFile):
name = "parallel_hashmap"
version = "1.27"
description = "A header-only, very fast and memory-friendly hash map"
# Indicates License type of the packaged library
license = "https://github.com/greg7mdp/parallel-hashmap/blob/master/LICENSE"
# Packages the license for the conanfile.py
exports = ["LICENSE"]
# Custom attributes for Bincrafters recipe conventions
source_subfolder = "source_subfolder"
def source(self):
source_url = "https://github.com/greg7mdp/parallel-hashmap"
tools.get("{0}/archive/{1}.tar.gz".format(source_url, self.version))
extracted_dir = self.name + "-" + self.version
#Rename to "source_folder" is a convention to simplify later steps
os.rename(extracted_dir, self.source_subfolder)
def package(self):
include_folder = os.path.join(self.source_subfolder, "parallel_hashmap")
self.copy(pattern="LICENSE")
self.copy(pattern="*", dst="include/parallel_hashmap", src=include_folder)
def package_id(self):
self.info.header_only()

View File

@@ -0,0 +1,195 @@
#if !defined(spp_memory_h_guard)
#define spp_memory_h_guard
#include <cstdint>
#include <cstring>
#include <cstdlib>
#if defined(_WIN32) || defined( __CYGWIN__)
#define SPP_WIN
#endif
#ifdef SPP_WIN
#include <windows.h>
#include <Psapi.h>
#undef min
#undef max
#elif defined(__linux__)
#include <sys/types.h>
#include <sys/sysinfo.h>
#elif defined(__FreeBSD__)
#include <paths.h>
#include <fcntl.h>
#include <kvm.h>
#include <unistd.h>
#include <sys/sysctl.h>
#include <sys/user.h>
#endif
namespace spp
{
uint64_t GetSystemMemory();
uint64_t GetTotalMemoryUsed();
uint64_t GetProcessMemoryUsed();
uint64_t GetPhysicalMemory();
uint64_t GetSystemMemory()
{
#ifdef SPP_WIN
MEMORYSTATUSEX memInfo;
memInfo.dwLength = sizeof(MEMORYSTATUSEX);
GlobalMemoryStatusEx(&memInfo);
return static_cast<uint64_t>(memInfo.ullTotalPageFile);
#elif defined(__linux__)
struct sysinfo memInfo;
sysinfo (&memInfo);
auto totalVirtualMem = memInfo.totalram;
totalVirtualMem += memInfo.totalswap;
totalVirtualMem *= memInfo.mem_unit;
return static_cast<uint64_t>(totalVirtualMem);
#elif defined(__FreeBSD__)
kvm_t *kd;
u_int pageCnt;
size_t pageCntLen = sizeof(pageCnt);
u_int pageSize;
struct kvm_swap kswap;
uint64_t totalVirtualMem;
pageSize = static_cast<u_int>(getpagesize());
sysctlbyname("vm.stats.vm.v_page_count", &pageCnt, &pageCntLen, NULL, 0);
totalVirtualMem = pageCnt * pageSize;
kd = kvm_open(NULL, _PATH_DEVNULL, NULL, O_RDONLY, "kvm_open");
kvm_getswapinfo(kd, &kswap, 1, 0);
kvm_close(kd);
totalVirtualMem += kswap.ksw_total * pageSize;
return totalVirtualMem;
#else
return 0;
#endif
}
uint64_t GetTotalMemoryUsed()
{
#ifdef SPP_WIN
MEMORYSTATUSEX memInfo;
memInfo.dwLength = sizeof(MEMORYSTATUSEX);
GlobalMemoryStatusEx(&memInfo);
return static_cast<uint64_t>(memInfo.ullTotalPageFile - memInfo.ullAvailPageFile);
#elif defined(__linux__)
struct sysinfo memInfo;
sysinfo(&memInfo);
auto virtualMemUsed = memInfo.totalram - memInfo.freeram;
virtualMemUsed += memInfo.totalswap - memInfo.freeswap;
virtualMemUsed *= memInfo.mem_unit;
return static_cast<uint64_t>(virtualMemUsed);
#elif defined(__FreeBSD__)
kvm_t *kd;
u_int pageSize;
u_int pageCnt, freeCnt;
size_t pageCntLen = sizeof(pageCnt);
size_t freeCntLen = sizeof(freeCnt);
struct kvm_swap kswap;
uint64_t virtualMemUsed;
pageSize = static_cast<u_int>(getpagesize());
sysctlbyname("vm.stats.vm.v_page_count", &pageCnt, &pageCntLen, NULL, 0);
sysctlbyname("vm.stats.vm.v_free_count", &freeCnt, &freeCntLen, NULL, 0);
virtualMemUsed = (pageCnt - freeCnt) * pageSize;
kd = kvm_open(NULL, _PATH_DEVNULL, NULL, O_RDONLY, "kvm_open");
kvm_getswapinfo(kd, &kswap, 1, 0);
kvm_close(kd);
virtualMemUsed += kswap.ksw_used * pageSize;
return virtualMemUsed;
#else
return 0;
#endif
}
uint64_t GetProcessMemoryUsed()
{
#ifdef SPP_WIN
PROCESS_MEMORY_COUNTERS_EX pmc;
GetProcessMemoryInfo(GetCurrentProcess(), reinterpret_cast<PPROCESS_MEMORY_COUNTERS>(&pmc), sizeof(pmc));
return static_cast<uint64_t>(pmc.PrivateUsage);
#elif defined(__linux__)
auto parseLine =
[](char* line)->int
{
auto i = strlen(line);
while(*line < '0' || *line > '9')
{
line++;
}
line[i-3] = '\0';
i = atoi(line);
return i;
};
auto file = fopen("/proc/self/status", "r");
auto result = -1;
char line[128];
while(fgets(line, 128, file) != nullptr)
{
if(strncmp(line, "VmSize:", 7) == 0)
{
result = parseLine(line);
break;
}
}
fclose(file);
return static_cast<uint64_t>(result) * 1024;
#elif defined(__FreeBSD__)
struct kinfo_proc info;
size_t infoLen = sizeof(info);
int mib[] = { CTL_KERN, KERN_PROC, KERN_PROC_PID, getpid() };
sysctl(mib, sizeof(mib) / sizeof(*mib), &info, &infoLen, NULL, 0);
return static_cast<uint64_t>(info.ki_rssize * getpagesize());
#else
return 0;
#endif
}
uint64_t GetPhysicalMemory()
{
#ifdef SPP_WIN
MEMORYSTATUSEX memInfo;
memInfo.dwLength = sizeof(MEMORYSTATUSEX);
GlobalMemoryStatusEx(&memInfo);
return static_cast<uint64_t>(memInfo.ullTotalPhys);
#elif defined(__linux__)
struct sysinfo memInfo;
sysinfo(&memInfo);
auto totalPhysMem = memInfo.totalram;
totalPhysMem *= memInfo.mem_unit;
return static_cast<uint64_t>(totalPhysMem);
#elif defined(__FreeBSD__)
u_long physMem;
size_t physMemLen = sizeof(physMem);
int mib[] = { CTL_HW, HW_PHYSMEM };
sysctl(mib, sizeof(mib) / sizeof(*mib), &physMem, &physMemLen, NULL, 0);
return physMem;
#else
return 0;
#endif
}
}
#endif // spp_memory_h_guard

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,663 @@
#if !defined(phmap_bits_h_guard_)
#define phmap_bits_h_guard_
// ---------------------------------------------------------------------------
// Copyright (c) 2019, Gregory Popovitch - greg7mdp@gmail.com
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Includes work from abseil-cpp (https://github.com/abseil/abseil-cpp)
// with modifications.
//
// Copyright 2018 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// ---------------------------------------------------------------------------
// The following guarantees declaration of the byte swap functions
#ifdef _MSC_VER
#include <stdlib.h> // NOLINT(build/include)
#elif defined(__APPLE__)
// Mac OS X / Darwin features
#include <libkern/OSByteOrder.h>
#elif defined(__FreeBSD__)
#include <sys/endian.h>
#elif defined(__GLIBC__)
#include <byteswap.h> // IWYU pragma: export
#endif
#include <string.h>
#include <cstdint>
#include "phmap_config.h"
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(disable : 4514) // unreferenced inline function has been removed
#endif
// -----------------------------------------------------------------------------
// unaligned APIs
// -----------------------------------------------------------------------------
// Portable handling of unaligned loads, stores, and copies.
// On some platforms, like ARM, the copy functions can be more efficient
// then a load and a store.
// -----------------------------------------------------------------------------
#if defined(ADDRESS_SANITIZER) || defined(THREAD_SANITIZER) ||\
defined(MEMORY_SANITIZER)
#include <stdint.h>
extern "C" {
uint16_t __sanitizer_unaligned_load16(const void *p);
uint32_t __sanitizer_unaligned_load32(const void *p);
uint64_t __sanitizer_unaligned_load64(const void *p);
void __sanitizer_unaligned_store16(void *p, uint16_t v);
void __sanitizer_unaligned_store32(void *p, uint32_t v);
void __sanitizer_unaligned_store64(void *p, uint64_t v);
} // extern "C"
namespace phmap {
namespace bits {
inline uint16_t UnalignedLoad16(const void *p) {
return __sanitizer_unaligned_load16(p);
}
inline uint32_t UnalignedLoad32(const void *p) {
return __sanitizer_unaligned_load32(p);
}
inline uint64_t UnalignedLoad64(const void *p) {
return __sanitizer_unaligned_load64(p);
}
inline void UnalignedStore16(void *p, uint16_t v) {
__sanitizer_unaligned_store16(p, v);
}
inline void UnalignedStore32(void *p, uint32_t v) {
__sanitizer_unaligned_store32(p, v);
}
inline void UnalignedStore64(void *p, uint64_t v) {
__sanitizer_unaligned_store64(p, v);
}
} // namespace bits
} // namespace phmap
#define PHMAP_INTERNAL_UNALIGNED_LOAD16(_p) (phmap::bits::UnalignedLoad16(_p))
#define PHMAP_INTERNAL_UNALIGNED_LOAD32(_p) (phmap::bits::UnalignedLoad32(_p))
#define PHMAP_INTERNAL_UNALIGNED_LOAD64(_p) (phmap::bits::UnalignedLoad64(_p))
#define PHMAP_INTERNAL_UNALIGNED_STORE16(_p, _val) (phmap::bits::UnalignedStore16(_p, _val))
#define PHMAP_INTERNAL_UNALIGNED_STORE32(_p, _val) (phmap::bits::UnalignedStore32(_p, _val))
#define PHMAP_INTERNAL_UNALIGNED_STORE64(_p, _val) (phmap::bits::UnalignedStore64(_p, _val))
#else
namespace phmap {
namespace bits {
inline uint16_t UnalignedLoad16(const void *p) {
uint16_t t;
memcpy(&t, p, sizeof t);
return t;
}
inline uint32_t UnalignedLoad32(const void *p) {
uint32_t t;
memcpy(&t, p, sizeof t);
return t;
}
inline uint64_t UnalignedLoad64(const void *p) {
uint64_t t;
memcpy(&t, p, sizeof t);
return t;
}
inline void UnalignedStore16(void *p, uint16_t v) { memcpy(p, &v, sizeof v); }
inline void UnalignedStore32(void *p, uint32_t v) { memcpy(p, &v, sizeof v); }
inline void UnalignedStore64(void *p, uint64_t v) { memcpy(p, &v, sizeof v); }
} // namespace bits
} // namespace phmap
#define PHMAP_INTERNAL_UNALIGNED_LOAD16(_p) (phmap::bits::UnalignedLoad16(_p))
#define PHMAP_INTERNAL_UNALIGNED_LOAD32(_p) (phmap::bits::UnalignedLoad32(_p))
#define PHMAP_INTERNAL_UNALIGNED_LOAD64(_p) (phmap::bits::UnalignedLoad64(_p))
#define PHMAP_INTERNAL_UNALIGNED_STORE16(_p, _val) (phmap::bits::UnalignedStore16(_p, _val))
#define PHMAP_INTERNAL_UNALIGNED_STORE32(_p, _val) (phmap::bits::UnalignedStore32(_p, _val))
#define PHMAP_INTERNAL_UNALIGNED_STORE64(_p, _val) (phmap::bits::UnalignedStore64(_p, _val))
#endif
// -----------------------------------------------------------------------------
// File: optimization.h
// -----------------------------------------------------------------------------
#if defined(__pnacl__)
#define PHMAP_BLOCK_TAIL_CALL_OPTIMIZATION() if (volatile int x = 0) { (void)x; }
#elif defined(__clang__)
// Clang will not tail call given inline volatile assembly.
#define PHMAP_BLOCK_TAIL_CALL_OPTIMIZATION() __asm__ __volatile__("")
#elif defined(__GNUC__)
// GCC will not tail call given inline volatile assembly.
#define PHMAP_BLOCK_TAIL_CALL_OPTIMIZATION() __asm__ __volatile__("")
#elif defined(_MSC_VER)
#include <intrin.h>
// The __nop() intrinsic blocks the optimisation.
#define PHMAP_BLOCK_TAIL_CALL_OPTIMIZATION() __nop()
#else
#define PHMAP_BLOCK_TAIL_CALL_OPTIMIZATION() if (volatile int x = 0) { (void)x; }
#endif
#if defined(__GNUC__)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wpedantic"
#endif
#ifdef PHMAP_HAVE_INTRINSIC_INT128
__extension__ typedef unsigned __int128 phmap_uint128;
inline uint64_t umul128(uint64_t a, uint64_t b, uint64_t* high)
{
auto result = static_cast<phmap_uint128>(a) * static_cast<phmap_uint128>(b);
*high = static_cast<uint64_t>(result >> 64);
return static_cast<uint64_t>(result);
}
#define PHMAP_HAS_UMUL128 1
#elif (defined(_MSC_VER))
#if defined(_M_X64)
#pragma intrinsic(_umul128)
inline uint64_t umul128(uint64_t a, uint64_t b, uint64_t* high)
{
return _umul128(a, b, high);
}
#define PHMAP_HAS_UMUL128 1
#endif
#endif
#if defined(__GNUC__)
#pragma GCC diagnostic pop
#endif
#if defined(__GNUC__)
// Cache line alignment
#if defined(__i386__) || defined(__x86_64__)
#define PHMAP_CACHELINE_SIZE 64
#elif defined(__powerpc64__)
#define PHMAP_CACHELINE_SIZE 128
#elif defined(__aarch64__)
// We would need to read special register ctr_el0 to find out L1 dcache size.
// This value is a good estimate based on a real aarch64 machine.
#define PHMAP_CACHELINE_SIZE 64
#elif defined(__arm__)
// Cache line sizes for ARM: These values are not strictly correct since
// cache line sizes depend on implementations, not architectures. There
// are even implementations with cache line sizes configurable at boot
// time.
#if defined(__ARM_ARCH_5T__)
#define PHMAP_CACHELINE_SIZE 32
#elif defined(__ARM_ARCH_7A__)
#define PHMAP_CACHELINE_SIZE 64
#endif
#endif
#ifndef PHMAP_CACHELINE_SIZE
// A reasonable default guess. Note that overestimates tend to waste more
// space, while underestimates tend to waste more time.
#define PHMAP_CACHELINE_SIZE 64
#endif
#define PHMAP_CACHELINE_ALIGNED __attribute__((aligned(PHMAP_CACHELINE_SIZE)))
#elif defined(_MSC_VER)
#define PHMAP_CACHELINE_SIZE 64
#define PHMAP_CACHELINE_ALIGNED __declspec(align(PHMAP_CACHELINE_SIZE))
#else
#define PHMAP_CACHELINE_SIZE 64
#define PHMAP_CACHELINE_ALIGNED
#endif
#if PHMAP_HAVE_BUILTIN(__builtin_expect) || \
(defined(__GNUC__) && !defined(__clang__))
#define PHMAP_PREDICT_FALSE(x) (__builtin_expect(x, 0))
#define PHMAP_PREDICT_TRUE(x) (__builtin_expect(!!(x), 1))
#else
#define PHMAP_PREDICT_FALSE(x) (x)
#define PHMAP_PREDICT_TRUE(x) (x)
#endif
// -----------------------------------------------------------------------------
// File: bits.h
// -----------------------------------------------------------------------------
#if defined(_MSC_VER)
// We can achieve something similar to attribute((always_inline)) with MSVC by
// using the __forceinline keyword, however this is not perfect. MSVC is
// much less aggressive about inlining, and even with the __forceinline keyword.
#define PHMAP_BASE_INTERNAL_FORCEINLINE __forceinline
#else
// Use default attribute inline.
#define PHMAP_BASE_INTERNAL_FORCEINLINE inline PHMAP_ATTRIBUTE_ALWAYS_INLINE
#endif
namespace phmap {
namespace base_internal {
PHMAP_BASE_INTERNAL_FORCEINLINE int CountLeadingZeros64Slow(uint64_t n) {
int zeroes = 60;
if (n >> 32) zeroes -= 32, n >>= 32;
if (n >> 16) zeroes -= 16, n >>= 16;
if (n >> 8) zeroes -= 8, n >>= 8;
if (n >> 4) zeroes -= 4, n >>= 4;
return "\4\3\2\2\1\1\1\1\0\0\0\0\0\0\0"[n] + zeroes;
}
PHMAP_BASE_INTERNAL_FORCEINLINE int CountLeadingZeros64(uint64_t n) {
#if defined(_MSC_VER) && defined(_M_X64)
// MSVC does not have __buitin_clzll. Use _BitScanReverse64.
unsigned long result = 0; // NOLINT(runtime/int)
if (_BitScanReverse64(&result, n)) {
return (int)(63 - result);
}
return 64;
#elif defined(_MSC_VER)
// MSVC does not have __buitin_clzll. Compose two calls to _BitScanReverse
unsigned long result = 0; // NOLINT(runtime/int)
if ((n >> 32) && _BitScanReverse(&result, (unsigned long)(n >> 32))) {
return 31 - result;
}
if (_BitScanReverse(&result, (unsigned long)n)) {
return 63 - result;
}
return 64;
#elif defined(__GNUC__)
// Use __builtin_clzll, which uses the following instructions:
// x86: bsr
// ARM64: clz
// PPC: cntlzd
static_assert(sizeof(unsigned long long) == sizeof(n), // NOLINT(runtime/int)
"__builtin_clzll does not take 64-bit arg");
// Handle 0 as a special case because __builtin_clzll(0) is undefined.
if (n == 0) {
return 64;
}
return __builtin_clzll(n);
#else
return CountLeadingZeros64Slow(n);
#endif
}
PHMAP_BASE_INTERNAL_FORCEINLINE int CountLeadingZeros32Slow(uint64_t n) {
int zeroes = 28;
if (n >> 16) zeroes -= 16, n >>= 16;
if (n >> 8) zeroes -= 8, n >>= 8;
if (n >> 4) zeroes -= 4, n >>= 4;
return "\4\3\2\2\1\1\1\1\0\0\0\0\0\0\0"[n] + zeroes;
}
PHMAP_BASE_INTERNAL_FORCEINLINE int CountLeadingZeros32(uint32_t n) {
#if defined(_MSC_VER)
unsigned long result = 0; // NOLINT(runtime/int)
if (_BitScanReverse(&result, n)) {
return (int)(31 - result);
}
return 32;
#elif defined(__GNUC__)
// Use __builtin_clz, which uses the following instructions:
// x86: bsr
// ARM64: clz
// PPC: cntlzd
static_assert(sizeof(int) == sizeof(n),
"__builtin_clz does not take 32-bit arg");
// Handle 0 as a special case because __builtin_clz(0) is undefined.
if (n == 0) {
return 32;
}
return __builtin_clz(n);
#else
return CountLeadingZeros32Slow(n);
#endif
}
PHMAP_BASE_INTERNAL_FORCEINLINE int CountTrailingZerosNonZero64Slow(uint64_t n) {
int c = 63;
n &= ~n + 1;
if (n & 0x00000000FFFFFFFF) c -= 32;
if (n & 0x0000FFFF0000FFFF) c -= 16;
if (n & 0x00FF00FF00FF00FF) c -= 8;
if (n & 0x0F0F0F0F0F0F0F0F) c -= 4;
if (n & 0x3333333333333333) c -= 2;
if (n & 0x5555555555555555) c -= 1;
return c;
}
PHMAP_BASE_INTERNAL_FORCEINLINE int CountTrailingZerosNonZero64(uint64_t n) {
#if defined(_MSC_VER) && defined(_M_X64)
unsigned long result = 0; // NOLINT(runtime/int)
_BitScanForward64(&result, n);
return (int)result;
#elif defined(_MSC_VER)
unsigned long result = 0; // NOLINT(runtime/int)
if (static_cast<uint32_t>(n) == 0) {
_BitScanForward(&result, (unsigned long)(n >> 32));
return result + 32;
}
_BitScanForward(&result, (unsigned long)n);
return result;
#elif defined(__GNUC__)
static_assert(sizeof(unsigned long long) == sizeof(n), // NOLINT(runtime/int)
"__builtin_ctzll does not take 64-bit arg");
return __builtin_ctzll(n);
#else
return CountTrailingZerosNonZero64Slow(n);
#endif
}
PHMAP_BASE_INTERNAL_FORCEINLINE int CountTrailingZerosNonZero32Slow(uint32_t n) {
int c = 31;
n &= ~n + 1;
if (n & 0x0000FFFF) c -= 16;
if (n & 0x00FF00FF) c -= 8;
if (n & 0x0F0F0F0F) c -= 4;
if (n & 0x33333333) c -= 2;
if (n & 0x55555555) c -= 1;
return c;
}
PHMAP_BASE_INTERNAL_FORCEINLINE int CountTrailingZerosNonZero32(uint32_t n) {
#if defined(_MSC_VER)
unsigned long result = 0; // NOLINT(runtime/int)
_BitScanForward(&result, n);
return (int)result;
#elif defined(__GNUC__)
static_assert(sizeof(int) == sizeof(n),
"__builtin_ctz does not take 32-bit arg");
return __builtin_ctz(n);
#else
return CountTrailingZerosNonZero32Slow(n);
#endif
}
#undef PHMAP_BASE_INTERNAL_FORCEINLINE
} // namespace base_internal
} // namespace phmap
// -----------------------------------------------------------------------------
// File: endian.h
// -----------------------------------------------------------------------------
namespace phmap {
// Use compiler byte-swapping intrinsics if they are available. 32-bit
// and 64-bit versions are available in Clang and GCC as of GCC 4.3.0.
// The 16-bit version is available in Clang and GCC only as of GCC 4.8.0.
// For simplicity, we enable them all only for GCC 4.8.0 or later.
#if defined(__clang__) || \
(defined(__GNUC__) && \
((__GNUC__ == 4 && __GNUC_MINOR__ >= 8) || __GNUC__ >= 5))
inline uint64_t gbswap_64(uint64_t host_int) {
return __builtin_bswap64(host_int);
}
inline uint32_t gbswap_32(uint32_t host_int) {
return __builtin_bswap32(host_int);
}
inline uint16_t gbswap_16(uint16_t host_int) {
return __builtin_bswap16(host_int);
}
#elif defined(_MSC_VER)
inline uint64_t gbswap_64(uint64_t host_int) {
return _byteswap_uint64(host_int);
}
inline uint32_t gbswap_32(uint32_t host_int) {
return _byteswap_ulong(host_int);
}
inline uint16_t gbswap_16(uint16_t host_int) {
return _byteswap_ushort(host_int);
}
#elif defined(__APPLE__)
inline uint64_t gbswap_64(uint64_t host_int) { return OSSwapInt16(host_int); }
inline uint32_t gbswap_32(uint32_t host_int) { return OSSwapInt32(host_int); }
inline uint16_t gbswap_16(uint16_t host_int) { return OSSwapInt64(host_int); }
#else
inline uint64_t gbswap_64(uint64_t host_int) {
#if defined(__GNUC__) && defined(__x86_64__) && !defined(__APPLE__)
// Adapted from /usr/include/byteswap.h. Not available on Mac.
if (__builtin_constant_p(host_int)) {
return __bswap_constant_64(host_int);
} else {
uint64_t result;
__asm__("bswap %0" : "=r"(result) : "0"(host_int));
return result;
}
#elif defined(__GLIBC__)
return bswap_64(host_int);
#else
return (((host_int & uint64_t{0xFF}) << 56) |
((host_int & uint64_t{0xFF00}) << 40) |
((host_int & uint64_t{0xFF0000}) << 24) |
((host_int & uint64_t{0xFF000000}) << 8) |
((host_int & uint64_t{0xFF00000000}) >> 8) |
((host_int & uint64_t{0xFF0000000000}) >> 24) |
((host_int & uint64_t{0xFF000000000000}) >> 40) |
((host_int & uint64_t{0xFF00000000000000}) >> 56));
#endif // bswap_64
}
inline uint32_t gbswap_32(uint32_t host_int) {
#if defined(__GLIBC__)
return bswap_32(host_int);
#else
return (((host_int & uint32_t{0xFF}) << 24) |
((host_int & uint32_t{0xFF00}) << 8) |
((host_int & uint32_t{0xFF0000}) >> 8) |
((host_int & uint32_t{0xFF000000}) >> 24));
#endif
}
inline uint16_t gbswap_16(uint16_t host_int) {
#if defined(__GLIBC__)
return bswap_16(host_int);
#else
return (((host_int & uint16_t{0xFF}) << 8) |
((host_int & uint16_t{0xFF00}) >> 8));
#endif
}
#endif // intrinics available
#ifdef PHMAP_IS_LITTLE_ENDIAN
// Definitions for ntohl etc. that don't require us to include
// netinet/in.h. We wrap gbswap_32 and gbswap_16 in functions rather
// than just #defining them because in debug mode, gcc doesn't
// correctly handle the (rather involved) definitions of bswap_32.
// gcc guarantees that inline functions are as fast as macros, so
// this isn't a performance hit.
inline uint16_t ghtons(uint16_t x) { return gbswap_16(x); }
inline uint32_t ghtonl(uint32_t x) { return gbswap_32(x); }
inline uint64_t ghtonll(uint64_t x) { return gbswap_64(x); }
#elif defined PHMAP_IS_BIG_ENDIAN
// These definitions are simpler on big-endian machines
// These are functions instead of macros to avoid self-assignment warnings
// on calls such as "i = ghtnol(i);". This also provides type checking.
inline uint16_t ghtons(uint16_t x) { return x; }
inline uint32_t ghtonl(uint32_t x) { return x; }
inline uint64_t ghtonll(uint64_t x) { return x; }
#else
#error \
"Unsupported byte order: Either PHMAP_IS_BIG_ENDIAN or " \
"PHMAP_IS_LITTLE_ENDIAN must be defined"
#endif // byte order
inline uint16_t gntohs(uint16_t x) { return ghtons(x); }
inline uint32_t gntohl(uint32_t x) { return ghtonl(x); }
inline uint64_t gntohll(uint64_t x) { return ghtonll(x); }
// Utilities to convert numbers between the current hosts's native byte
// order and little-endian byte order
//
// Load/Store methods are alignment safe
namespace little_endian {
// Conversion functions.
#ifdef PHMAP_IS_LITTLE_ENDIAN
inline uint16_t FromHost16(uint16_t x) { return x; }
inline uint16_t ToHost16(uint16_t x) { return x; }
inline uint32_t FromHost32(uint32_t x) { return x; }
inline uint32_t ToHost32(uint32_t x) { return x; }
inline uint64_t FromHost64(uint64_t x) { return x; }
inline uint64_t ToHost64(uint64_t x) { return x; }
inline constexpr bool IsLittleEndian() { return true; }
#elif defined PHMAP_IS_BIG_ENDIAN
inline uint16_t FromHost16(uint16_t x) { return gbswap_16(x); }
inline uint16_t ToHost16(uint16_t x) { return gbswap_16(x); }
inline uint32_t FromHost32(uint32_t x) { return gbswap_32(x); }
inline uint32_t ToHost32(uint32_t x) { return gbswap_32(x); }
inline uint64_t FromHost64(uint64_t x) { return gbswap_64(x); }
inline uint64_t ToHost64(uint64_t x) { return gbswap_64(x); }
inline constexpr bool IsLittleEndian() { return false; }
#endif /* ENDIAN */
// Functions to do unaligned loads and stores in little-endian order.
inline uint16_t Load16(const void *p) {
return ToHost16(PHMAP_INTERNAL_UNALIGNED_LOAD16(p));
}
inline void Store16(void *p, uint16_t v) {
PHMAP_INTERNAL_UNALIGNED_STORE16(p, FromHost16(v));
}
inline uint32_t Load32(const void *p) {
return ToHost32(PHMAP_INTERNAL_UNALIGNED_LOAD32(p));
}
inline void Store32(void *p, uint32_t v) {
PHMAP_INTERNAL_UNALIGNED_STORE32(p, FromHost32(v));
}
inline uint64_t Load64(const void *p) {
return ToHost64(PHMAP_INTERNAL_UNALIGNED_LOAD64(p));
}
inline void Store64(void *p, uint64_t v) {
PHMAP_INTERNAL_UNALIGNED_STORE64(p, FromHost64(v));
}
} // namespace little_endian
// Utilities to convert numbers between the current hosts's native byte
// order and big-endian byte order (same as network byte order)
//
// Load/Store methods are alignment safe
namespace big_endian {
#ifdef PHMAP_IS_LITTLE_ENDIAN
inline uint16_t FromHost16(uint16_t x) { return gbswap_16(x); }
inline uint16_t ToHost16(uint16_t x) { return gbswap_16(x); }
inline uint32_t FromHost32(uint32_t x) { return gbswap_32(x); }
inline uint32_t ToHost32(uint32_t x) { return gbswap_32(x); }
inline uint64_t FromHost64(uint64_t x) { return gbswap_64(x); }
inline uint64_t ToHost64(uint64_t x) { return gbswap_64(x); }
inline constexpr bool IsLittleEndian() { return true; }
#elif defined PHMAP_IS_BIG_ENDIAN
inline uint16_t FromHost16(uint16_t x) { return x; }
inline uint16_t ToHost16(uint16_t x) { return x; }
inline uint32_t FromHost32(uint32_t x) { return x; }
inline uint32_t ToHost32(uint32_t x) { return x; }
inline uint64_t FromHost64(uint64_t x) { return x; }
inline uint64_t ToHost64(uint64_t x) { return x; }
inline constexpr bool IsLittleEndian() { return false; }
#endif /* ENDIAN */
// Functions to do unaligned loads and stores in big-endian order.
inline uint16_t Load16(const void *p) {
return ToHost16(PHMAP_INTERNAL_UNALIGNED_LOAD16(p));
}
inline void Store16(void *p, uint16_t v) {
PHMAP_INTERNAL_UNALIGNED_STORE16(p, FromHost16(v));
}
inline uint32_t Load32(const void *p) {
return ToHost32(PHMAP_INTERNAL_UNALIGNED_LOAD32(p));
}
inline void Store32(void *p, uint32_t v) {
PHMAP_INTERNAL_UNALIGNED_STORE32(p, FromHost32(v));
}
inline uint64_t Load64(const void *p) {
return ToHost64(PHMAP_INTERNAL_UNALIGNED_LOAD64(p));
}
inline void Store64(void *p, uint64_t v) {
PHMAP_INTERNAL_UNALIGNED_STORE64(p, FromHost64(v));
}
} // namespace big_endian
} // namespace phmap
#ifdef _MSC_VER
#pragma warning(pop)
#endif
#endif // phmap_bits_h_guard_

View File

@@ -0,0 +1,753 @@
#if !defined(phmap_config_h_guard_)
#define phmap_config_h_guard_
// ---------------------------------------------------------------------------
// Copyright (c) 2019, Gregory Popovitch - greg7mdp@gmail.com
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Includes work from abseil-cpp (https://github.com/abseil/abseil-cpp)
// with modifications.
//
// Copyright 2018 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// ---------------------------------------------------------------------------
#define PHMAP_VERSION_MAJOR 1
#define PHMAP_VERSION_MINOR 0
#define PHMAP_VERSION_PATCH 0
// Included for the __GLIBC__ macro (or similar macros on other systems).
#include <limits.h>
#ifdef __cplusplus
// Included for __GLIBCXX__, _LIBCPP_VERSION
#include <cstddef>
#endif // __cplusplus
#if defined(__APPLE__)
// Included for TARGET_OS_IPHONE, __IPHONE_OS_VERSION_MIN_REQUIRED,
// __IPHONE_8_0.
#include <Availability.h>
#include <TargetConditionals.h>
#endif
#define PHMAP_XSTR(x) PHMAP_STR(x)
#define PHMAP_STR(x) #x
#define PHMAP_VAR_NAME_VALUE(var) #var "=" PHMAP_STR(var)
// -----------------------------------------------------------------------------
// Some sanity checks
// -----------------------------------------------------------------------------
//#if defined(__CYGWIN__)
// #error "Cygwin is not supported."
//#endif
#if defined(_MSC_FULL_VER) && _MSC_FULL_VER < 190023918 && !defined(__clang__)
#error "phmap requires Visual Studio 2015 Update 2 or higher."
#endif
// We support gcc 4.7 and later.
#if defined(__GNUC__) && !defined(__clang__)
#if __GNUC__ < 4 || (__GNUC__ == 4 && __GNUC_MINOR__ < 7)
#error "phmap requires gcc 4.7 or higher."
#endif
#endif
// We support Apple Xcode clang 4.2.1 (version 421.11.65) and later.
// This corresponds to Apple Xcode version 4.5.
#if defined(__apple_build_version__) && __apple_build_version__ < 4211165
#error "phmap requires __apple_build_version__ of 4211165 or higher."
#endif
// Enforce C++11 as the minimum.
#if defined(__cplusplus) && !defined(_MSC_VER)
#if __cplusplus < 201103L
#error "C++ versions less than C++11 are not supported."
#endif
#endif
// We have chosen glibc 2.12 as the minimum
#if defined(__GLIBC__) && defined(__GLIBC_PREREQ)
#if !__GLIBC_PREREQ(2, 12)
#error "Minimum required version of glibc is 2.12."
#endif
#endif
#if defined(_STLPORT_VERSION)
#error "STLPort is not supported."
#endif
#if CHAR_BIT != 8
#error "phmap assumes CHAR_BIT == 8."
#endif
// phmap currently assumes that an int is 4 bytes.
#if INT_MAX < 2147483647
#error "phmap assumes that int is at least 4 bytes. "
#endif
// -----------------------------------------------------------------------------
// Compiler Feature Checks
// -----------------------------------------------------------------------------
#ifdef __has_builtin
#define PHMAP_HAVE_BUILTIN(x) __has_builtin(x)
#else
#define PHMAP_HAVE_BUILTIN(x) 0
#endif
// ----------------------------------------------------------------
// Checks whether `std::is_trivially_destructible<T>` is supported.
// ----------------------------------------------------------------
#ifdef PHMAP_HAVE_STD_IS_TRIVIALLY_DESTRUCTIBLE
#error PHMAP_HAVE_STD_IS_TRIVIALLY_DESTRUCTIBLE cannot be directly set
#elif defined(_LIBCPP_VERSION) || \
(!defined(__clang__) && defined(__GNUC__) && defined(__GLIBCXX__) && \
(__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8))) || \
defined(_MSC_VER)
#define PHMAP_HAVE_STD_IS_TRIVIALLY_DESTRUCTIBLE 1
#endif
// --------------------------------------------------------------
// Checks whether `std::is_trivially_default_constructible<T>` is
// supported.
// --------------------------------------------------------------
#if defined(PHMAP_HAVE_STD_IS_TRIVIALLY_CONSTRUCTIBLE)
#error PHMAP_HAVE_STD_IS_TRIVIALLY_CONSTRUCTIBLE cannot be directly set
#elif defined(PHMAP_HAVE_STD_IS_TRIVIALLY_ASSIGNABLE)
#error PHMAP_HAVE_STD_IS_TRIVIALLY_ASSIGNABLE cannot directly set
#elif (defined(__clang__) && defined(_LIBCPP_VERSION)) || \
(!defined(__clang__) && defined(__GNUC__) && \
(__GNUC__ > 5 || (__GNUC__ == 5 && __GNUC_MINOR__ >= 1)) && \
(defined(_LIBCPP_VERSION) || defined(__GLIBCXX__))) || \
(defined(_MSC_VER) && !defined(__NVCC__))
#define PHMAP_HAVE_STD_IS_TRIVIALLY_CONSTRUCTIBLE 1
#define PHMAP_HAVE_STD_IS_TRIVIALLY_ASSIGNABLE 1
#endif
// -------------------------------------------------------------------
// Checks whether C++11's `thread_local` storage duration specifier is
// supported.
// -------------------------------------------------------------------
#ifdef PHMAP_HAVE_THREAD_LOCAL
#error PHMAP_HAVE_THREAD_LOCAL cannot be directly set
#elif defined(__APPLE__)
#if __has_feature(cxx_thread_local) && \
!(TARGET_OS_IPHONE && __IPHONE_OS_VERSION_MIN_REQUIRED < __IPHONE_9_0)
#define PHMAP_HAVE_THREAD_LOCAL 1
#endif
#else // !defined(__APPLE__)
#define PHMAP_HAVE_THREAD_LOCAL 1
#endif
#if defined(__ANDROID__) && defined(__clang__)
#if __has_include(<android/ndk-version.h>)
#include <android/ndk-version.h>
#endif // __has_include(<android/ndk-version.h>)
#if defined(__ANDROID__) && defined(__clang__) && defined(__NDK_MAJOR__) && \
defined(__NDK_MINOR__) && \
((__NDK_MAJOR__ < 12) || ((__NDK_MAJOR__ == 12) && (__NDK_MINOR__ < 1)))
#undef PHMAP_HAVE_TLS
#undef PHMAP_HAVE_THREAD_LOCAL
#endif
#endif
// ------------------------------------------------------------
// Checks whether the __int128 compiler extension for a 128-bit
// integral type is supported.
// ------------------------------------------------------------
#ifdef PHMAP_HAVE_INTRINSIC_INT128
#error PHMAP_HAVE_INTRINSIC_INT128 cannot be directly set
#elif defined(__SIZEOF_INT128__)
#if (defined(__clang__) && !defined(_WIN32) && !defined(__aarch64__)) || \
(defined(__CUDACC__) && __CUDACC_VER_MAJOR__ >= 9) || \
(defined(__GNUC__) && !defined(__clang__) && !defined(__CUDACC__))
#define PHMAP_HAVE_INTRINSIC_INT128 1
#elif defined(__CUDACC__)
#if __CUDACC_VER__ >= 70000
#define PHMAP_HAVE_INTRINSIC_INT128 1
#endif // __CUDACC_VER__ >= 70000
#endif // defined(__CUDACC__)
#endif
// ------------------------------------------------------------------
// Checks whether the compiler both supports and enables exceptions.
// ------------------------------------------------------------------
#ifdef PHMAP_HAVE_EXCEPTIONS
#error PHMAP_HAVE_EXCEPTIONS cannot be directly set.
#elif defined(__clang__)
#if defined(__EXCEPTIONS) && __has_feature(cxx_exceptions)
#define PHMAP_HAVE_EXCEPTIONS 1
#endif // defined(__EXCEPTIONS) && __has_feature(cxx_exceptions)
#elif !(defined(__GNUC__) && (__GNUC__ < 5) && !defined(__EXCEPTIONS)) && \
!(defined(__GNUC__) && (__GNUC__ >= 5) && !defined(__cpp_exceptions)) && \
!(defined(_MSC_VER) && !defined(_CPPUNWIND))
#define PHMAP_HAVE_EXCEPTIONS 1
#endif
// -----------------------------------------------------------------------
// Checks whether the platform has an mmap(2) implementation as defined in
// POSIX.1-2001.
// -----------------------------------------------------------------------
#ifdef PHMAP_HAVE_MMAP
#error PHMAP_HAVE_MMAP cannot be directly set
#elif defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__) || \
defined(__ros__) || defined(__native_client__) || defined(__asmjs__) || \
defined(__wasm__) || defined(__Fuchsia__) || defined(__sun) || \
defined(__ASYLO__)
#define PHMAP_HAVE_MMAP 1
#endif
// -----------------------------------------------------------------------
// Checks the endianness of the platform.
// -----------------------------------------------------------------------
#if defined(PHMAP_IS_BIG_ENDIAN)
#error "PHMAP_IS_BIG_ENDIAN cannot be directly set."
#endif
#if defined(PHMAP_IS_LITTLE_ENDIAN)
#error "PHMAP_IS_LITTLE_ENDIAN cannot be directly set."
#endif
#if (defined(__BYTE_ORDER__) && defined(__ORDER_LITTLE_ENDIAN__) && \
__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__)
#define PHMAP_IS_LITTLE_ENDIAN 1
#elif defined(__BYTE_ORDER__) && defined(__ORDER_BIG_ENDIAN__) && \
__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
#define PHMAP_IS_BIG_ENDIAN 1
#elif defined(_WIN32)
#define PHMAP_IS_LITTLE_ENDIAN 1
#else
#error "phmap endian detection needs to be set up for your compiler"
#endif
#if defined(__APPLE__) && defined(_LIBCPP_VERSION) && \
defined(__MAC_OS_X_VERSION_MIN_REQUIRED__) && \
__ENVIRONMENT_MAC_OS_X_VERSION_MIN_REQUIRED__ < 101400
#define PHMAP_INTERNAL_MACOS_CXX17_TYPES_UNAVAILABLE 1
#else
#define PHMAP_INTERNAL_MACOS_CXX17_TYPES_UNAVAILABLE 0
#endif
// ---------------------------------------------------------------------------
// Checks whether C++17 std::any is available by checking whether <any> exists.
// ---------------------------------------------------------------------------
#ifdef PHMAP_HAVE_STD_ANY
#error "PHMAP_HAVE_STD_ANY cannot be directly set."
#endif
#ifdef __has_include
#if __has_include(<any>) && __cplusplus >= 201703L && \
!PHMAP_INTERNAL_MACOS_CXX17_TYPES_UNAVAILABLE
#define PHMAP_HAVE_STD_ANY 1
#endif
#endif
#ifdef PHMAP_HAVE_STD_OPTIONAL
#error "PHMAP_HAVE_STD_OPTIONAL cannot be directly set."
#endif
#ifdef __has_include
#if __has_include(<optional>) && __cplusplus >= 201703L && \
!PHMAP_INTERNAL_MACOS_CXX17_TYPES_UNAVAILABLE
#define PHMAP_HAVE_STD_OPTIONAL 1
#endif
#endif
#ifdef PHMAP_HAVE_STD_VARIANT
#error "PHMAP_HAVE_STD_VARIANT cannot be directly set."
#endif
#ifdef __has_include
#if __has_include(<variant>) && __cplusplus >= 201703L && \
!PHMAP_INTERNAL_MACOS_CXX17_TYPES_UNAVAILABLE
#define PHMAP_HAVE_STD_VARIANT 1
#endif
#endif
#ifdef PHMAP_HAVE_STD_STRING_VIEW
#error "PHMAP_HAVE_STD_STRING_VIEW cannot be directly set."
#endif
#ifdef __has_include
#if __has_include(<string_view>) && __cplusplus >= 201703L
#define PHMAP_HAVE_STD_STRING_VIEW 1
#endif
#endif
// #pragma message(PHMAP_VAR_NAME_VALUE(_MSVC_LANG))
#if defined(_MSC_VER) && _MSC_VER >= 1910 && \
((defined(_MSVC_LANG) && _MSVC_LANG >= 201703) || __cplusplus >= 201703)
// #define PHMAP_HAVE_STD_ANY 1
#define PHMAP_HAVE_STD_OPTIONAL 1
#define PHMAP_HAVE_STD_VARIANT 1
#define PHMAP_HAVE_STD_STRING_VIEW 1
#endif
#if (defined(_MSVC_LANG) && _MSVC_LANG >= 201703) || __cplusplus >= 201703
#define PHMAP_HAVE_SHARED_MUTEX 1
#endif
#ifndef PHMAP_HAVE_STD_STRING_VIEW
#define PHMAP_HAVE_STD_STRING_VIEW 0
#endif
// In debug mode, MSVC 2017's std::variant throws a EXCEPTION_ACCESS_VIOLATION
// SEH exception from emplace for variant<SomeStruct> when constructing the
// struct can throw. This defeats some of variant_test and
// variant_exception_safety_test.
#if defined(_MSC_VER) && _MSC_VER >= 1700 && defined(_DEBUG)
#define PHMAP_INTERNAL_MSVC_2017_DBG_MODE
#endif
// -----------------------------------------------------------------------------
// Sanitizer Attributes
// -----------------------------------------------------------------------------
//
// Sanitizer-related attributes are not "defined" in this file (and indeed
// are not defined as such in any file). To utilize the following
// sanitizer-related attributes within your builds, define the following macros
// within your build using a `-D` flag, along with the given value for
// `-fsanitize`:
//
// * `ADDRESS_SANITIZER` + `-fsanitize=address` (Clang, GCC 4.8)
// * `MEMORY_SANITIZER` + `-fsanitize=memory` (Clang-only)
// * `THREAD_SANITIZER + `-fsanitize=thread` (Clang, GCC 4.8+)
// * `UNDEFINED_BEHAVIOR_SANITIZER` + `-fsanitize=undefined` (Clang, GCC 4.9+)
// * `CONTROL_FLOW_INTEGRITY` + -fsanitize=cfi (Clang-only)
// -----------------------------------------------------------------------------
// -----------------------------------------------------------------------------
// A function-like feature checking macro that is a wrapper around
// `__has_attribute`, which is defined by GCC 5+ and Clang and evaluates to a
// nonzero constant integer if the attribute is supported or 0 if not.
//
// It evaluates to zero if `__has_attribute` is not defined by the compiler.
// -----------------------------------------------------------------------------
#ifdef __has_attribute
#define PHMAP_HAVE_ATTRIBUTE(x) __has_attribute(x)
#else
#define PHMAP_HAVE_ATTRIBUTE(x) 0
#endif
// -----------------------------------------------------------------------------
// A function-like feature checking macro that accepts C++11 style attributes.
// It's a wrapper around `__has_cpp_attribute`, defined by ISO C++ SD-6
// (https://en.cppreference.com/w/cpp/experimental/feature_test). If we don't
// find `__has_cpp_attribute`, will evaluate to 0.
// -----------------------------------------------------------------------------
#if defined(__cplusplus) && defined(__has_cpp_attribute)
#define PHMAP_HAVE_CPP_ATTRIBUTE(x) __has_cpp_attribute(x)
#else
#define PHMAP_HAVE_CPP_ATTRIBUTE(x) 0
#endif
// -----------------------------------------------------------------------------
// Function Attributes
// -----------------------------------------------------------------------------
#if PHMAP_HAVE_ATTRIBUTE(format) || (defined(__GNUC__) && !defined(__clang__))
#define PHMAP_PRINTF_ATTRIBUTE(string_index, first_to_check) \
__attribute__((__format__(__printf__, string_index, first_to_check)))
#define PHMAP_SCANF_ATTRIBUTE(string_index, first_to_check) \
__attribute__((__format__(__scanf__, string_index, first_to_check)))
#else
#define PHMAP_PRINTF_ATTRIBUTE(string_index, first_to_check)
#define PHMAP_SCANF_ATTRIBUTE(string_index, first_to_check)
#endif
#if PHMAP_HAVE_ATTRIBUTE(always_inline) || \
(defined(__GNUC__) && !defined(__clang__))
#define PHMAP_ATTRIBUTE_ALWAYS_INLINE __attribute__((always_inline))
#define PHMAP_HAVE_ATTRIBUTE_ALWAYS_INLINE 1
#else
#define PHMAP_ATTRIBUTE_ALWAYS_INLINE
#endif
#if !defined(__INTEL_COMPILER) && (PHMAP_HAVE_ATTRIBUTE(noinline) || (defined(__GNUC__) && !defined(__clang__)))
#define PHMAP_ATTRIBUTE_NOINLINE __attribute__((noinline))
#define PHMAP_HAVE_ATTRIBUTE_NOINLINE 1
#else
#define PHMAP_ATTRIBUTE_NOINLINE
#endif
#if PHMAP_HAVE_ATTRIBUTE(disable_tail_calls)
#define PHMAP_HAVE_ATTRIBUTE_NO_TAIL_CALL 1
#define PHMAP_ATTRIBUTE_NO_TAIL_CALL __attribute__((disable_tail_calls))
#elif defined(__GNUC__) && !defined(__clang__)
#define PHMAP_HAVE_ATTRIBUTE_NO_TAIL_CALL 1
#define PHMAP_ATTRIBUTE_NO_TAIL_CALL \
__attribute__((optimize("no-optimize-sibling-calls")))
#else
#define PHMAP_ATTRIBUTE_NO_TAIL_CALL
#define PHMAP_HAVE_ATTRIBUTE_NO_TAIL_CALL 0
#endif
#if (PHMAP_HAVE_ATTRIBUTE(weak) || \
(defined(__GNUC__) && !defined(__clang__))) && \
!(defined(__llvm__) && defined(_WIN32))
#undef PHMAP_ATTRIBUTE_WEAK
#define PHMAP_ATTRIBUTE_WEAK __attribute__((weak))
#define PHMAP_HAVE_ATTRIBUTE_WEAK 1
#else
#define PHMAP_ATTRIBUTE_WEAK
#define PHMAP_HAVE_ATTRIBUTE_WEAK 0
#endif
#if PHMAP_HAVE_ATTRIBUTE(nonnull) || (defined(__GNUC__) && !defined(__clang__))
#define PHMAP_ATTRIBUTE_NONNULL(arg_index) __attribute__((nonnull(arg_index)))
#else
#define PHMAP_ATTRIBUTE_NONNULL(...)
#endif
#if PHMAP_HAVE_ATTRIBUTE(noreturn) || (defined(__GNUC__) && !defined(__clang__))
#define PHMAP_ATTRIBUTE_NORETURN __attribute__((noreturn))
#elif defined(_MSC_VER)
#define PHMAP_ATTRIBUTE_NORETURN __declspec(noreturn)
#else
#define PHMAP_ATTRIBUTE_NORETURN
#endif
#if defined(__GNUC__) && defined(ADDRESS_SANITIZER)
#define PHMAP_ATTRIBUTE_NO_SANITIZE_ADDRESS __attribute__((no_sanitize_address))
#else
#define PHMAP_ATTRIBUTE_NO_SANITIZE_ADDRESS
#endif
#if defined(__GNUC__) && defined(MEMORY_SANITIZER)
#define PHMAP_ATTRIBUTE_NO_SANITIZE_MEMORY __attribute__((no_sanitize_memory))
#else
#define PHMAP_ATTRIBUTE_NO_SANITIZE_MEMORY
#endif
#if defined(__GNUC__) && defined(THREAD_SANITIZER)
#define PHMAP_ATTRIBUTE_NO_SANITIZE_THREAD __attribute__((no_sanitize_thread))
#else
#define PHMAP_ATTRIBUTE_NO_SANITIZE_THREAD
#endif
#if defined(__GNUC__) && \
(defined(UNDEFINED_BEHAVIOR_SANITIZER) || defined(ADDRESS_SANITIZER))
#define PHMAP_ATTRIBUTE_NO_SANITIZE_UNDEFINED \
__attribute__((no_sanitize("undefined")))
#else
#define PHMAP_ATTRIBUTE_NO_SANITIZE_UNDEFINED
#endif
#if defined(__GNUC__) && defined(CONTROL_FLOW_INTEGRITY)
#define PHMAP_ATTRIBUTE_NO_SANITIZE_CFI __attribute__((no_sanitize("cfi")))
#else
#define PHMAP_ATTRIBUTE_NO_SANITIZE_CFI
#endif
#if defined(__GNUC__) && defined(SAFESTACK_SANITIZER)
#define PHMAP_ATTRIBUTE_NO_SANITIZE_SAFESTACK \
__attribute__((no_sanitize("safe-stack")))
#else
#define PHMAP_ATTRIBUTE_NO_SANITIZE_SAFESTACK
#endif
#if PHMAP_HAVE_ATTRIBUTE(returns_nonnull) || \
(defined(__GNUC__) && \
(__GNUC__ > 5 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 9)) && \
!defined(__clang__))
#define PHMAP_ATTRIBUTE_RETURNS_NONNULL __attribute__((returns_nonnull))
#else
#define PHMAP_ATTRIBUTE_RETURNS_NONNULL
#endif
#ifdef PHMAP_HAVE_ATTRIBUTE_SECTION
#error PHMAP_HAVE_ATTRIBUTE_SECTION cannot be directly set
#elif (PHMAP_HAVE_ATTRIBUTE(section) || \
(defined(__GNUC__) && !defined(__clang__))) && \
!defined(__APPLE__) && PHMAP_HAVE_ATTRIBUTE_WEAK
#define PHMAP_HAVE_ATTRIBUTE_SECTION 1
#ifndef PHMAP_ATTRIBUTE_SECTION
#define PHMAP_ATTRIBUTE_SECTION(name) \
__attribute__((section(#name))) __attribute__((noinline))
#endif
#ifndef PHMAP_ATTRIBUTE_SECTION_VARIABLE
#define PHMAP_ATTRIBUTE_SECTION_VARIABLE(name) __attribute__((section(#name)))
#endif
#ifndef PHMAP_DECLARE_ATTRIBUTE_SECTION_VARS
#define PHMAP_DECLARE_ATTRIBUTE_SECTION_VARS(name) \
extern char __start_##name[] PHMAP_ATTRIBUTE_WEAK; \
extern char __stop_##name[] PHMAP_ATTRIBUTE_WEAK
#endif
#ifndef PHMAP_DEFINE_ATTRIBUTE_SECTION_VARS
#define PHMAP_INIT_ATTRIBUTE_SECTION_VARS(name)
#define PHMAP_DEFINE_ATTRIBUTE_SECTION_VARS(name)
#endif
#define PHMAP_ATTRIBUTE_SECTION_START(name) \
(reinterpret_cast<void *>(__start_##name))
#define PHMAP_ATTRIBUTE_SECTION_STOP(name) \
(reinterpret_cast<void *>(__stop_##name))
#else // !PHMAP_HAVE_ATTRIBUTE_SECTION
#define PHMAP_HAVE_ATTRIBUTE_SECTION 0
#define PHMAP_ATTRIBUTE_SECTION(name)
#define PHMAP_ATTRIBUTE_SECTION_VARIABLE(name)
#define PHMAP_INIT_ATTRIBUTE_SECTION_VARS(name)
#define PHMAP_DEFINE_ATTRIBUTE_SECTION_VARS(name)
#define PHMAP_DECLARE_ATTRIBUTE_SECTION_VARS(name)
#define PHMAP_ATTRIBUTE_SECTION_START(name) (reinterpret_cast<void *>(0))
#define PHMAP_ATTRIBUTE_SECTION_STOP(name) (reinterpret_cast<void *>(0))
#endif // PHMAP_ATTRIBUTE_SECTION
#if PHMAP_HAVE_ATTRIBUTE(force_align_arg_pointer) || \
(defined(__GNUC__) && !defined(__clang__))
#if defined(__i386__)
#define PHMAP_ATTRIBUTE_STACK_ALIGN_FOR_OLD_LIBC \
__attribute__((force_align_arg_pointer))
#define PHMAP_REQUIRE_STACK_ALIGN_TRAMPOLINE (0)
#elif defined(__x86_64__)
#define PHMAP_REQUIRE_STACK_ALIGN_TRAMPOLINE (1)
#define PHMAP_ATTRIBUTE_STACK_ALIGN_FOR_OLD_LIBC
#else // !__i386__ && !__x86_64
#define PHMAP_REQUIRE_STACK_ALIGN_TRAMPOLINE (0)
#define PHMAP_ATTRIBUTE_STACK_ALIGN_FOR_OLD_LIBC
#endif // __i386__
#else
#define PHMAP_ATTRIBUTE_STACK_ALIGN_FOR_OLD_LIBC
#define PHMAP_REQUIRE_STACK_ALIGN_TRAMPOLINE (0)
#endif
#if PHMAP_HAVE_ATTRIBUTE(nodiscard)
#define PHMAP_MUST_USE_RESULT [[nodiscard]]
#elif defined(__clang__) && PHMAP_HAVE_ATTRIBUTE(warn_unused_result)
#define PHMAP_MUST_USE_RESULT __attribute__((warn_unused_result))
#else
#define PHMAP_MUST_USE_RESULT
#endif
#if PHMAP_HAVE_ATTRIBUTE(hot) || (defined(__GNUC__) && !defined(__clang__))
#define PHMAP_ATTRIBUTE_HOT __attribute__((hot))
#else
#define PHMAP_ATTRIBUTE_HOT
#endif
#if PHMAP_HAVE_ATTRIBUTE(cold) || (defined(__GNUC__) && !defined(__clang__))
#define PHMAP_ATTRIBUTE_COLD __attribute__((cold))
#else
#define PHMAP_ATTRIBUTE_COLD
#endif
#if defined(__clang__)
#if PHMAP_HAVE_CPP_ATTRIBUTE(clang::reinitializes)
#define PHMAP_ATTRIBUTE_REINITIALIZES [[clang::reinitializes]]
#else
#define PHMAP_ATTRIBUTE_REINITIALIZES
#endif
#else
#define PHMAP_ATTRIBUTE_REINITIALIZES
#endif
#if PHMAP_HAVE_ATTRIBUTE(unused) || (defined(__GNUC__) && !defined(__clang__))
#undef PHMAP_ATTRIBUTE_UNUSED
#define PHMAP_ATTRIBUTE_UNUSED __attribute__((__unused__))
#else
#define PHMAP_ATTRIBUTE_UNUSED
#endif
#if PHMAP_HAVE_ATTRIBUTE(tls_model) || (defined(__GNUC__) && !defined(__clang__))
#define PHMAP_ATTRIBUTE_INITIAL_EXEC __attribute__((tls_model("initial-exec")))
#else
#define PHMAP_ATTRIBUTE_INITIAL_EXEC
#endif
#if PHMAP_HAVE_ATTRIBUTE(packed) || (defined(__GNUC__) && !defined(__clang__))
#define PHMAP_ATTRIBUTE_PACKED __attribute__((__packed__))
#else
#define PHMAP_ATTRIBUTE_PACKED
#endif
#if PHMAP_HAVE_ATTRIBUTE(aligned) || (defined(__GNUC__) && !defined(__clang__))
#define PHMAP_ATTRIBUTE_FUNC_ALIGN(bytes) __attribute__((aligned(bytes)))
#else
#define PHMAP_ATTRIBUTE_FUNC_ALIGN(bytes)
#endif
// ----------------------------------------------------------------------
// Figure out SSE support
// ----------------------------------------------------------------------
#ifndef PHMAP_HAVE_SSE2
#if defined(__SSE2__) || \
(defined(_MSC_VER) && \
(defined(_M_X64) || (defined(_M_IX86) && _M_IX86_FP >= 2)))
#define PHMAP_HAVE_SSE2 1
#else
#define PHMAP_HAVE_SSE2 0
#endif
#endif
#ifndef PHMAP_HAVE_SSSE3
#ifdef __SSSE3__
#define PHMAP_HAVE_SSSE3 1
#else
#define PHMAP_HAVE_SSSE3 0
#endif
#endif
#if PHMAP_HAVE_SSSE3 && !PHMAP_HAVE_SSE2
#error "Bad configuration!"
#endif
#if PHMAP_HAVE_SSE2
#include <emmintrin.h>
#endif
#if PHMAP_HAVE_SSSE3
#include <tmmintrin.h>
#endif
// ----------------------------------------------------------------------
// constexpr if
// ----------------------------------------------------------------------
#if __cplusplus >= 201703 || (defined(_MSVC_LANG) && _MSVC_LANG >= 201703)
#define PHMAP_IF_CONSTEXPR(expr) if constexpr ((expr))
#else
#define PHMAP_IF_CONSTEXPR(expr) if ((expr))
#endif
// ----------------------------------------------------------------------
// base/macros.h
// ----------------------------------------------------------------------
// PHMAP_ARRAYSIZE()
//
// Returns the number of elements in an array as a compile-time constant, which
// can be used in defining new arrays. If you use this macro on a pointer by
// mistake, you will get a compile-time error.
#define PHMAP_ARRAYSIZE(array) \
(sizeof(::phmap::macros_internal::ArraySizeHelper(array)))
namespace phmap {
namespace macros_internal {
// Note: this internal template function declaration is used by PHMAP_ARRAYSIZE.
// The function doesn't need a definition, as we only use its type.
template <typename T, size_t N>
auto ArraySizeHelper(const T (&array)[N]) -> char (&)[N];
} // namespace macros_internal
} // namespace phmap
// TODO(zhangxy): Use c++17 standard [[fallthrough]] macro, when supported.
#if defined(__clang__) && defined(__has_warning)
#if __has_feature(cxx_attributes) && __has_warning("-Wimplicit-fallthrough")
#define PHMAP_FALLTHROUGH_INTENDED [[clang::fallthrough]]
#endif
#elif defined(__GNUC__) && __GNUC__ >= 7
#define PHMAP_FALLTHROUGH_INTENDED [[gnu::fallthrough]]
#endif
#ifndef PHMAP_FALLTHROUGH_INTENDED
#define PHMAP_FALLTHROUGH_INTENDED \
do { } while (0)
#endif
// PHMAP_DEPRECATED()
//
// Marks a deprecated class, struct, enum, function, method and variable
// declarations. The macro argument is used as a custom diagnostic message (e.g.
// suggestion of a better alternative).
//
// Example:
//
// class PHMAP_DEPRECATED("Use Bar instead") Foo {...};
// PHMAP_DEPRECATED("Use Baz instead") void Bar() {...}
//
// Every usage of a deprecated entity will trigger a warning when compiled with
// clang's `-Wdeprecated-declarations` option. This option is turned off by
// default, but the warnings will be reported by clang-tidy.
#if defined(__clang__) && __cplusplus >= 201103L
#define PHMAP_DEPRECATED(message) __attribute__((deprecated(message)))
#endif
#ifndef PHMAP_DEPRECATED
#define PHMAP_DEPRECATED(message)
#endif
// PHMAP_BAD_CALL_IF()
//
// Used on a function overload to trap bad calls: any call that matches the
// overload will cause a compile-time error. This macro uses a clang-specific
// "enable_if" attribute, as described at
// http://clang.llvm.org/docs/AttributeReference.html#enable-if
//
// Overloads which use this macro should be bracketed by
// `#ifdef PHMAP_BAD_CALL_IF`.
//
// Example:
//
// int isdigit(int c);
// #ifdef PHMAP_BAD_CALL_IF
// int isdigit(int c)
// PHMAP_BAD_CALL_IF(c <= -1 || c > 255,
// "'c' must have the value of an unsigned char or EOF");
// #endif // PHMAP_BAD_CALL_IF
#if defined(__clang__)
#if __has_attribute(enable_if)
#define PHMAP_BAD_CALL_IF(expr, msg) \
__attribute__((enable_if(expr, "Bad call trap"), unavailable(msg)))
#endif
#endif
// PHMAP_ASSERT()
//
// In C++11, `assert` can't be used portably within constexpr functions.
// PHMAP_ASSERT functions as a runtime assert but works in C++11 constexpr
// functions. Example:
//
// constexpr double Divide(double a, double b) {
// return PHMAP_ASSERT(b != 0), a / b;
// }
//
// This macro is inspired by
// https://akrzemi1.wordpress.com/2017/05/18/asserts-in-constexpr-functions/
#if defined(NDEBUG)
#define PHMAP_ASSERT(expr) (false ? (void)(expr) : (void)0)
#else
#define PHMAP_ASSERT(expr) \
(PHMAP_PREDICT_TRUE((expr)) ? (void)0 \
: [] { assert(false && #expr); }()) // NOLINT
#endif
#ifdef PHMAP_HAVE_EXCEPTIONS
#define PHMAP_INTERNAL_TRY try
#define PHMAP_INTERNAL_CATCH_ANY catch (...)
#define PHMAP_INTERNAL_RETHROW do { throw; } while (false)
#else // PHMAP_HAVE_EXCEPTIONS
#define PHMAP_INTERNAL_TRY if (true)
#define PHMAP_INTERNAL_CATCH_ANY else if (false)
#define PHMAP_INTERNAL_RETHROW do {} while (false)
#endif // PHMAP_HAVE_EXCEPTIONS
#endif // phmap_config_h_guard_

View File

@@ -0,0 +1,227 @@
#if !defined(phmap_dump_h_guard_)
#define phmap_dump_h_guard_
// ---------------------------------------------------------------------------
// Copyright (c) 2019, Gregory Popovitch - greg7mdp@gmail.com
//
// providing dump/load/mmap_load
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// ---------------------------------------------------------------------------
#include <iostream>
#include <fstream>
#include <sstream>
#include "phmap.h"
namespace phmap
{
namespace type_traits_internal {
#if defined(__GLIBCXX__) && __GLIBCXX__ < 20150801
template<typename T> struct IsTriviallyCopyable : public std::integral_constant<bool, __has_trivial_copy(T)> {};
#else
template<typename T> struct IsTriviallyCopyable : public std::is_trivially_copyable<T> {};
#endif
template <class T1, class T2>
struct IsTriviallyCopyable<std::pair<T1, T2>> {
static constexpr bool value = IsTriviallyCopyable<T1>::value && IsTriviallyCopyable<T2>::value;
};
}
namespace container_internal {
// ------------------------------------------------------------------------
// dump/load for raw_hash_set
// ------------------------------------------------------------------------
template <class Policy, class Hash, class Eq, class Alloc>
template<typename OutputArchive>
bool raw_hash_set<Policy, Hash, Eq, Alloc>::dump(OutputArchive& ar) {
static_assert(type_traits_internal::IsTriviallyCopyable<value_type>::value,
"value_type should be trivially copyable");
if (!ar.dump(size_)) {
std::cerr << "Failed to dump size_" << std::endl;
return false;
}
if (size_ == 0) {
return true;
}
if (!ar.dump(capacity_)) {
std::cerr << "Failed to dump capacity_" << std::endl;
return false;
}
if (!ar.dump(reinterpret_cast<char*>(ctrl_),
sizeof(ctrl_t) * (capacity_ + Group::kWidth + 1))) {
std::cerr << "Failed to dump ctrl_" << std::endl;
return false;
}
if (!ar.dump(reinterpret_cast<char*>(slots_),
sizeof(slot_type) * capacity_)) {
std::cerr << "Failed to dump slot_" << std::endl;
return false;
}
return true;
}
template <class Policy, class Hash, class Eq, class Alloc>
template<typename InputArchive>
bool raw_hash_set<Policy, Hash, Eq, Alloc>::load(InputArchive& ar) {
static_assert(type_traits_internal::IsTriviallyCopyable<value_type>::value,
"value_type should be trivially copyable");
raw_hash_set<Policy, Hash, Eq, Alloc>().swap(*this); // clear any existing content
if (!ar.load(&size_)) {
std::cerr << "Failed to load size_" << std::endl;
return false;
}
if (size_ == 0) {
return true;
}
if (!ar.load(&capacity_)) {
std::cerr << "Failed to load capacity_" << std::endl;
return false;
}
// allocate memory for ctrl_ and slots_
initialize_slots();
if (!ar.load(reinterpret_cast<char*>(ctrl_),
sizeof(ctrl_t) * (capacity_ + Group::kWidth + 1))) {
std::cerr << "Failed to load ctrl" << std::endl;
return false;
}
if (!ar.load(reinterpret_cast<char*>(slots_),
sizeof(slot_type) * capacity_)) {
std::cerr << "Failed to load slot" << std::endl;
return false;
}
return true;
}
// ------------------------------------------------------------------------
// dump/load for parallel_hash_set
// ------------------------------------------------------------------------
template <size_t N,
template <class, class, class, class> class RefSet,
class Mtx_,
class Policy, class Hash, class Eq, class Alloc>
template<typename OutputArchive>
bool parallel_hash_set<N, RefSet, Mtx_, Policy, Hash, Eq, Alloc>::dump(OutputArchive& ar) {
static_assert(type_traits_internal::IsTriviallyCopyable<value_type>::value,
"value_type should be trivially copyable");
if (! ar.dump(subcnt())) {
std::cerr << "Failed to dump meta!" << std::endl;
return false;
}
for (size_t i = 0; i < sets_.size(); ++i) {
auto& inner = sets_[i];
typename Lockable::UniqueLock m(const_cast<Inner&>(inner));
if (!inner.set_.dump(ar)) {
std::cerr << "Failed to dump submap " << i << std::endl;
return false;
}
}
return true;
}
template <size_t N,
template <class, class, class, class> class RefSet,
class Mtx_,
class Policy, class Hash, class Eq, class Alloc>
template<typename InputArchive>
bool parallel_hash_set<N, RefSet, Mtx_, Policy, Hash, Eq, Alloc>::load(InputArchive& ar) {
static_assert(type_traits_internal::IsTriviallyCopyable<value_type>::value,
"value_type should be trivially copyable");
size_t submap_count = 0;
if (!ar.load(&submap_count)) {
std::cerr << "Failed to load submap count!" << std::endl;
return false;
}
if (submap_count != subcnt()) {
std::cerr << "submap count(" << submap_count << ") != N(" << N << ")" << std::endl;
return false;
}
for (size_t i = 0; i < submap_count; ++i) {
auto& inner = sets_[i];
typename Lockable::UniqueLock m(const_cast<Inner&>(inner));
if (!inner.set_.load(ar)) {
std::cerr << "Failed to load submap " << i << std::endl;
return false;
}
}
return true;
}
} // namespace container_internal
// ------------------------------------------------------------------------
// BinaryArchive
// File is closed when archive object is destroyed
// ------------------------------------------------------------------------
// ------------------------------------------------------------------------
// ------------------------------------------------------------------------
class BinaryOutputArchive {
public:
BinaryOutputArchive(const char *file_path) {
ofs_.open(file_path, std::ios_base::binary);
}
bool dump(const char *p, size_t sz) {
ofs_.write(p, sz);
return true;
}
template<typename V>
typename std::enable_if<type_traits_internal::IsTriviallyCopyable<V>::value, bool>::type
dump(const V& v) {
ofs_.write(reinterpret_cast<const char *>(&v), sizeof(V));
return true;
}
private:
std::ofstream ofs_;
};
class BinaryInputArchive {
public:
BinaryInputArchive(const char * file_path) {
ifs_.open(file_path, std::ios_base::binary);
}
bool load(char* p, size_t sz) {
ifs_.read(p, sz);
return true;
}
template<typename V>
typename std::enable_if<type_traits_internal::IsTriviallyCopyable<V>::value, bool>::type
load(V* v) {
ifs_.read(reinterpret_cast<char *>(v), sizeof(V));
return true;
}
private:
std::ifstream ifs_;
};
} // namespace phmap
#endif // phmap_dump_h_guard_

View File

@@ -0,0 +1,154 @@
#if !defined(phmap_fwd_decl_h_guard_)
#define phmap_fwd_decl_h_guard_
// ---------------------------------------------------------------------------
// Copyright (c) 2019, Gregory Popovitch - greg7mdp@gmail.com
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
// ---------------------------------------------------------------------------
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(disable : 4514) // unreferenced inline function has been removed
#pragma warning(disable : 4710) // function not inlined
#pragma warning(disable : 4711) // selected for automatic inline expansion
#endif
#include <memory>
#include <utility>
#if defined(PHMAP_USE_ABSL_HASH)
namespace absl { template <class T> struct Hash; };
#endif
namespace phmap {
#if defined(PHMAP_USE_ABSL_HASH)
template <class T> using Hash = absl::Hash<T>;
#else
template <class T> struct Hash;
#endif
template <class T> struct EqualTo;
template <class T> struct Less;
template <class T> using Allocator = typename std::allocator<T>;
template<class T1, class T2> using Pair = typename std::pair<T1, T2>;
class NullMutex;
namespace container_internal {
// The hash of an object of type T is computed by using phmap::Hash.
template <class T, class E = void>
struct HashEq
{
using Hash = phmap::Hash<T>;
using Eq = phmap::EqualTo<T>;
};
template <class T>
using hash_default_hash = typename container_internal::HashEq<T>::Hash;
template <class T>
using hash_default_eq = typename container_internal::HashEq<T>::Eq;
// type alias for std::allocator so we can forward declare without including other headers
template <class T>
using Allocator = typename phmap::Allocator<T>;
// type alias for std::pair so we can forward declare without including other headers
template<class T1, class T2>
using Pair = typename phmap::Pair<T1, T2>;
} // namespace container_internal
// ------------- forward declarations for hash containers ----------------------------------
template <class T,
class Hash = phmap::container_internal::hash_default_hash<T>,
class Eq = phmap::container_internal::hash_default_eq<T>,
class Alloc = phmap::container_internal::Allocator<T>> // alias for std::allocator
class flat_hash_set;
template <class K, class V,
class Hash = phmap::container_internal::hash_default_hash<K>,
class Eq = phmap::container_internal::hash_default_eq<K>,
class Alloc = phmap::container_internal::Allocator<
phmap::container_internal::Pair<const K, V>>> // alias for std::allocator
class flat_hash_map;
template <class T,
class Hash = phmap::container_internal::hash_default_hash<T>,
class Eq = phmap::container_internal::hash_default_eq<T>,
class Alloc = phmap::container_internal::Allocator<T>> // alias for std::allocator
class node_hash_set;
template <class Key, class Value,
class Hash = phmap::container_internal::hash_default_hash<Key>,
class Eq = phmap::container_internal::hash_default_eq<Key>,
class Alloc = phmap::container_internal::Allocator<
phmap::container_internal::Pair<const Key, Value>>> // alias for std::allocator
class node_hash_map;
template <class T,
class Hash = phmap::container_internal::hash_default_hash<T>,
class Eq = phmap::container_internal::hash_default_eq<T>,
class Alloc = phmap::container_internal::Allocator<T>, // alias for std::allocator
size_t N = 4, // 2**N submaps
class Mutex = phmap::NullMutex> // use std::mutex to enable internal locks
class parallel_flat_hash_set;
template <class K, class V,
class Hash = phmap::container_internal::hash_default_hash<K>,
class Eq = phmap::container_internal::hash_default_eq<K>,
class Alloc = phmap::container_internal::Allocator<
phmap::container_internal::Pair<const K, V>>, // alias for std::allocator
size_t N = 4, // 2**N submaps
class Mutex = phmap::NullMutex> // use std::mutex to enable internal locks
class parallel_flat_hash_map;
template <class T,
class Hash = phmap::container_internal::hash_default_hash<T>,
class Eq = phmap::container_internal::hash_default_eq<T>,
class Alloc = phmap::container_internal::Allocator<T>, // alias for std::allocator
size_t N = 4, // 2**N submaps
class Mutex = phmap::NullMutex> // use std::mutex to enable internal locks
class parallel_node_hash_set;
template <class Key, class Value,
class Hash = phmap::container_internal::hash_default_hash<Key>,
class Eq = phmap::container_internal::hash_default_eq<Key>,
class Alloc = phmap::container_internal::Allocator<
phmap::container_internal::Pair<const Key, Value>>, // alias for std::allocator
size_t N = 4, // 2**N submaps
class Mutex = phmap::NullMutex> // use std::mutex to enable internal locks
class parallel_node_hash_map;
// ------------- forward declarations for btree containers ----------------------------------
template <typename Key, typename Compare = phmap::Less<Key>,
typename Alloc = phmap::Allocator<Key>>
class btree_set;
template <typename Key, typename Compare = phmap::Less<Key>,
typename Alloc = phmap::Allocator<Key>>
class btree_multiset;
template <typename Key, typename Value, typename Compare = phmap::Less<Key>,
typename Alloc = phmap::Allocator<phmap::container_internal::Pair<const Key, Value>>>
class btree_map;
template <typename Key, typename Value, typename Compare = phmap::Less<Key>,
typename Alloc = phmap::Allocator<phmap::container_internal::Pair<const Key, Value>>>
class btree_multimap;
} // namespace phmap
#ifdef _MSC_VER
#pragma warning(pop)
#endif
#endif // phmap_fwd_decl_h_guard_

View File

@@ -0,0 +1,370 @@
#if !defined(phmap_utils_h_guard_)
#define phmap_utils_h_guard_
// ---------------------------------------------------------------------------
// Copyright (c) 2019, Gregory Popovitch - greg7mdp@gmail.com
//
// minimal header providing phmap::HashState
//
// use as: phmap::HashState().combine(0, _first_name, _last_name, _age);
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// ---------------------------------------------------------------------------
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(disable : 4514) // unreferenced inline function has been removed
#pragma warning(disable : 4710) // function not inlined
#pragma warning(disable : 4711) // selected for automatic inline expansion
#endif
#include <cstdint>
#include <functional>
#include <tuple>
#include "phmap_bits.h"
namespace phmap
{
// ---------------------------------------------------------------
// ---------------------------------------------------------------
template<int n>
struct phmap_mix
{
inline size_t operator()(size_t) const;
};
template<>
struct phmap_mix<4>
{
inline size_t operator()(size_t a) const
{
static constexpr uint64_t kmul = 0xcc9e2d51UL;
// static constexpr uint64_t kmul = 0x3B9ACB93UL; // [greg] my own random prime
uint64_t l = a * kmul;
return static_cast<size_t>(l ^ (l >> 32));
}
};
#if defined(PHMAP_HAS_UMUL128)
template<>
struct phmap_mix<8>
{
// Very fast mixing (similar to Abseil)
inline size_t operator()(size_t a) const
{
static constexpr uint64_t k = 0xde5fb9d2630458e9ULL;
// static constexpr uint64_t k = 0x7C9D0BF0567102A5ULL; // [greg] my own random prime
uint64_t h;
uint64_t l = umul128(a, k, &h);
return static_cast<size_t>(h + l);
}
};
#else
template<>
struct phmap_mix<8>
{
inline size_t operator()(size_t a) const
{
a = (~a) + (a << 21); // a = (a << 21) - a - 1;
a = a ^ (a >> 24);
a = (a + (a << 3)) + (a << 8); // a * 265
a = a ^ (a >> 14);
a = (a + (a << 2)) + (a << 4); // a * 21
a = a ^ (a >> 28);
a = a + (a << 31);
return static_cast<size_t>(a);
}
};
#endif
// --------------------------------------------
template<int n>
struct fold_if_needed
{
inline size_t operator()(uint64_t) const;
};
template<>
struct fold_if_needed<4>
{
inline size_t operator()(uint64_t a) const
{
return static_cast<size_t>(a ^ (a >> 32));
}
};
template<>
struct fold_if_needed<8>
{
inline size_t operator()(uint64_t a) const
{
return static_cast<size_t>(a);
}
};
// ---------------------------------------------------------------
// see if class T has a hash_value() friend method
// ---------------------------------------------------------------
template<typename T>
struct has_hash_value
{
private:
typedef std::true_type yes;
typedef std::false_type no;
template<typename U> static auto test(int) -> decltype(hash_value(std::declval<U&>()) == 1, yes());
template<typename> static no test(...);
public:
static constexpr bool value = std::is_same<decltype(test<T>(0)), yes>::value;
};
#if defined(PHMAP_USE_ABSL_HASH) && !defined(phmap_fwd_decl_h_guard_)
namespace absl { template <class T> struct Hash; };
template <class T> using Hash = absl::Hash<T>;
#else
// ---------------------------------------------------------------
// phmap::Hash
// ---------------------------------------------------------------
template <class T>
struct Hash
{
template <class U, typename std::enable_if<has_hash_value<U>::value, int>::type = 0>
size_t _hash(const T& val) const
{
return hash_value(val);
}
template <class U, typename std::enable_if<!has_hash_value<U>::value, int>::type = 0>
size_t _hash(const T& val) const
{
return std::hash<T>()(val);
}
inline size_t operator()(const T& val) const
{
return _hash<T>(val);
}
};
template <class T>
struct Hash<T *>
{
inline size_t operator()(const T *val) const noexcept
{
return static_cast<size_t>(reinterpret_cast<const uintptr_t>(val));
}
};
template<class ArgumentType, class ResultType>
struct phmap_unary_function
{
typedef ArgumentType argument_type;
typedef ResultType result_type;
};
template <>
struct Hash<bool> : public phmap_unary_function<bool, size_t>
{
inline size_t operator()(bool val) const noexcept
{ return static_cast<size_t>(val); }
};
template <>
struct Hash<char> : public phmap_unary_function<char, size_t>
{
inline size_t operator()(char val) const noexcept
{ return static_cast<size_t>(val); }
};
template <>
struct Hash<signed char> : public phmap_unary_function<signed char, size_t>
{
inline size_t operator()(signed char val) const noexcept
{ return static_cast<size_t>(val); }
};
template <>
struct Hash<unsigned char> : public phmap_unary_function<unsigned char, size_t>
{
inline size_t operator()(unsigned char val) const noexcept
{ return static_cast<size_t>(val); }
};
template <>
struct Hash<wchar_t> : public phmap_unary_function<wchar_t, size_t>
{
inline size_t operator()(wchar_t val) const noexcept
{ return static_cast<size_t>(val); }
};
template <>
struct Hash<int16_t> : public phmap_unary_function<int16_t, size_t>
{
inline size_t operator()(int16_t val) const noexcept
{ return static_cast<size_t>(val); }
};
template <>
struct Hash<uint16_t> : public phmap_unary_function<uint16_t, size_t>
{
inline size_t operator()(uint16_t val) const noexcept
{ return static_cast<size_t>(val); }
};
template <>
struct Hash<int32_t> : public phmap_unary_function<int32_t, size_t>
{
inline size_t operator()(int32_t val) const noexcept
{ return static_cast<size_t>(val); }
};
template <>
struct Hash<uint32_t> : public phmap_unary_function<uint32_t, size_t>
{
inline size_t operator()(uint32_t val) const noexcept
{ return static_cast<size_t>(val); }
};
template <>
struct Hash<int64_t> : public phmap_unary_function<int64_t, size_t>
{
inline size_t operator()(int64_t val) const noexcept
{ return fold_if_needed<sizeof(size_t)>()(static_cast<uint64_t>(val)); }
};
template <>
struct Hash<uint64_t> : public phmap_unary_function<uint64_t, size_t>
{
inline size_t operator()(uint64_t val) const noexcept
{ return fold_if_needed<sizeof(size_t)>()(val); }
};
template <>
struct Hash<float> : public phmap_unary_function<float, size_t>
{
inline size_t operator()(float val) const noexcept
{
// -0.0 and 0.0 should return same hash
uint32_t *as_int = reinterpret_cast<uint32_t *>(&val);
return (val == 0) ? static_cast<size_t>(0) :
static_cast<size_t>(*as_int);
}
};
template <>
struct Hash<double> : public phmap_unary_function<double, size_t>
{
inline size_t operator()(double val) const noexcept
{
// -0.0 and 0.0 should return same hash
uint64_t *as_int = reinterpret_cast<uint64_t *>(&val);
return (val == 0) ? static_cast<size_t>(0) :
fold_if_needed<sizeof(size_t)>()(*as_int);
}
};
#endif
template <class H, int sz> struct Combiner
{
H operator()(H seed, size_t value);
};
template <class H> struct Combiner<H, 4>
{
H operator()(H seed, size_t value)
{
return seed ^ (value + 0x9e3779b9 + (seed << 6) + (seed >> 2));
}
};
template <class H> struct Combiner<H, 8>
{
H operator()(H seed, size_t value)
{
return seed ^ (value + size_t(0xc6a4a7935bd1e995) + (seed << 6) + (seed >> 2));
}
};
// define HashState to combine member hashes... see example below
// -----------------------------------------------------------------------------
template <typename H>
class HashStateBase {
public:
template <typename T, typename... Ts>
static H combine(H state, const T& value, const Ts&... values);
static H combine(H state) { return state; }
};
template <typename H>
template <typename T, typename... Ts>
H HashStateBase<H>::combine(H seed, const T& v, const Ts&... vs)
{
return HashStateBase<H>::combine(Combiner<H, sizeof(H)>()(
seed, phmap::Hash<T>()(v)),
vs...);
}
using HashState = HashStateBase<size_t>;
// -----------------------------------------------------------------------------
#if !defined(PHMAP_USE_ABSL_HASH)
// define Hash for std::pair
// -------------------------
template<class T1, class T2>
struct Hash<std::pair<T1, T2>> {
size_t operator()(std::pair<T1, T2> const& p) const noexcept {
return phmap::HashState().combine(phmap::Hash<T1>()(p.first), p.second);
}
};
// define Hash for std::tuple
// --------------------------
template<class... T>
struct Hash<std::tuple<T...>> {
size_t operator()(std::tuple<T...> const& t) const noexcept {
return _hash_helper(t);
}
private:
template<size_t I = 0, class ...P>
typename std::enable_if<I == sizeof...(P), size_t>::type
_hash_helper(const std::tuple<P...> &) const noexcept { return 0; }
template<size_t I = 0, class ...P>
typename std::enable_if<I < sizeof...(P), size_t>::type
_hash_helper(const std::tuple<P...> &t) const noexcept {
const auto &el = std::get<I>(t);
using el_type = typename std::remove_cv<typename std::remove_reference<decltype(el)>::type>::type;
return Combiner<size_t, sizeof(size_t)>()(
phmap::Hash<el_type>()(el), _hash_helper<I + 1>(t));
}
};
#endif
} // namespace phmap
#ifdef _MSC_VER
#pragma warning(pop)
#endif
#endif // phmap_utils_h_guard_

File diff suppressed because it is too large Load Diff

Submodule src/includes/3thparty/skarupke added at 2c4687431f

View File

@@ -0,0 +1,295 @@
/**
* MIT License
*
* Copyright (c) 2017 Tessil
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef TSL_ARRAY_GROWTH_POLICY_H
#define TSL_ARRAY_GROWTH_POLICY_H
#include <algorithm>
#include <array>
#include <climits>
#include <cmath>
#include <cstddef>
#include <iterator>
#include <limits>
#include <ratio>
#include <stdexcept>
namespace tsl {
namespace ah {
/**
* Grow the hash table by a factor of GrowthFactor keeping the bucket count to a power of two. It allows
* the table to use a mask operation instead of a modulo operation to map a hash to a bucket.
*
* GrowthFactor must be a power of two >= 2.
*/
template<std::size_t GrowthFactor>
class power_of_two_growth_policy {
public:
/**
* Called on the hash table creation and on rehash. The number of buckets for the table is passed in parameter.
* This number is a minimum, the policy may update this value with a higher value if needed (but not lower).
*
* If 0 is given, min_bucket_count_in_out must still be 0 after the policy creation and
* bucket_for_hash must always return 0 in this case.
*/
explicit power_of_two_growth_policy(std::size_t& min_bucket_count_in_out) {
if(min_bucket_count_in_out > max_bucket_count()) {
throw std::length_error("The hash table exceeds its maxmimum size.");
}
if(min_bucket_count_in_out > 0) {
min_bucket_count_in_out = round_up_to_power_of_two(min_bucket_count_in_out);
m_mask = min_bucket_count_in_out - 1;
}
else {
m_mask = 0;
}
}
/**
* Return the bucket [0, bucket_count()) to which the hash belongs.
* If bucket_count() is 0, it must always return 0.
*/
std::size_t bucket_for_hash(std::size_t hash) const noexcept {
return hash & m_mask;
}
/**
* Return the number of buckets that should be used on next growth.
*/
std::size_t next_bucket_count() const {
if((m_mask + 1) > max_bucket_count() / GrowthFactor) {
throw std::length_error("The hash table exceeds its maxmimum size.");
}
return (m_mask + 1) * GrowthFactor;
}
/**
* Return the maximum number of buckets supported by the policy.
*/
std::size_t max_bucket_count() const {
// Largest power of two.
return (std::numeric_limits<std::size_t>::max() / 2) + 1;
}
/**
* Reset the growth policy as if it was created with a bucket count of 0.
* After a clear, the policy must always return 0 when bucket_for_hash is called.
*/
void clear() noexcept {
m_mask = 0;
}
private:
static std::size_t round_up_to_power_of_two(std::size_t value) {
if(is_power_of_two(value)) {
return value;
}
if(value == 0) {
return 1;
}
--value;
for(std::size_t i = 1; i < sizeof(std::size_t) * CHAR_BIT; i *= 2) {
value |= value >> i;
}
return value + 1;
}
static constexpr bool is_power_of_two(std::size_t value) {
return value != 0 && (value & (value - 1)) == 0;
}
protected:
static_assert(is_power_of_two(GrowthFactor) && GrowthFactor >= 2, "GrowthFactor must be a power of two >= 2.");
std::size_t m_mask;
};
/**
* Grow the hash table by GrowthFactor::num / GrowthFactor::den and use a modulo to map a hash
* to a bucket. Slower but it can be useful if you want a slower growth.
*/
template<class GrowthFactor = std::ratio<3, 2>>
class mod_growth_policy {
public:
explicit mod_growth_policy(std::size_t& min_bucket_count_in_out) {
if(min_bucket_count_in_out > max_bucket_count()) {
throw std::length_error("The hash table exceeds its maxmimum size.");
}
if(min_bucket_count_in_out > 0) {
m_mod = min_bucket_count_in_out;
}
else {
m_mod = 1;
}
}
std::size_t bucket_for_hash(std::size_t hash) const noexcept {
return hash % m_mod;
}
std::size_t next_bucket_count() const {
if(m_mod == max_bucket_count()) {
throw std::length_error("The hash table exceeds its maxmimum size.");
}
const double next_bucket_count = std::ceil(double(m_mod) * REHASH_SIZE_MULTIPLICATION_FACTOR);
if(!std::isnormal(next_bucket_count)) {
throw std::length_error("The hash table exceeds its maxmimum size.");
}
if(next_bucket_count > double(max_bucket_count())) {
return max_bucket_count();
}
else {
return std::size_t(next_bucket_count);
}
}
std::size_t max_bucket_count() const {
return MAX_BUCKET_COUNT;
}
void clear() noexcept {
m_mod = 1;
}
private:
static constexpr double REHASH_SIZE_MULTIPLICATION_FACTOR = 1.0 * GrowthFactor::num / GrowthFactor::den;
static const std::size_t MAX_BUCKET_COUNT =
std::size_t(double(
std::numeric_limits<std::size_t>::max() / REHASH_SIZE_MULTIPLICATION_FACTOR
));
static_assert(REHASH_SIZE_MULTIPLICATION_FACTOR >= 1.1, "Growth factor should be >= 1.1.");
std::size_t m_mod;
};
namespace detail {
static constexpr const std::array<std::size_t, 40> PRIMES = {{
1ul, 5ul, 17ul, 29ul, 37ul, 53ul, 67ul, 79ul, 97ul, 131ul, 193ul, 257ul, 389ul, 521ul, 769ul, 1031ul,
1543ul, 2053ul, 3079ul, 6151ul, 12289ul, 24593ul, 49157ul, 98317ul, 196613ul, 393241ul, 786433ul,
1572869ul, 3145739ul, 6291469ul, 12582917ul, 25165843ul, 50331653ul, 100663319ul, 201326611ul,
402653189ul, 805306457ul, 1610612741ul, 3221225473ul, 4294967291ul
}};
template<unsigned int IPrime>
static constexpr std::size_t mod(std::size_t hash) { return hash % PRIMES[IPrime]; }
// MOD_PRIME[iprime](hash) returns hash % PRIMES[iprime]. This table allows for faster modulo as the
// compiler can optimize the modulo code better with a constant known at the compilation.
static constexpr const std::array<std::size_t(*)(std::size_t), 40> MOD_PRIME = {{
&mod<0>, &mod<1>, &mod<2>, &mod<3>, &mod<4>, &mod<5>, &mod<6>, &mod<7>, &mod<8>, &mod<9>, &mod<10>,
&mod<11>, &mod<12>, &mod<13>, &mod<14>, &mod<15>, &mod<16>, &mod<17>, &mod<18>, &mod<19>, &mod<20>,
&mod<21>, &mod<22>, &mod<23>, &mod<24>, &mod<25>, &mod<26>, &mod<27>, &mod<28>, &mod<29>, &mod<30>,
&mod<31>, &mod<32>, &mod<33>, &mod<34>, &mod<35>, &mod<36>, &mod<37> , &mod<38>, &mod<39>
}};
}
/**
* Grow the hash table by using prime numbers as bucket count. Slower than tsl::ah::power_of_two_growth_policy in
* general but will probably distribute the values around better in the buckets with a poor hash function.
*
* To allow the compiler to optimize the modulo operation, a lookup table is used with constant primes numbers.
*
* With a switch the code would look like:
* \code
* switch(iprime) { // iprime is the current prime of the hash table
* case 0: hash % 5ul;
* break;
* case 1: hash % 17ul;
* break;
* case 2: hash % 29ul;
* break;
* ...
* }
* \endcode
*
* Due to the constant variable in the modulo the compiler is able to optimize the operation
* by a series of multiplications, substractions and shifts.
*
* The 'hash % 5' could become something like 'hash - (hash * 0xCCCCCCCD) >> 34) * 5' in a 64 bits environement.
*/
class prime_growth_policy {
public:
explicit prime_growth_policy(std::size_t& min_bucket_count_in_out) {
auto it_prime = std::lower_bound(detail::PRIMES.begin(),
detail::PRIMES.end(), min_bucket_count_in_out);
if(it_prime == detail::PRIMES.end()) {
throw std::length_error("The hash table exceeds its maxmimum size.");
}
m_iprime = static_cast<unsigned int>(std::distance(detail::PRIMES.begin(), it_prime));
if(min_bucket_count_in_out > 0) {
min_bucket_count_in_out = *it_prime;
}
else {
min_bucket_count_in_out = 0;
}
}
std::size_t bucket_for_hash(std::size_t hash) const noexcept {
return detail::MOD_PRIME[m_iprime](hash);
}
std::size_t next_bucket_count() const {
if(m_iprime + 1 >= detail::PRIMES.size()) {
throw std::length_error("The hash table exceeds its maxmimum size.");
}
return detail::PRIMES[m_iprime + 1];
}
std::size_t max_bucket_count() const {
return detail::PRIMES.back();
}
void clear() noexcept {
m_iprime = 0;
}
private:
unsigned int m_iprime;
static_assert(std::numeric_limits<decltype(m_iprime)>::max() >= detail::PRIMES.size(),
"The type of m_iprime is not big enough.");
};
}
}
#endif

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,863 @@
/**
* MIT License
*
* Copyright (c) 2017 Tessil
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef TSL_ARRAY_MAP_H
#define TSL_ARRAY_MAP_H
#include <cstddef>
#include <cstdint>
#include <initializer_list>
#include <iterator>
#include <string>
#include <type_traits>
#include <utility>
#include "array_hash.h"
namespace tsl {
/**
* Implementation of a cache-conscious string hash map.
*
* The map stores the strings as `const CharT*`. If `StoreNullTerminator` is true,
* the strings are stored with the a null-terminator (the `key()` method of the iterators
* will return a pointer to this null-terminated string). Otherwise the null character
* is not stored (which allow an economy of 1 byte per string).
*
* The value `T` must be either nothrow move-constructible, copy-constuctible or both.
*
* The size of a key string is limited to `std::numeric_limits<KeySizeT>::max() - 1`.
* That is 65 535 characters by default, but can be raised with the `KeySizeT` template parameter.
* See `max_key_size()` for an easy access to this limit.
*
* The number of elements in the map is limited to `std::numeric_limits<IndexSizeT>::max()`.
* That is 4 294 967 296 elements, but can be raised with the `IndexSizeT` template parameter.
* See `max_size()` for an easy access to this limit.
*
* Iterators invalidation:
* - clear, operator=: always invalidate the iterators.
* - insert, emplace, operator[]: always invalidate the iterators.
* - erase: always invalidate the iterators.
* - shrink_to_fit: always invalidate the iterators.
*/
template<class CharT,
class T,
class Hash = tsl::ah::str_hash<CharT>,
class KeyEqual = tsl::ah::str_equal<CharT>,
bool StoreNullTerminator = true,
class KeySizeT = std::uint16_t,
class IndexSizeT = std::uint32_t,
class GrowthPolicy = tsl::ah::power_of_two_growth_policy<2>>
class array_map {
private:
template<typename U>
using is_iterator = tsl::detail_array_hash::is_iterator<U>;
using ht = tsl::detail_array_hash::array_hash<CharT, T, Hash, KeyEqual, StoreNullTerminator,
KeySizeT, IndexSizeT, GrowthPolicy>;
public:
using char_type = typename ht::char_type;
using mapped_type = T;
using key_size_type = typename ht::key_size_type;
using index_size_type = typename ht::index_size_type;
using size_type = typename ht::size_type;
using hasher = typename ht::hasher;
using key_equal = typename ht::key_equal;
using iterator = typename ht::iterator;
using const_iterator = typename ht::const_iterator;
public:
array_map(): array_map(ht::DEFAULT_INIT_BUCKET_COUNT) {
}
explicit array_map(size_type bucket_count,
const Hash& hash = Hash()): m_ht(bucket_count, hash, ht::DEFAULT_MAX_LOAD_FACTOR)
{
}
template<class InputIt, typename std::enable_if<is_iterator<InputIt>::value>::type* = nullptr>
array_map(InputIt first, InputIt last,
size_type bucket_count = ht::DEFAULT_INIT_BUCKET_COUNT,
const Hash& hash = Hash()): array_map(bucket_count, hash)
{
insert(first, last);
}
#ifdef TSL_AH_HAS_STRING_VIEW
array_map(std::initializer_list<std::pair<std::basic_string_view<CharT>, T>> init,
size_type bucket_count = ht::DEFAULT_INIT_BUCKET_COUNT,
const Hash& hash = Hash()): array_map(bucket_count, hash)
{
insert(init);
}
#else
array_map(std::initializer_list<std::pair<const CharT*, T>> init,
size_type bucket_count = ht::DEFAULT_INIT_BUCKET_COUNT,
const Hash& hash = Hash()): array_map(bucket_count, hash)
{
insert(init);
}
#endif
#ifdef TSL_AH_HAS_STRING_VIEW
array_map& operator=(std::initializer_list<std::pair<std::basic_string_view<CharT>, T>> ilist) {
clear();
reserve(ilist.size());
insert(ilist);
return *this;
}
#else
array_map& operator=(std::initializer_list<std::pair<const CharT*, T>> ilist) {
clear();
reserve(ilist.size());
insert(ilist);
return *this;
}
#endif
/*
* Iterators
*/
iterator begin() noexcept { return m_ht.begin(); }
const_iterator begin() const noexcept { return m_ht.begin(); }
const_iterator cbegin() const noexcept { return m_ht.cbegin(); }
iterator end() noexcept { return m_ht.end(); }
const_iterator end() const noexcept { return m_ht.end(); }
const_iterator cend() const noexcept { return m_ht.cend(); }
/*
* Capacity
*/
bool empty() const noexcept { return m_ht.empty(); }
size_type size() const noexcept { return m_ht.size(); }
size_type max_size() const noexcept { return m_ht.max_size(); }
size_type max_key_size() const noexcept { return m_ht.max_key_size(); }
void shrink_to_fit() { m_ht.shrink_to_fit(); }
/*
* Modifiers
*/
void clear() noexcept { m_ht.clear(); }
#ifdef TSL_AH_HAS_STRING_VIEW
std::pair<iterator, bool> insert(const std::basic_string_view<CharT>& key, const T& value) {
return m_ht.emplace(key.data(), key.size(), value);
}
#else
std::pair<iterator, bool> insert(const CharT* key, const T& value) {
return m_ht.emplace(key, std::char_traits<CharT>::length(key), value);
}
std::pair<iterator, bool> insert(const std::basic_string<CharT>& key, const T& value) {
return m_ht.emplace(key.data(), key.size(), value);
}
#endif
std::pair<iterator, bool> insert_ks(const CharT* key, size_type key_size, const T& value) {
return m_ht.emplace(key, key_size, value);
}
#ifdef TSL_AH_HAS_STRING_VIEW
std::pair<iterator, bool> insert(const std::basic_string_view<CharT>& key, T&& value) {
return m_ht.emplace(key.data(), key.size(), std::move(value));
}
#else
std::pair<iterator, bool> insert(const CharT* key, T&& value) {
return m_ht.emplace(key, std::char_traits<CharT>::length(key), std::move(value));
}
std::pair<iterator, bool> insert(const std::basic_string<CharT>& key, T&& value) {
return m_ht.emplace(key.data(), key.size(), std::move(value));
}
#endif
std::pair<iterator, bool> insert_ks(const CharT* key, size_type key_size, T&& value) {
return m_ht.emplace(key, key_size, std::move(value));
}
template<class InputIt, typename std::enable_if<is_iterator<InputIt>::value>::type* = nullptr>
void insert(InputIt first, InputIt last) {
if(std::is_base_of<std::forward_iterator_tag,
typename std::iterator_traits<InputIt>::iterator_category>::value)
{
const auto nb_elements_insert = std::distance(first, last);
const std::size_t nb_free_buckets = std::size_t(float(bucket_count())*max_load_factor()) - size();
if(nb_elements_insert > 0 && nb_free_buckets < std::size_t(nb_elements_insert)) {
reserve(size() + std::size_t(nb_elements_insert));
}
}
for(auto it = first; it != last; ++it) {
insert_pair(*it);
}
}
#ifdef TSL_AH_HAS_STRING_VIEW
void insert(std::initializer_list<std::pair<std::basic_string_view<CharT>, T>> ilist) {
insert(ilist.begin(), ilist.end());
}
#else
void insert(std::initializer_list<std::pair<const CharT*, T>> ilist) {
insert(ilist.begin(), ilist.end());
}
#endif
#ifdef TSL_AH_HAS_STRING_VIEW
template<class M>
std::pair<iterator, bool> insert_or_assign(const std::basic_string_view<CharT>& key, M&& obj) {
return m_ht.insert_or_assign(key.data(), key.size(), std::forward<M>(obj));
}
#else
template<class M>
std::pair<iterator, bool> insert_or_assign(const CharT* key, M&& obj) {
return m_ht.insert_or_assign(key, std::char_traits<CharT>::length(key), std::forward<M>(obj));
}
template<class M>
std::pair<iterator, bool> insert_or_assign(const std::basic_string<CharT>& key, M&& obj) {
return m_ht.insert_or_assign(key.data(), key.size(), std::forward<M>(obj));
}
#endif
template<class M>
std::pair<iterator, bool> insert_or_assign_ks(const CharT* key, size_type key_size, M&& obj) {
return m_ht.insert_or_assign(key, key_size, std::forward<M>(obj));
}
#ifdef TSL_AH_HAS_STRING_VIEW
template<class... Args>
std::pair<iterator, bool> emplace(const std::basic_string_view<CharT>& key, Args&&... args) {
return m_ht.emplace(key.data(), key.size(), std::forward<Args>(args)...);
}
#else
template<class... Args>
std::pair<iterator, bool> emplace(const CharT* key, Args&&... args) {
return m_ht.emplace(key, std::char_traits<CharT>::length(key), std::forward<Args>(args)...);
}
template<class... Args>
std::pair<iterator, bool> emplace(const std::basic_string<CharT>& key, Args&&... args) {
return m_ht.emplace(key.data(), key.size(), std::forward<Args>(args)...);
}
#endif
template<class... Args>
std::pair<iterator, bool> emplace_ks(const CharT* key, size_type key_size, Args&&... args) {
return m_ht.emplace(key, key_size, std::forward<Args>(args)...);
}
/**
* Erase has an amortized O(1) runtime complexity, but even if it removes the key immediatly,
* it doesn't do the same for the associated value T.
*
* T will only be removed when the ratio between the size of the map and
* the size of the map + the number of deleted values still stored is low enough.
*
* To force the deletion you can call shrink_to_fit.
*/
iterator erase(const_iterator pos) { return m_ht.erase(pos); }
/**
* @copydoc erase(const_iterator pos)
*/
iterator erase(const_iterator first, const_iterator last) { return m_ht.erase(first, last); }
#ifdef TSL_AH_HAS_STRING_VIEW
/**
* @copydoc erase(const_iterator pos)
*/
size_type erase(const std::basic_string_view<CharT>& key) {
return m_ht.erase(key.data(), key.size());
}
#else
/**
* @copydoc erase(const_iterator pos)
*/
size_type erase(const CharT* key) {
return m_ht.erase(key, std::char_traits<CharT>::length(key));
}
/**
* @copydoc erase(const_iterator pos)
*/
size_type erase(const std::basic_string<CharT>& key) {
return m_ht.erase(key.data(), key.size());
}
#endif
/**
* @copydoc erase(const_iterator pos)
*/
size_type erase_ks(const CharT* key, size_type key_size) {
return m_ht.erase(key, key_size);
}
#ifdef TSL_AH_HAS_STRING_VIEW
/**
* @copydoc erase_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash)
*/
size_type erase(const std::basic_string_view<CharT>& key, std::size_t precalculated_hash) {
return m_ht.erase(key.data(), key.size(), precalculated_hash);
}
#else
/**
* @copydoc erase_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash)
*/
size_type erase(const CharT* key, std::size_t precalculated_hash) {
return m_ht.erase(key, std::char_traits<CharT>::length(key), precalculated_hash);
}
/**
* @copydoc erase_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash)
*/
size_type erase(const std::basic_string<CharT>& key, std::size_t precalculated_hash) {
return m_ht.erase(key.data(), key.size(), precalculated_hash);
}
#endif
/**
* @copydoc erase(const_iterator pos)
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup to the value if you already have the hash.
*/
size_type erase_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash) {
return m_ht.erase(key, key_size, precalculated_hash);
}
void swap(array_map& other) { other.m_ht.swap(m_ht); }
/*
* Lookup
*/
#ifdef TSL_AH_HAS_STRING_VIEW
T& at(const std::basic_string_view<CharT>& key) {
return m_ht.at(key.data(), key.size());
}
const T& at(const std::basic_string_view<CharT>& key) const {
return m_ht.at(key.data(), key.size());
}
#else
T& at(const CharT* key) {
return m_ht.at(key, std::char_traits<CharT>::length(key));
}
const T& at(const CharT* key) const {
return m_ht.at(key, std::char_traits<CharT>::length(key));
}
T& at(const std::basic_string<CharT>& key) {
return m_ht.at(key.data(), key.size());
}
const T& at(const std::basic_string<CharT>& key) const {
return m_ht.at(key.data(), key.size());
}
#endif
T& at_ks(const CharT* key, size_type key_size) {
return m_ht.at(key, key_size);
}
const T& at_ks(const CharT* key, size_type key_size) const {
return m_ht.at(key, key_size);
}
#ifdef TSL_AH_HAS_STRING_VIEW
/**
* @copydoc at_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash)
*/
T& at(const std::basic_string_view<CharT>& key, std::size_t precalculated_hash) {
return m_ht.at(key.data(), key.size(), precalculated_hash);
}
/**
* @copydoc at_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash)
*/
const T& at(const std::basic_string_view<CharT>& key, std::size_t precalculated_hash) const {
return m_ht.at(key.data(), key.size(), precalculated_hash);
}
#else
/**
* @copydoc at_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash)
*/
T& at(const CharT* key, std::size_t precalculated_hash) {
return m_ht.at(key, std::char_traits<CharT>::length(key), precalculated_hash);
}
/**
* @copydoc at_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash)
*/
const T& at(const CharT* key, std::size_t precalculated_hash) const {
return m_ht.at(key, std::char_traits<CharT>::length(key), precalculated_hash);
}
/**
* @copydoc at_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash)
*/
T& at(const std::basic_string<CharT>& key, std::size_t precalculated_hash) {
return m_ht.at(key.data(), key.size(), precalculated_hash);
}
/**
* @copydoc at_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash)
*/
const T& at(const std::basic_string<CharT>& key, std::size_t precalculated_hash) const {
return m_ht.at(key.data(), key.size(), precalculated_hash);
}
#endif
/**
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup to the value if you already have the hash.
*/
T& at_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash) {
return m_ht.at(key, key_size, precalculated_hash);
}
/**
* @copydoc at_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash)
*/
const T& at_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash) const {
return m_ht.at(key, key_size, precalculated_hash);
}
#ifdef TSL_AH_HAS_STRING_VIEW
T& operator[](const std::basic_string_view<CharT>& key) { return m_ht.access_operator(key.data(), key.size()); }
#else
T& operator[](const CharT* key) { return m_ht.access_operator(key, std::char_traits<CharT>::length(key)); }
T& operator[](const std::basic_string<CharT>& key) { return m_ht.access_operator(key.data(), key.size()); }
#endif
#ifdef TSL_AH_HAS_STRING_VIEW
size_type count(const std::basic_string_view<CharT>& key) const {
return m_ht.count(key.data(), key.size());
}
#else
size_type count(const CharT* key) const {
return m_ht.count(key, std::char_traits<CharT>::length(key));
}
size_type count(const std::basic_string<CharT>& key) const {
return m_ht.count(key.data(), key.size());
}
#endif
size_type count_ks(const CharT* key, size_type key_size) const {
return m_ht.count(key, key_size);
}
#ifdef TSL_AH_HAS_STRING_VIEW
/**
* @copydoc count_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash) const
*/
size_type count(const std::basic_string_view<CharT>& key, std::size_t precalculated_hash) const {
return m_ht.count(key.data(), key.size(), precalculated_hash);
}
#else
/**
* @copydoc count_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash) const
*/
size_type count(const CharT* key, std::size_t precalculated_hash) const {
return m_ht.count(key, std::char_traits<CharT>::length(key), precalculated_hash);
}
/**
* @copydoc count_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash) const
*/
size_type count(const std::basic_string<CharT>& key, std::size_t precalculated_hash) const {
return m_ht.count(key.data(), key.size(), precalculated_hash);
}
#endif
/**
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup to the value if you already have the hash.
*/
size_type count_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash) const {
return m_ht.count(key, key_size, precalculated_hash);
}
#ifdef TSL_AH_HAS_STRING_VIEW
iterator find(const std::basic_string_view<CharT>& key) {
return m_ht.find(key.data(), key.size());
}
const_iterator find(const std::basic_string_view<CharT>& key) const {
return m_ht.find(key.data(), key.size());
}
#else
iterator find(const CharT* key) {
return m_ht.find(key, std::char_traits<CharT>::length(key));
}
const_iterator find(const CharT* key) const {
return m_ht.find(key, std::char_traits<CharT>::length(key));
}
iterator find(const std::basic_string<CharT>& key) {
return m_ht.find(key.data(), key.size());
}
const_iterator find(const std::basic_string<CharT>& key) const {
return m_ht.find(key.data(), key.size());
}
#endif
iterator find_ks(const CharT* key, size_type key_size) {
return m_ht.find(key, key_size);
}
const_iterator find_ks(const CharT* key, size_type key_size) const {
return m_ht.find(key, key_size);
}
#ifdef TSL_AH_HAS_STRING_VIEW
/**
* @copydoc find_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash)
*/
iterator find(const std::basic_string_view<CharT>& key, std::size_t precalculated_hash) {
return m_ht.find(key.data(), key.size(), precalculated_hash);
}
/**
* @copydoc find_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash)
*/
const_iterator find(const std::basic_string_view<CharT>& key, std::size_t precalculated_hash) const {
return m_ht.find(key.data(), key.size(), precalculated_hash);
}
#else
/**
* @copydoc find_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash)
*/
iterator find(const CharT* key, std::size_t precalculated_hash) {
return m_ht.find(key, std::char_traits<CharT>::length(key), precalculated_hash);
}
/**
* @copydoc find_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash)
*/
const_iterator find(const CharT* key, std::size_t precalculated_hash) const {
return m_ht.find(key, std::char_traits<CharT>::length(key), precalculated_hash);
}
/**
* @copydoc find_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash)
*/
iterator find(const std::basic_string<CharT>& key, std::size_t precalculated_hash) {
return m_ht.find(key.data(), key.size(), precalculated_hash);
}
/**
* @copydoc find_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash)
*/
const_iterator find(const std::basic_string<CharT>& key, std::size_t precalculated_hash) const {
return m_ht.find(key.data(), key.size(), precalculated_hash);
}
#endif
/**
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup to the value if you already have the hash.
*/
iterator find_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash) {
return m_ht.find(key, key_size, precalculated_hash);
}
/**
* @copydoc find_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash)
*/
const_iterator find_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash) const {
return m_ht.find(key, key_size, precalculated_hash);
}
#ifdef TSL_AH_HAS_STRING_VIEW
std::pair<iterator, iterator> equal_range(const std::basic_string_view<CharT>& key) {
return m_ht.equal_range(key.data(), key.size());
}
std::pair<const_iterator, const_iterator> equal_range(const std::basic_string_view<CharT>& key) const {
return m_ht.equal_range(key.data(), key.size());
}
#else
std::pair<iterator, iterator> equal_range(const CharT* key) {
return m_ht.equal_range(key, std::char_traits<CharT>::length(key));
}
std::pair<const_iterator, const_iterator> equal_range(const CharT* key) const {
return m_ht.equal_range(key, std::char_traits<CharT>::length(key));
}
std::pair<iterator, iterator> equal_range(const std::basic_string<CharT>& key) {
return m_ht.equal_range(key.data(), key.size());
}
std::pair<const_iterator, const_iterator> equal_range(const std::basic_string<CharT>& key) const {
return m_ht.equal_range(key.data(), key.size());
}
#endif
std::pair<iterator, iterator> equal_range_ks(const CharT* key, size_type key_size) {
return m_ht.equal_range(key, key_size);
}
std::pair<const_iterator, const_iterator> equal_range_ks(const CharT* key, size_type key_size) const {
return m_ht.equal_range(key, key_size);
}
#ifdef TSL_AH_HAS_STRING_VIEW
/**
* @copydoc equal_range_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash)
*/
std::pair<iterator, iterator> equal_range(const std::basic_string_view<CharT>& key, std::size_t precalculated_hash) {
return m_ht.equal_range(key.data(), key.size(), precalculated_hash);
}
/**
* @copydoc equal_range_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash)
*/
std::pair<const_iterator, const_iterator> equal_range(const std::basic_string_view<CharT>& key, std::size_t precalculated_hash) const {
return m_ht.equal_range(key.data(), key.size(), precalculated_hash);
}
#else
/**
* @copydoc equal_range_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash)
*/
std::pair<iterator, iterator> equal_range(const CharT* key, std::size_t precalculated_hash) {
return m_ht.equal_range(key, std::char_traits<CharT>::length(key), precalculated_hash);
}
/**
* @copydoc equal_range_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash)
*/
std::pair<const_iterator, const_iterator> equal_range(const CharT* key, std::size_t precalculated_hash) const {
return m_ht.equal_range(key, std::char_traits<CharT>::length(key), precalculated_hash);
}
/**
* @copydoc equal_range_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash)
*/
std::pair<iterator, iterator> equal_range(const std::basic_string<CharT>& key, std::size_t precalculated_hash) {
return m_ht.equal_range(key.data(), key.size(), precalculated_hash);
}
/**
* @copydoc equal_range_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash)
*/
std::pair<const_iterator, const_iterator> equal_range(const std::basic_string<CharT>& key, std::size_t precalculated_hash) const {
return m_ht.equal_range(key.data(), key.size(), precalculated_hash);
}
#endif
/**
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup to the value if you already have the hash.
*/
std::pair<iterator, iterator> equal_range_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash) {
return m_ht.equal_range(key, key_size, precalculated_hash);
}
/**
* @copydoc equal_range_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash)
*/
std::pair<const_iterator, const_iterator> equal_range_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash) const {
return m_ht.equal_range(key, key_size, precalculated_hash);
}
/*
* Bucket interface
*/
size_type bucket_count() const { return m_ht.bucket_count(); }
size_type max_bucket_count() const { return m_ht.max_bucket_count(); }
/*
* Hash policy
*/
float load_factor() const { return m_ht.load_factor(); }
float max_load_factor() const { return m_ht.max_load_factor(); }
void max_load_factor(float ml) { m_ht.max_load_factor(ml); }
void rehash(size_type count) { m_ht.rehash(count); }
void reserve(size_type count) { m_ht.reserve(count); }
/*
* Observers
*/
hasher hash_function() const { return m_ht.hash_function(); }
key_equal key_eq() const { return m_ht.key_eq(); }
/*
* Other
*/
/**
* Return the `const_iterator it` as an `iterator`.
*/
iterator mutable_iterator(const_iterator it) noexcept { return m_ht.mutable_iterator(it); }
/**
* Serialize the map through the `serializer` parameter.
*
* The `serializer` parameter must be a function object that supports the following calls:
* - `template<typename U> void operator()(const U& value);` where the types `std::uint64_t`, `float` and `T` must be supported for U.
* - `void operator()(const CharT* value, std::size_t value_size);`
*
* The implementation leaves binary compatibilty (endianness, IEEE 754 for floats, ...) of the types it serializes
* in the hands of the `Serializer` function object if compatibilty is required.
*/
template<class Serializer>
void serialize(Serializer& serializer) const {
m_ht.serialize(serializer);
}
/**
* Deserialize a previouly serialized map through the `deserializer` parameter.
*
* The `deserializer` parameter must be a function object that supports the following calls:
* - `template<typename U> U operator()();` where the types `std::uint64_t`, `float` and `T` must be supported for U.
* - `void operator()(CharT* value_out, std::size_t value_size);`
*
* If the deserialized hash map type is hash compatible with the serialized map, the deserialization process can be
* sped up by setting `hash_compatible` to true. To be hash compatible, the Hash (take care of the 32-bits vs 64 bits),
* KeyEqual, GrowthPolicy, StoreNullTerminator, KeySizeT and IndexSizeT must behave the same than the ones used on the
* serialized map. Otherwise the behaviour is undefined with `hash_compatible` sets to true.
*
* The behaviour is undefined if the type `CharT` and `T` of the `array_map` are not the same as the
* types used during serialization.
*
* The implementation leaves binary compatibilty (endianness, IEEE 754 for floats, size of int, ...) of the types it
* deserializes in the hands of the `Deserializer` function object if compatibilty is required.
*/
template<class Deserializer>
static array_map deserialize(Deserializer& deserializer, bool hash_compatible = false) {
array_map map(0);
map.m_ht.deserialize(deserializer, hash_compatible);
return map;
}
friend bool operator==(const array_map& lhs, const array_map& rhs) {
if(lhs.size() != rhs.size()) {
return false;
}
for(auto it = lhs.cbegin(); it != lhs.cend(); ++it) {
const auto it_element_rhs = rhs.find_ks(it.key(), it.key_size());
if(it_element_rhs == rhs.cend() || it.value() != it_element_rhs.value()) {
return false;
}
}
return true;
}
friend bool operator!=(const array_map& lhs, const array_map& rhs) {
return !operator==(lhs, rhs);
}
friend void swap(array_map& lhs, array_map& rhs) {
lhs.swap(rhs);
}
private:
template<class U, class V>
void insert_pair(const std::pair<U, V>& value) {
insert(value.first, value.second);
}
template<class U, class V>
void insert_pair(std::pair<U, V>&& value) {
insert(value.first, std::move(value.second));
}
public:
static const size_type MAX_KEY_SIZE = ht::MAX_KEY_SIZE;
private:
ht m_ht;
};
/**
* Same as
* `tsl::array_map<CharT, T, Hash, KeyEqual, StoreNullTerminator, KeySizeT, IndexSizeT, tsl::ah::prime_growth_policy>`.
*/
template<class CharT,
class T,
class Hash = tsl::ah::str_hash<CharT>,
class KeyEqual = tsl::ah::str_equal<CharT>,
bool StoreNullTerminator = true,
class KeySizeT = std::uint16_t,
class IndexSizeT = std::uint32_t>
using array_pg_map = array_map<CharT, T, Hash, KeyEqual, StoreNullTerminator,
KeySizeT, IndexSizeT, tsl::ah::prime_growth_policy>;
} //end namespace tsl
#endif

View File

@@ -0,0 +1,664 @@
/**
* MIT License
*
* Copyright (c) 2017 Tessil
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef TSL_ARRAY_SET_H
#define TSL_ARRAY_SET_H
#include <cstddef>
#include <cstdint>
#include <initializer_list>
#include <iterator>
#include <string>
#include <type_traits>
#include <utility>
#include "array_hash.h"
namespace tsl {
/**
* Implementation of a cache-conscious string hash set.
*
* The set stores the strings as `const CharT*`. If `StoreNullTerminator` is true,
* the strings are stored with the a null-terminator (the `key()` method of the iterators
* will return a pointer to this null-terminated string). Otherwise the null character
* is not stored (which allow an economy of 1 byte per string).
*
* The size of a key string is limited to `std::numeric_limits<KeySizeT>::max() - 1`.
* That is 65 535 characters by default, but can be raised with the `KeySizeT` template parameter.
* See `max_key_size()` for an easy access to this limit.
*
* The number of elements in the set is limited to `std::numeric_limits<IndexSizeT>::max()`.
* That is 4 294 967 296 elements, but can be raised with the `IndexSizeT` template parameter.
* See `max_size()` for an easy access to this limit.
*
* Iterators invalidation:
* - clear, operator=: always invalidate the iterators.
* - insert, emplace, operator[]: always invalidate the iterators.
* - erase: always invalidate the iterators.
* - shrink_to_fit: always invalidate the iterators.
*/
template<class CharT,
class Hash = tsl::ah::str_hash<CharT>,
class KeyEqual = tsl::ah::str_equal<CharT>,
bool StoreNullTerminator = true,
class KeySizeT = std::uint16_t,
class IndexSizeT = std::uint32_t,
class GrowthPolicy = tsl::ah::power_of_two_growth_policy<2>>
class array_set {
private:
template<typename U>
using is_iterator = tsl::detail_array_hash::is_iterator<U>;
using ht = tsl::detail_array_hash::array_hash<CharT, void, Hash, KeyEqual, StoreNullTerminator,
KeySizeT, IndexSizeT, GrowthPolicy>;
public:
using char_type = typename ht::char_type;
using key_size_type = typename ht::key_size_type;
using index_size_type = typename ht::index_size_type;
using size_type = typename ht::size_type;
using hasher = typename ht::hasher;
using key_equal = typename ht::key_equal;
using iterator = typename ht::iterator;
using const_iterator = typename ht::const_iterator;
array_set(): array_set(ht::DEFAULT_INIT_BUCKET_COUNT) {
}
explicit array_set(size_type bucket_count,
const Hash& hash = Hash()): m_ht(bucket_count, hash, ht::DEFAULT_MAX_LOAD_FACTOR)
{
}
template<class InputIt, typename std::enable_if<is_iterator<InputIt>::value>::type* = nullptr>
array_set(InputIt first, InputIt last,
size_type bucket_count = ht::DEFAULT_INIT_BUCKET_COUNT,
const Hash& hash = Hash()): array_set(bucket_count, hash)
{
insert(first, last);
}
#ifdef TSL_AH_HAS_STRING_VIEW
array_set(std::initializer_list<std::basic_string_view<CharT>> init,
size_type bucket_count = ht::DEFAULT_INIT_BUCKET_COUNT,
const Hash& hash = Hash()): array_set(bucket_count, hash)
{
insert(init);
}
#else
array_set(std::initializer_list<const CharT*> init,
size_type bucket_count = ht::DEFAULT_INIT_BUCKET_COUNT,
const Hash& hash = Hash()): array_set(bucket_count, hash)
{
insert(init);
}
#endif
#ifdef TSL_AH_HAS_STRING_VIEW
array_set& operator=(std::initializer_list<std::basic_string_view<CharT>> ilist) {
clear();
reserve(ilist.size());
insert(ilist);
return *this;
}
#else
array_set& operator=(std::initializer_list<const CharT*> ilist) {
clear();
reserve(ilist.size());
insert(ilist);
return *this;
}
#endif
/*
* Iterators
*/
iterator begin() noexcept { return m_ht.begin(); }
const_iterator begin() const noexcept { return m_ht.begin(); }
const_iterator cbegin() const noexcept { return m_ht.cbegin(); }
iterator end() noexcept { return m_ht.end(); }
const_iterator end() const noexcept { return m_ht.end(); }
const_iterator cend() const noexcept { return m_ht.cend(); }
/*
* Capacity
*/
bool empty() const noexcept { return m_ht.empty(); }
size_type size() const noexcept { return m_ht.size(); }
size_type max_size() const noexcept { return m_ht.max_size(); }
size_type max_key_size() const noexcept { return m_ht.max_key_size(); }
void shrink_to_fit() { m_ht.shrink_to_fit(); }
/*
* Modifiers
*/
void clear() noexcept { m_ht.clear(); }
#ifdef TSL_AH_HAS_STRING_VIEW
std::pair<iterator, bool> insert(const std::basic_string_view<CharT>& key) {
return m_ht.emplace(key.data(), key.size());
}
#else
std::pair<iterator, bool> insert(const CharT* key) {
return m_ht.emplace(key, std::char_traits<CharT>::length(key));
}
std::pair<iterator, bool> insert(const std::basic_string<CharT>& key) {
return m_ht.emplace(key.data(), key.size());
}
#endif
std::pair<iterator, bool> insert_ks(const CharT* key, size_type key_size) {
return m_ht.emplace(key, key_size);
}
template<class InputIt, typename std::enable_if<is_iterator<InputIt>::value>::type* = nullptr>
void insert(InputIt first, InputIt last) {
if(std::is_base_of<std::forward_iterator_tag,
typename std::iterator_traits<InputIt>::iterator_category>::value)
{
const auto nb_elements_insert = std::distance(first, last);
const std::size_t nb_free_buckets = std::size_t(float(bucket_count())*max_load_factor()) - size();
if(nb_elements_insert > 0 && nb_free_buckets < std::size_t(nb_elements_insert)) {
reserve(size() + std::size_t(nb_elements_insert));
}
}
for(auto it = first; it != last; ++it) {
insert(*it);
}
}
#ifdef TSL_AH_HAS_STRING_VIEW
void insert(std::initializer_list<std::basic_string_view<CharT>> ilist) {
insert(ilist.begin(), ilist.end());
}
#else
void insert(std::initializer_list<const CharT*> ilist) {
insert(ilist.begin(), ilist.end());
}
#endif
#ifdef TSL_AH_HAS_STRING_VIEW
/**
* @copydoc emplace_ks(const CharT* key, size_type key_size)
*/
std::pair<iterator, bool> emplace(const std::basic_string_view<CharT>& key) {
return m_ht.emplace(key.data(), key.size());
}
#else
/**
* @copydoc emplace_ks(const CharT* key, size_type key_size)
*/
std::pair<iterator, bool> emplace(const CharT* key) {
return m_ht.emplace(key, std::char_traits<CharT>::length(key));
}
/**
* @copydoc emplace_ks(const CharT* key, size_type key_size)
*/
std::pair<iterator, bool> emplace(const std::basic_string<CharT>& key) {
return m_ht.emplace(key.data(), key.size());
}
#endif
/**
* No difference compared to the insert method. Mainly here for coherence with array_map.
*/
std::pair<iterator, bool> emplace_ks(const CharT* key, size_type key_size) {
return m_ht.emplace(key, key_size);
}
iterator erase(const_iterator pos) { return m_ht.erase(pos); }
iterator erase(const_iterator first, const_iterator last) { return m_ht.erase(first, last); }
#ifdef TSL_AH_HAS_STRING_VIEW
size_type erase(const std::basic_string_view<CharT>& key) {
return m_ht.erase(key.data(), key.size());
}
#else
size_type erase(const CharT* key) {
return m_ht.erase(key, std::char_traits<CharT>::length(key));
}
size_type erase(const std::basic_string<CharT>& key) {
return m_ht.erase(key.data(), key.size());
}
#endif
size_type erase_ks(const CharT* key, size_type key_size) {
return m_ht.erase(key, key_size);
}
#ifdef TSL_AH_HAS_STRING_VIEW
/**
* @copydoc erase_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash)
*/
size_type erase(const std::basic_string_view<CharT>& key, std::size_t precalculated_hash) {
return m_ht.erase(key.data(), key.size(), precalculated_hash);
}
#else
/**
* @copydoc erase_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash)
*/
size_type erase(const CharT* key, std::size_t precalculated_hash) {
return m_ht.erase(key, std::char_traits<CharT>::length(key), precalculated_hash);
}
/**
* @copydoc erase_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash)
*/
size_type erase(const std::basic_string<CharT>& key, std::size_t precalculated_hash) {
return m_ht.erase(key.data(), key.size(), precalculated_hash);
}
#endif
/**
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup to the value if you already have the hash.
*/
size_type erase_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash) {
return m_ht.erase(key, key_size, precalculated_hash);
}
void swap(array_set& other) { other.m_ht.swap(m_ht); }
/*
* Lookup
*/
#ifdef TSL_AH_HAS_STRING_VIEW
size_type count(const std::basic_string_view<CharT>& key) const { return m_ht.count(key.data(), key.size()); }
#else
size_type count(const CharT* key) const { return m_ht.count(key, std::char_traits<CharT>::length(key)); }
size_type count(const std::basic_string<CharT>& key) const { return m_ht.count(key.data(), key.size()); }
#endif
size_type count_ks(const CharT* key, size_type key_size) const { return m_ht.count(key, key_size); }
#ifdef TSL_AH_HAS_STRING_VIEW
/**
* @copydoc count_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash) const
*/
size_type count(const std::basic_string_view<CharT>& key, std::size_t precalculated_hash) const {
return m_ht.count(key.data(), key.size(), precalculated_hash);
}
#else
/**
* @copydoc count_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash) const
*/
size_type count(const CharT* key, std::size_t precalculated_hash) const {
return m_ht.count(key, std::char_traits<CharT>::length(key), precalculated_hash);
}
/**
* @copydoc count_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash) const
*/
size_type count(const std::basic_string<CharT>& key, std::size_t precalculated_hash) const {
return m_ht.count(key.data(), key.size(), precalculated_hash);
}
#endif
/**
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup to the value if you already have the hash.
*/
size_type count_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash) const {
return m_ht.count(key, key_size, precalculated_hash);
}
#ifdef TSL_AH_HAS_STRING_VIEW
iterator find(const std::basic_string_view<CharT>& key) {
return m_ht.find(key.data(), key.size());
}
const_iterator find(const std::basic_string_view<CharT>& key) const {
return m_ht.find(key.data(), key.size());
}
#else
iterator find(const CharT* key) {
return m_ht.find(key, std::char_traits<CharT>::length(key));
}
const_iterator find(const CharT* key) const {
return m_ht.find(key, std::char_traits<CharT>::length(key));
}
iterator find(const std::basic_string<CharT>& key) {
return m_ht.find(key.data(), key.size());
}
const_iterator find(const std::basic_string<CharT>& key) const {
return m_ht.find(key.data(), key.size());
}
#endif
iterator find_ks(const CharT* key, size_type key_size) {
return m_ht.find(key, key_size);
}
const_iterator find_ks(const CharT* key, size_type key_size) const {
return m_ht.find(key, key_size);
}
#ifdef TSL_AH_HAS_STRING_VIEW
/**
* @copydoc find_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash)
*/
iterator find(const std::basic_string_view<CharT>& key, std::size_t precalculated_hash) {
return m_ht.find(key.data(), key.size(), precalculated_hash);
}
/**
* @copydoc find_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash)
*/
const_iterator find(const std::basic_string_view<CharT>& key, std::size_t precalculated_hash) const {
return m_ht.find(key.data(), key.size(), precalculated_hash);
}
#else
/**
* @copydoc find_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash)
*/
iterator find(const CharT* key, std::size_t precalculated_hash) {
return m_ht.find(key, std::char_traits<CharT>::length(key), precalculated_hash);
}
/**
* @copydoc find_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash)
*/
const_iterator find(const CharT* key, std::size_t precalculated_hash) const {
return m_ht.find(key, std::char_traits<CharT>::length(key), precalculated_hash);
}
/**
* @copydoc find_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash)
*/
iterator find(const std::basic_string<CharT>& key, std::size_t precalculated_hash) {
return m_ht.find(key.data(), key.size(), precalculated_hash);
}
/**
* @copydoc find_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash)
*/
const_iterator find(const std::basic_string<CharT>& key, std::size_t precalculated_hash) const {
return m_ht.find(key.data(), key.size(), precalculated_hash);
}
#endif
/**
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup to the value if you already have the hash.
*/
iterator find_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash) {
return m_ht.find(key, key_size, precalculated_hash);
}
/**
* @copydoc find_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash)
*/
const_iterator find_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash) const {
return m_ht.find(key, key_size, precalculated_hash);
}
#ifdef TSL_AH_HAS_STRING_VIEW
std::pair<iterator, iterator> equal_range(const std::basic_string_view<CharT>& key) {
return m_ht.equal_range(key.data(), key.size());
}
std::pair<const_iterator, const_iterator> equal_range(const std::basic_string_view<CharT>& key) const {
return m_ht.equal_range(key.data(), key.size());
}
#else
std::pair<iterator, iterator> equal_range(const CharT* key) {
return m_ht.equal_range(key, std::char_traits<CharT>::length(key));
}
std::pair<const_iterator, const_iterator> equal_range(const CharT* key) const {
return m_ht.equal_range(key, std::char_traits<CharT>::length(key));
}
std::pair<iterator, iterator> equal_range(const std::basic_string<CharT>& key) {
return m_ht.equal_range(key.data(), key.size());
}
std::pair<const_iterator, const_iterator> equal_range(const std::basic_string<CharT>& key) const {
return m_ht.equal_range(key.data(), key.size());
}
#endif
std::pair<iterator, iterator> equal_range_ks(const CharT* key, size_type key_size) {
return m_ht.equal_range(key, key_size);
}
std::pair<const_iterator, const_iterator> equal_range_ks(const CharT* key, size_type key_size) const {
return m_ht.equal_range(key, key_size);
}
#ifdef TSL_AH_HAS_STRING_VIEW
/**
* @copydoc equal_range_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash)
*/
std::pair<iterator, iterator> equal_range(const std::basic_string_view<CharT>& key, std::size_t precalculated_hash) {
return m_ht.equal_range(key.data(), key.size(), precalculated_hash);
}
/**
* @copydoc equal_range_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash)
*/
std::pair<const_iterator, const_iterator> equal_range(const std::basic_string_view<CharT>& key, std::size_t precalculated_hash) const {
return m_ht.equal_range(key.data(), key.size(), precalculated_hash);
}
#else
/**
* @copydoc equal_range_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash)
*/
std::pair<iterator, iterator> equal_range(const CharT* key, std::size_t precalculated_hash) {
return m_ht.equal_range(key, std::char_traits<CharT>::length(key), precalculated_hash);
}
/**
* @copydoc equal_range_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash)
*/
std::pair<const_iterator, const_iterator> equal_range(const CharT* key, std::size_t precalculated_hash) const {
return m_ht.equal_range(key, std::char_traits<CharT>::length(key), precalculated_hash);
}
/**
* @copydoc equal_range_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash)
*/
std::pair<iterator, iterator> equal_range(const std::basic_string<CharT>& key, std::size_t precalculated_hash) {
return m_ht.equal_range(key.data(), key.size(), precalculated_hash);
}
/**
* @copydoc equal_range_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash)
*/
std::pair<const_iterator, const_iterator> equal_range(const std::basic_string<CharT>& key, std::size_t precalculated_hash) const {
return m_ht.equal_range(key.data(), key.size(), precalculated_hash);
}
#endif
/**
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup to the value if you already have the hash.
*/
std::pair<iterator, iterator> equal_range_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash) {
return m_ht.equal_range(key, key_size, precalculated_hash);
}
/**
* @copydoc equal_range_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash)
*/
std::pair<const_iterator, const_iterator> equal_range_ks(const CharT* key, size_type key_size, std::size_t precalculated_hash) const {
return m_ht.equal_range(key, key_size, precalculated_hash);
}
/*
* Bucket interface
*/
size_type bucket_count() const { return m_ht.bucket_count(); }
size_type max_bucket_count() const { return m_ht.max_bucket_count(); }
/*
* Hash policy
*/
float load_factor() const { return m_ht.load_factor(); }
float max_load_factor() const { return m_ht.max_load_factor(); }
void max_load_factor(float ml) { m_ht.max_load_factor(ml); }
void rehash(size_type count) { m_ht.rehash(count); }
void reserve(size_type count) { m_ht.reserve(count); }
/*
* Observers
*/
hasher hash_function() const { return m_ht.hash_function(); }
key_equal key_eq() const { return m_ht.key_eq(); }
/*
* Other
*/
/**
* Return the `const_iterator it` as an `iterator`.
*/
iterator mutable_iterator(const_iterator it) noexcept { return m_ht.mutable_iterator(it); }
/**
* Serialize the set through the `serializer` parameter.
*
* The `serializer` parameter must be a function object that supports the following calls:
* - `template<typename U> void operator()(const U& value);` where the types `std::uint64_t` and `float` must be supported for U.
* - `void operator()(const CharT* value, std::size_t value_size);`
*
* The implementation leaves binary compatibilty (endianness, IEEE 754 for floats, ...) of the types it serializes
* in the hands of the `Serializer` function object if compatibilty is required.
*/
template<class Serializer>
void serialize(Serializer& serializer) const {
m_ht.serialize(serializer);
}
/**
* Deserialize a previouly serialized set through the `deserializer` parameter.
*
* The `deserializer` parameter must be a function object that supports the following calls:
* - `template<typename U> U operator()();` where the types `std::uint64_t` and `float` must be supported for U.
* - `void operator()(CharT* value_out, std::size_t value_size);`
*
* If the deserialized hash set type is hash compatible with the serialized set, the deserialization process can be
* sped up by setting `hash_compatible` to true. To be hash compatible, the Hash (take care of the 32-bits vs 64 bits),
* KeyEqual, GrowthPolicy, StoreNullTerminator, KeySizeT and IndexSizeT must behave the same than the ones used on the
* serialized set. Otherwise the behaviour is undefined with `hash_compatible` sets to true.
*
* The behaviour is undefined if the type `CharT` of the `array_set` is not the same as the
* type used during serialization.
*
* The implementation leaves binary compatibilty (endianness, IEEE 754 for floats, size of int, ...) of the types it
* deserializes in the hands of the `Deserializer` function object if compatibilty is required.
*/
template<class Deserializer>
static array_set deserialize(Deserializer& deserializer, bool hash_compatible = false) {
array_set set(0);
set.m_ht.deserialize(deserializer, hash_compatible);
return set;
}
friend bool operator==(const array_set& lhs, const array_set& rhs) {
if(lhs.size() != rhs.size()) {
return false;
}
for(auto it = lhs.cbegin(); it != lhs.cend(); ++it) {
const auto it_element_rhs = rhs.find_ks(it.key(), it.key_size());
if(it_element_rhs == rhs.cend()) {
return false;
}
}
return true;
}
friend bool operator!=(const array_set& lhs, const array_set& rhs) {
return !operator==(lhs, rhs);
}
friend void swap(array_set& lhs, array_set& rhs) {
lhs.swap(rhs);
}
public:
static const size_type MAX_KEY_SIZE = ht::MAX_KEY_SIZE;
private:
ht m_ht;
};
/**
* Same as
* `tsl::array_set<CharT, Hash, KeyEqual, StoreNullTerminator, KeySizeT, IndexSizeT, tsl::ah::prime_growth_policy>`.
*/
template<class CharT,
class Hash = tsl::ah::str_hash<CharT>,
class KeyEqual = tsl::ah::str_equal<CharT>,
bool StoreNullTerminator = true,
class KeySizeT = std::uint16_t,
class IndexSizeT = std::uint32_t>
using array_pg_set = array_set<CharT, Hash, KeyEqual, StoreNullTerminator,
KeySizeT, IndexSizeT, tsl::ah::prime_growth_policy>;
} //end namespace tsl
#endif

View File

@@ -0,0 +1,706 @@
/**
* MIT License
*
* Copyright (c) 2017 Tessil
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef TSL_BHOPSCOTCH_MAP_H
#define TSL_BHOPSCOTCH_MAP_H
#include <algorithm>
#include <cstddef>
#include <functional>
#include <initializer_list>
#include <map>
#include <memory>
#include <type_traits>
#include <utility>
#include "hopscotch_hash.h"
namespace tsl {
/**
* Similar to tsl::hopscotch_map but instead of using a list for overflowing elements it uses
* a binary search tree. It thus needs an additional template parameter Compare. Compare should
* be arithmetically coherent with KeyEqual.
*
* The binary search tree allows the map to have a worst-case scenario of O(log n) for search
* and delete, even if the hash function maps all the elements to the same bucket.
* For insert, the amortized worst case is O(log n), but the worst case is O(n) in case of rehash.
*
* This makes the map resistant to DoS attacks (but doesn't preclude you to have a good hash function,
* as an element in the bucket array is faster to retrieve than in the tree).
*
* @copydoc hopscotch_map
*/
template<class Key,
class T,
class Hash = std::hash<Key>,
class KeyEqual = std::equal_to<Key>,
class Compare = std::less<Key>,
class Allocator = std::allocator<std::pair<const Key, T>>,
unsigned int NeighborhoodSize = 62,
bool StoreHash = false,
class GrowthPolicy = tsl::hh::power_of_two_growth_policy<2>>
class bhopscotch_map {
private:
template<typename U>
using has_is_transparent = tsl::detail_hopscotch_hash::has_is_transparent<U>;
class KeySelect {
public:
using key_type = Key;
const key_type& operator()(const std::pair<const Key, T>& key_value) const {
return key_value.first;
}
const key_type& operator()(std::pair<const Key, T>& key_value) {
return key_value.first;
}
};
class ValueSelect {
public:
using value_type = T;
const value_type& operator()(const std::pair<const Key, T>& key_value) const {
return key_value.second;
}
value_type& operator()(std::pair<const Key, T>& key_value) {
return key_value.second;
}
};
// TODO Not optimal as we have to use std::pair<const Key, T> as ValueType which forbid
// us to move the key in the bucket array, we have to use copy. Optimize.
using overflow_container_type = std::map<Key, T, Compare, Allocator>;
using ht = detail_hopscotch_hash::hopscotch_hash<std::pair<const Key, T>, KeySelect, ValueSelect,
Hash, KeyEqual,
Allocator, NeighborhoodSize,
StoreHash, GrowthPolicy,
overflow_container_type>;
public:
using key_type = typename ht::key_type;
using mapped_type = T;
using value_type = typename ht::value_type;
using size_type = typename ht::size_type;
using difference_type = typename ht::difference_type;
using hasher = typename ht::hasher;
using key_equal = typename ht::key_equal;
using key_compare = Compare;
using allocator_type = typename ht::allocator_type;
using reference = typename ht::reference;
using const_reference = typename ht::const_reference;
using pointer = typename ht::pointer;
using const_pointer = typename ht::const_pointer;
using iterator = typename ht::iterator;
using const_iterator = typename ht::const_iterator;
/*
* Constructors
*/
bhopscotch_map() : bhopscotch_map(ht::DEFAULT_INIT_BUCKETS_SIZE) {
}
explicit bhopscotch_map(size_type bucket_count,
const Hash& hash = Hash(),
const KeyEqual& equal = KeyEqual(),
const Allocator& alloc = Allocator(),
const Compare& comp = Compare()) :
m_ht(bucket_count, hash, equal, alloc, ht::DEFAULT_MAX_LOAD_FACTOR, comp)
{
}
bhopscotch_map(size_type bucket_count,
const Allocator& alloc) : bhopscotch_map(bucket_count, Hash(), KeyEqual(), alloc)
{
}
bhopscotch_map(size_type bucket_count,
const Hash& hash,
const Allocator& alloc) : bhopscotch_map(bucket_count, hash, KeyEqual(), alloc)
{
}
explicit bhopscotch_map(const Allocator& alloc) : bhopscotch_map(ht::DEFAULT_INIT_BUCKETS_SIZE, alloc) {
}
template<class InputIt>
bhopscotch_map(InputIt first, InputIt last,
size_type bucket_count = ht::DEFAULT_INIT_BUCKETS_SIZE,
const Hash& hash = Hash(),
const KeyEqual& equal = KeyEqual(),
const Allocator& alloc = Allocator()) : bhopscotch_map(bucket_count, hash, equal, alloc)
{
insert(first, last);
}
template<class InputIt>
bhopscotch_map(InputIt first, InputIt last,
size_type bucket_count,
const Allocator& alloc) : bhopscotch_map(first, last, bucket_count, Hash(), KeyEqual(), alloc)
{
}
template<class InputIt>
bhopscotch_map(InputIt first, InputIt last,
size_type bucket_count,
const Hash& hash,
const Allocator& alloc) : bhopscotch_map(first, last, bucket_count, hash, KeyEqual(), alloc)
{
}
bhopscotch_map(std::initializer_list<value_type> init,
size_type bucket_count = ht::DEFAULT_INIT_BUCKETS_SIZE,
const Hash& hash = Hash(),
const KeyEqual& equal = KeyEqual(),
const Allocator& alloc = Allocator()) :
bhopscotch_map(init.begin(), init.end(), bucket_count, hash, equal, alloc)
{
}
bhopscotch_map(std::initializer_list<value_type> init,
size_type bucket_count,
const Allocator& alloc) :
bhopscotch_map(init.begin(), init.end(), bucket_count, Hash(), KeyEqual(), alloc)
{
}
bhopscotch_map(std::initializer_list<value_type> init,
size_type bucket_count,
const Hash& hash,
const Allocator& alloc) :
bhopscotch_map(init.begin(), init.end(), bucket_count, hash, KeyEqual(), alloc)
{
}
bhopscotch_map& operator=(std::initializer_list<value_type> ilist) {
m_ht.clear();
m_ht.reserve(ilist.size());
m_ht.insert(ilist.begin(), ilist.end());
return *this;
}
allocator_type get_allocator() const { return m_ht.get_allocator(); }
/*
* Iterators
*/
iterator begin() noexcept { return m_ht.begin(); }
const_iterator begin() const noexcept { return m_ht.begin(); }
const_iterator cbegin() const noexcept { return m_ht.cbegin(); }
iterator end() noexcept { return m_ht.end(); }
const_iterator end() const noexcept { return m_ht.end(); }
const_iterator cend() const noexcept { return m_ht.cend(); }
/*
* Capacity
*/
bool empty() const noexcept { return m_ht.empty(); }
size_type size() const noexcept { return m_ht.size(); }
size_type max_size() const noexcept { return m_ht.max_size(); }
/*
* Modifiers
*/
void clear() noexcept { m_ht.clear(); }
std::pair<iterator, bool> insert(const value_type& value) {
return m_ht.insert(value);
}
template<class P, typename std::enable_if<std::is_constructible<value_type, P&&>::value>::type* = nullptr>
std::pair<iterator, bool> insert(P&& value) {
return m_ht.insert(std::forward<P>(value));
}
std::pair<iterator, bool> insert(value_type&& value) {
return m_ht.insert(std::move(value));
}
iterator insert(const_iterator hint, const value_type& value) {
return m_ht.insert(hint, value);
}
template<class P, typename std::enable_if<std::is_constructible<value_type, P&&>::value>::type* = nullptr>
iterator insert(const_iterator hint, P&& value) {
return m_ht.insert(hint, std::forward<P>(value));
}
iterator insert(const_iterator hint, value_type&& value) {
return m_ht.insert(hint, std::move(value));
}
template<class InputIt>
void insert(InputIt first, InputIt last) {
m_ht.insert(first, last);
}
void insert(std::initializer_list<value_type> ilist) {
m_ht.insert(ilist.begin(), ilist.end());
}
template<class M>
std::pair<iterator, bool> insert_or_assign(const key_type& k, M&& obj) {
return m_ht.insert_or_assign(k, std::forward<M>(obj));
}
template<class M>
std::pair<iterator, bool> insert_or_assign(key_type&& k, M&& obj) {
return m_ht.insert_or_assign(std::move(k), std::forward<M>(obj));
}
template<class M>
iterator insert_or_assign(const_iterator hint, const key_type& k, M&& obj) {
return m_ht.insert_or_assign(hint, k, std::forward<M>(obj));
}
template<class M>
iterator insert_or_assign(const_iterator hint, key_type&& k, M&& obj) {
return m_ht.insert_or_assign(hint, std::move(k), std::forward<M>(obj));
}
/**
* Due to the way elements are stored, emplace will need to move or copy the key-value once.
* The method is equivalent to insert(value_type(std::forward<Args>(args)...));
*
* Mainly here for compatibility with the std::unordered_map interface.
*/
template<class... Args>
std::pair<iterator, bool> emplace(Args&&... args) {
return m_ht.emplace(std::forward<Args>(args)...);
}
/**
* Due to the way elements are stored, emplace_hint will need to move or copy the key-value once.
* The method is equivalent to insert(hint, value_type(std::forward<Args>(args)...));
*
* Mainly here for compatibility with the std::unordered_map interface.
*/
template<class... Args>
iterator emplace_hint(const_iterator hint, Args&&... args) {
return m_ht.emplace_hint(hint, std::forward<Args>(args)...);
}
template<class... Args>
std::pair<iterator, bool> try_emplace(const key_type& k, Args&&... args) {
return m_ht.try_emplace(k, std::forward<Args>(args)...);
}
template<class... Args>
std::pair<iterator, bool> try_emplace(key_type&& k, Args&&... args) {
return m_ht.try_emplace(std::move(k), std::forward<Args>(args)...);
}
template<class... Args>
iterator try_emplace(const_iterator hint, const key_type& k, Args&&... args) {
return m_ht.try_emplace(hint, k, std::forward<Args>(args)...);
}
template<class... Args>
iterator try_emplace(const_iterator hint, key_type&& k, Args&&... args) {
return m_ht.try_emplace(hint, std::move(k), std::forward<Args>(args)...);
}
iterator erase(iterator pos) { return m_ht.erase(pos); }
iterator erase(const_iterator pos) { return m_ht.erase(pos); }
iterator erase(const_iterator first, const_iterator last) { return m_ht.erase(first, last); }
size_type erase(const key_type& key) { return m_ht.erase(key); }
/**
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup to the value if you already have the hash.
*/
size_type erase(const key_type& key, std::size_t precalculated_hash) {
return m_ht.erase(key, precalculated_hash);
}
/**
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent
* and Compare::is_transparent exist.
* If so, K must be hashable and comparable to Key.
*/
template<class K, class KE = KeyEqual, class CP = Compare,
typename std::enable_if<has_is_transparent<KE>::value && has_is_transparent<CP>::value>::type* = nullptr>
size_type erase(const K& key) { return m_ht.erase(key); }
/**
* @copydoc erase(const K& key)
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup to the value if you already have the hash.
*/
template<class K, class KE = KeyEqual, class CP = Compare,
typename std::enable_if<has_is_transparent<KE>::value && has_is_transparent<CP>::value>::type* = nullptr>
size_type erase(const K& key, std::size_t precalculated_hash) { return m_ht.erase(key, precalculated_hash); }
void swap(bhopscotch_map& other) { other.m_ht.swap(m_ht); }
/*
* Lookup
*/
T& at(const Key& key) { return m_ht.at(key); }
/**
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
*/
T& at(const Key& key, std::size_t precalculated_hash) { return m_ht.at(key, precalculated_hash); }
const T& at(const Key& key) const { return m_ht.at(key); }
/**
* @copydoc at(const Key& key, std::size_t precalculated_hash)
*/
const T& at(const Key& key, std::size_t precalculated_hash) const { return m_ht.at(key, precalculated_hash); }
/**
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent
* and Compare::is_transparent exist.
* If so, K must be hashable and comparable to Key.
*/
template<class K, class KE = KeyEqual, class CP = Compare,
typename std::enable_if<has_is_transparent<KE>::value && has_is_transparent<CP>::value>::type* = nullptr>
T& at(const K& key) { return m_ht.at(key); }
/**
* @copydoc at(const K& key)
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
*/
template<class K, class KE = KeyEqual, class CP = Compare,
typename std::enable_if<has_is_transparent<KE>::value && has_is_transparent<CP>::value>::type* = nullptr>
T& at(const K& key, std::size_t precalculated_hash) { return m_ht.at(key, precalculated_hash); }
/**
* @copydoc at(const K& key)
*/
template<class K, class KE = KeyEqual, class CP = Compare,
typename std::enable_if<has_is_transparent<KE>::value && has_is_transparent<CP>::value>::type* = nullptr>
const T& at(const K& key) const { return m_ht.at(key); }
/**
* @copydoc at(const K& key, std::size_t precalculated_hash)
*/
template<class K, class KE = KeyEqual, class CP = Compare,
typename std::enable_if<has_is_transparent<KE>::value && has_is_transparent<CP>::value>::type* = nullptr>
const T& at(const K& key, std::size_t precalculated_hash) const { return m_ht.at(key, precalculated_hash); }
T& operator[](const Key& key) { return m_ht[key]; }
T& operator[](Key&& key) { return m_ht[std::move(key)]; }
size_type count(const Key& key) const { return m_ht.count(key); }
/**
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
*/
size_type count(const Key& key, std::size_t precalculated_hash) const { return m_ht.count(key, precalculated_hash); }
/**
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent
* and Compare::is_transparent exist.
* If so, K must be hashable and comparable to Key.
*/
template<class K, class KE = KeyEqual, class CP = Compare,
typename std::enable_if<has_is_transparent<KE>::value && has_is_transparent<CP>::value>::type* = nullptr>
size_type count(const K& key) const { return m_ht.count(key); }
/**
* @copydoc count(const K& key) const
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
*/
template<class K, class KE = KeyEqual, class CP = Compare,
typename std::enable_if<has_is_transparent<KE>::value && has_is_transparent<CP>::value>::type* = nullptr>
size_type count(const K& key, std::size_t precalculated_hash) const { return m_ht.count(key, precalculated_hash); }
iterator find(const Key& key) { return m_ht.find(key); }
/**
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
*/
iterator find(const Key& key, std::size_t precalculated_hash) { return m_ht.find(key, precalculated_hash); }
const_iterator find(const Key& key) const { return m_ht.find(key); }
/**
* @copydoc find(const Key& key, std::size_t precalculated_hash)
*/
const_iterator find(const Key& key, std::size_t precalculated_hash) const { return m_ht.find(key, precalculated_hash); }
/**
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent
* and Compare::is_transparent exist.
* If so, K must be hashable and comparable to Key.
*/
template<class K, class KE = KeyEqual, class CP = Compare,
typename std::enable_if<has_is_transparent<KE>::value && has_is_transparent<CP>::value>::type* = nullptr>
iterator find(const K& key) { return m_ht.find(key); }
/**
* @copydoc find(const K& key)
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
*/
template<class K, class KE = KeyEqual, class CP = Compare,
typename std::enable_if<has_is_transparent<KE>::value && has_is_transparent<CP>::value>::type* = nullptr>
iterator find(const K& key, std::size_t precalculated_hash) { return m_ht.find(key, precalculated_hash); }
/**
* @copydoc find(const K& key)
*/
template<class K, class KE = KeyEqual, class CP = Compare,
typename std::enable_if<has_is_transparent<KE>::value && has_is_transparent<CP>::value>::type* = nullptr>
const_iterator find(const K& key) const { return m_ht.find(key); }
/**
* @copydoc find(const K& key, std::size_t precalculated_hash)
*/
template<class K, class KE = KeyEqual, class CP = Compare,
typename std::enable_if<has_is_transparent<KE>::value && has_is_transparent<CP>::value>::type* = nullptr>
const_iterator find(const K& key, std::size_t precalculated_hash) const { return m_ht.find(key, precalculated_hash); }
bool contains(const Key& key) const { return m_ht.contains(key); }
/**
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
*/
bool contains(const Key& key, std::size_t precalculated_hash) const {
return m_ht.contains(key, precalculated_hash);
}
/**
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
* If so, K must be hashable and comparable to Key.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
bool contains(const K& key) const { return m_ht.contains(key); }
/**
* @copydoc contains(const K& key) const
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
bool contains(const K& key, std::size_t precalculated_hash) const {
return m_ht.contains(key, precalculated_hash);
}
std::pair<iterator, iterator> equal_range(const Key& key) { return m_ht.equal_range(key); }
/**
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
*/
std::pair<iterator, iterator> equal_range(const Key& key, std::size_t precalculated_hash) {
return m_ht.equal_range(key, precalculated_hash);
}
std::pair<const_iterator, const_iterator> equal_range(const Key& key) const { return m_ht.equal_range(key); }
/**
* @copydoc equal_range(const Key& key, std::size_t precalculated_hash)
*/
std::pair<const_iterator, const_iterator> equal_range(const Key& key, std::size_t precalculated_hash) const {
return m_ht.equal_range(key, precalculated_hash);
}
/**
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent
* and Compare::is_transparent exist.
* If so, K must be hashable and comparable to Key.
*/
template<class K, class KE = KeyEqual, class CP = Compare,
typename std::enable_if<has_is_transparent<KE>::value && has_is_transparent<CP>::value>::type* = nullptr>
std::pair<iterator, iterator> equal_range(const K& key) { return m_ht.equal_range(key); }
/**
* @copydoc equal_range(const K& key)
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
*/
template<class K, class KE = KeyEqual, class CP = Compare,
typename std::enable_if<has_is_transparent<KE>::value && has_is_transparent<CP>::value>::type* = nullptr>
std::pair<iterator, iterator> equal_range(const K& key, std::size_t precalculated_hash) {
return m_ht.equal_range(key, precalculated_hash);
}
/**
* @copydoc equal_range(const K& key)
*/
template<class K, class KE = KeyEqual, class CP = Compare,
typename std::enable_if<has_is_transparent<KE>::value && has_is_transparent<CP>::value>::type* = nullptr>
std::pair<const_iterator, const_iterator> equal_range(const K& key) const { return m_ht.equal_range(key); }
/**
* @copydoc equal_range(const K& key, std::size_t precalculated_hash)
*/
template<class K, class KE = KeyEqual, class CP = Compare,
typename std::enable_if<has_is_transparent<KE>::value && has_is_transparent<CP>::value>::type* = nullptr>
std::pair<const_iterator, const_iterator> equal_range(const K& key, std::size_t precalculated_hash) const {
return m_ht.equal_range(key, precalculated_hash);
}
/*
* Bucket interface
*/
size_type bucket_count() const { return m_ht.bucket_count(); }
size_type max_bucket_count() const { return m_ht.max_bucket_count(); }
/*
* Hash policy
*/
float load_factor() const { return m_ht.load_factor(); }
float max_load_factor() const { return m_ht.max_load_factor(); }
void max_load_factor(float ml) { m_ht.max_load_factor(ml); }
void rehash(size_type count_) { m_ht.rehash(count_); }
void reserve(size_type count_) { m_ht.reserve(count_); }
/*
* Observers
*/
hasher hash_function() const { return m_ht.hash_function(); }
key_equal key_eq() const { return m_ht.key_eq(); }
key_compare key_comp() const { return m_ht.key_comp(); }
/*
* Other
*/
/**
* Convert a const_iterator to an iterator.
*/
iterator mutable_iterator(const_iterator pos) {
return m_ht.mutable_iterator(pos);
}
size_type overflow_size() const noexcept { return m_ht.overflow_size(); }
friend bool operator==(const bhopscotch_map& lhs, const bhopscotch_map& rhs) {
if(lhs.size() != rhs.size()) {
return false;
}
for(const auto& element_lhs : lhs) {
const auto it_element_rhs = rhs.find(element_lhs.first);
if(it_element_rhs == rhs.cend() || element_lhs.second != it_element_rhs->second) {
return false;
}
}
return true;
}
friend bool operator!=(const bhopscotch_map& lhs, const bhopscotch_map& rhs) {
return !operator==(lhs, rhs);
}
friend void swap(bhopscotch_map& lhs, bhopscotch_map& rhs) {
lhs.swap(rhs);
}
private:
ht m_ht;
};
/**
* Same as `tsl::bhopscotch_map<Key, T, Hash, KeyEqual, Compare, Allocator, NeighborhoodSize, StoreHash, tsl::hh::prime_growth_policy>`.
*/
template<class Key,
class T,
class Hash = std::hash<Key>,
class KeyEqual = std::equal_to<Key>,
class Compare = std::less<Key>,
class Allocator = std::allocator<std::pair<const Key, T>>,
unsigned int NeighborhoodSize = 62,
bool StoreHash = false>
using bhopscotch_pg_map = bhopscotch_map<Key, T, Hash, KeyEqual, Compare, Allocator, NeighborhoodSize, StoreHash, tsl::hh::prime_growth_policy>;
} // end namespace tsl
#endif

View File

@@ -0,0 +1,560 @@
/**
* MIT License
*
* Copyright (c) 2017 Tessil
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef TSL_BHOPSCOTCH_SET_H
#define TSL_BHOPSCOTCH_SET_H
#include <algorithm>
#include <cstddef>
#include <functional>
#include <initializer_list>
#include <memory>
#include <set>
#include <type_traits>
#include <utility>
#include "hopscotch_hash.h"
namespace tsl {
/**
* Similar to tsl::hopscotch_set but instead of using a list for overflowing elements it uses
* a binary search tree. It thus needs an additional template parameter Compare. Compare should
* be arithmetically coherent with KeyEqual.
*
* The binary search tree allows the set to have a worst-case scenario of O(log n) for search
* and delete, even if the hash function maps all the elements to the same bucket.
* For insert, the amortized worst case is O(log n), but the worst case is O(n) in case of rehash.
*
* This makes the set resistant to DoS attacks (but doesn't preclude you to have a good hash function,
* as an element in the bucket array is faster to retrieve than in the tree).
*
* @copydoc hopscotch_set
*/
template<class Key,
class Hash = std::hash<Key>,
class KeyEqual = std::equal_to<Key>,
class Compare = std::less<Key>,
class Allocator = std::allocator<Key>,
unsigned int NeighborhoodSize = 62,
bool StoreHash = false,
class GrowthPolicy = tsl::hh::power_of_two_growth_policy<2>>
class bhopscotch_set {
private:
template<typename U>
using has_is_transparent = tsl::detail_hopscotch_hash::has_is_transparent<U>;
class KeySelect {
public:
using key_type = Key;
const key_type& operator()(const Key& key) const {
return key;
}
key_type& operator()(Key& key) {
return key;
}
};
using overflow_container_type = std::set<Key, Compare, Allocator>;
using ht = tsl::detail_hopscotch_hash::hopscotch_hash<Key, KeySelect, void,
Hash, KeyEqual,
Allocator, NeighborhoodSize,
StoreHash, GrowthPolicy,
overflow_container_type>;
public:
using key_type = typename ht::key_type;
using value_type = typename ht::value_type;
using size_type = typename ht::size_type;
using difference_type = typename ht::difference_type;
using hasher = typename ht::hasher;
using key_equal = typename ht::key_equal;
using key_compare = Compare;
using allocator_type = typename ht::allocator_type;
using reference = typename ht::reference;
using const_reference = typename ht::const_reference;
using pointer = typename ht::pointer;
using const_pointer = typename ht::const_pointer;
using iterator = typename ht::iterator;
using const_iterator = typename ht::const_iterator;
/*
* Constructors
*/
bhopscotch_set() : bhopscotch_set(ht::DEFAULT_INIT_BUCKETS_SIZE) {
}
explicit bhopscotch_set(size_type bucket_count,
const Hash& hash = Hash(),
const KeyEqual& equal = KeyEqual(),
const Allocator& alloc = Allocator(),
const Compare& comp = Compare()) :
m_ht(bucket_count, hash, equal, alloc, ht::DEFAULT_MAX_LOAD_FACTOR, comp)
{
}
bhopscotch_set(size_type bucket_count,
const Allocator& alloc) : bhopscotch_set(bucket_count, Hash(), KeyEqual(), alloc)
{
}
bhopscotch_set(size_type bucket_count,
const Hash& hash,
const Allocator& alloc) : bhopscotch_set(bucket_count, hash, KeyEqual(), alloc)
{
}
explicit bhopscotch_set(const Allocator& alloc) : bhopscotch_set(ht::DEFAULT_INIT_BUCKETS_SIZE, alloc) {
}
template<class InputIt>
bhopscotch_set(InputIt first, InputIt last,
size_type bucket_count = ht::DEFAULT_INIT_BUCKETS_SIZE,
const Hash& hash = Hash(),
const KeyEqual& equal = KeyEqual(),
const Allocator& alloc = Allocator()) : bhopscotch_set(bucket_count, hash, equal, alloc)
{
insert(first, last);
}
template<class InputIt>
bhopscotch_set(InputIt first, InputIt last,
size_type bucket_count,
const Allocator& alloc) : bhopscotch_set(first, last, bucket_count, Hash(), KeyEqual(), alloc)
{
}
template<class InputIt>
bhopscotch_set(InputIt first, InputIt last,
size_type bucket_count,
const Hash& hash,
const Allocator& alloc) : bhopscotch_set(first, last, bucket_count, hash, KeyEqual(), alloc)
{
}
bhopscotch_set(std::initializer_list<value_type> init,
size_type bucket_count = ht::DEFAULT_INIT_BUCKETS_SIZE,
const Hash& hash = Hash(),
const KeyEqual& equal = KeyEqual(),
const Allocator& alloc = Allocator()) :
bhopscotch_set(init.begin(), init.end(), bucket_count, hash, equal, alloc)
{
}
bhopscotch_set(std::initializer_list<value_type> init,
size_type bucket_count,
const Allocator& alloc) :
bhopscotch_set(init.begin(), init.end(), bucket_count, Hash(), KeyEqual(), alloc)
{
}
bhopscotch_set(std::initializer_list<value_type> init,
size_type bucket_count,
const Hash& hash,
const Allocator& alloc) :
bhopscotch_set(init.begin(), init.end(), bucket_count, hash, KeyEqual(), alloc)
{
}
bhopscotch_set& operator=(std::initializer_list<value_type> ilist) {
m_ht.clear();
m_ht.reserve(ilist.size());
m_ht.insert(ilist.begin(), ilist.end());
return *this;
}
allocator_type get_allocator() const { return m_ht.get_allocator(); }
/*
* Iterators
*/
iterator begin() noexcept { return m_ht.begin(); }
const_iterator begin() const noexcept { return m_ht.begin(); }
const_iterator cbegin() const noexcept { return m_ht.cbegin(); }
iterator end() noexcept { return m_ht.end(); }
const_iterator end() const noexcept { return m_ht.end(); }
const_iterator cend() const noexcept { return m_ht.cend(); }
/*
* Capacity
*/
bool empty() const noexcept { return m_ht.empty(); }
size_type size() const noexcept { return m_ht.size(); }
size_type max_size() const noexcept { return m_ht.max_size(); }
/*
* Modifiers
*/
void clear() noexcept { m_ht.clear(); }
std::pair<iterator, bool> insert(const value_type& value) { return m_ht.insert(value); }
std::pair<iterator, bool> insert(value_type&& value) { return m_ht.insert(std::move(value)); }
iterator insert(const_iterator hint, const value_type& value) { return m_ht.insert(hint, value); }
iterator insert(const_iterator hint, value_type&& value) { return m_ht.insert(hint, std::move(value)); }
template<class InputIt>
void insert(InputIt first, InputIt last) { m_ht.insert(first, last); }
void insert(std::initializer_list<value_type> ilist) { m_ht.insert(ilist.begin(), ilist.end()); }
/**
* Due to the way elements are stored, emplace will need to move or copy the key-value once.
* The method is equivalent to insert(value_type(std::forward<Args>(args)...));
*
* Mainly here for compatibility with the std::unordered_map interface.
*/
template<class... Args>
std::pair<iterator, bool> emplace(Args&&... args) { return m_ht.emplace(std::forward<Args>(args)...); }
/**
* Due to the way elements are stored, emplace_hint will need to move or copy the key-value once.
* The method is equivalent to insert(hint, value_type(std::forward<Args>(args)...));
*
* Mainly here for compatibility with the std::unordered_map interface.
*/
template<class... Args>
iterator emplace_hint(const_iterator hint, Args&&... args) {
return m_ht.emplace_hint(hint, std::forward<Args>(args)...);
}
iterator erase(iterator pos) { return m_ht.erase(pos); }
iterator erase(const_iterator pos) { return m_ht.erase(pos); }
iterator erase(const_iterator first, const_iterator last) { return m_ht.erase(first, last); }
size_type erase(const key_type& key) { return m_ht.erase(key); }
/**
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup to the value if you already have the hash.
*/
size_type erase(const key_type& key, std::size_t precalculated_hash) {
return m_ht.erase(key, precalculated_hash);
}
/**
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent
* and Compare::is_transparent exist.
* If so, K must be hashable and comparable to Key.
*/
template<class K, class KE = KeyEqual, class CP = Compare,
typename std::enable_if<has_is_transparent<KE>::value && has_is_transparent<CP>::value>::type* = nullptr>
size_type erase(const K& key) { return m_ht.erase(key); }
/**
* @copydoc erase(const K& key)
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup to the value if you already have the hash.
*/
template<class K, class KE = KeyEqual, class CP = Compare,
typename std::enable_if<has_is_transparent<KE>::value && has_is_transparent<CP>::value>::type* = nullptr>
size_type erase(const K& key, std::size_t precalculated_hash) { return m_ht.erase(key, precalculated_hash); }
void swap(bhopscotch_set& other) { other.m_ht.swap(m_ht); }
/*
* Lookup
*/
size_type count(const Key& key) const { return m_ht.count(key); }
/**
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
*/
size_type count(const Key& key, std::size_t precalculated_hash) const { return m_ht.count(key, precalculated_hash); }
/**
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent
* and Compare::is_transparent exist.
* If so, K must be hashable and comparable to Key.
*/
template<class K, class KE = KeyEqual, class CP = Compare,
typename std::enable_if<has_is_transparent<KE>::value && has_is_transparent<CP>::value>::type* = nullptr>
size_type count(const K& key) const { return m_ht.count(key); }
/**
* @copydoc count(const K& key) const
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
*/
template<class K, class KE = KeyEqual, class CP = Compare,
typename std::enable_if<has_is_transparent<KE>::value && has_is_transparent<CP>::value>::type* = nullptr>
size_type count(const K& key, std::size_t precalculated_hash) const { return m_ht.count(key, precalculated_hash); }
iterator find(const Key& key) { return m_ht.find(key); }
/**
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
*/
iterator find(const Key& key, std::size_t precalculated_hash) { return m_ht.find(key, precalculated_hash); }
const_iterator find(const Key& key) const { return m_ht.find(key); }
/**
* @copydoc find(const Key& key, std::size_t precalculated_hash)
*/
const_iterator find(const Key& key, std::size_t precalculated_hash) const { return m_ht.find(key, precalculated_hash); }
/**
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent
* and Compare::is_transparent exist.
* If so, K must be hashable and comparable to Key.
*/
template<class K, class KE = KeyEqual, class CP = Compare,
typename std::enable_if<has_is_transparent<KE>::value && has_is_transparent<CP>::value>::type* = nullptr>
iterator find(const K& key) { return m_ht.find(key); }
/**
* @copydoc find(const K& key)
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
*/
template<class K, class KE = KeyEqual, class CP = Compare,
typename std::enable_if<has_is_transparent<KE>::value && has_is_transparent<CP>::value>::type* = nullptr>
iterator find(const K& key, std::size_t precalculated_hash) { return m_ht.find(key, precalculated_hash); }
/**
* @copydoc find(const K& key)
*/
template<class K, class KE = KeyEqual, class CP = Compare,
typename std::enable_if<has_is_transparent<KE>::value && has_is_transparent<CP>::value>::type* = nullptr>
const_iterator find(const K& key) const { return m_ht.find(key); }
/**
* @copydoc find(const K& key)
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
*/
template<class K, class KE = KeyEqual, class CP = Compare,
typename std::enable_if<has_is_transparent<KE>::value && has_is_transparent<CP>::value>::type* = nullptr>
const_iterator find(const K& key, std::size_t precalculated_hash) const { return m_ht.find(key, precalculated_hash); }
bool contains(const Key& key) const { return m_ht.contains(key); }
/**
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
*/
bool contains(const Key& key, std::size_t precalculated_hash) const {
return m_ht.contains(key, precalculated_hash);
}
/**
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
* If so, K must be hashable and comparable to Key.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
bool contains(const K& key) const { return m_ht.contains(key); }
/**
* @copydoc contains(const K& key) const
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
bool contains(const K& key, std::size_t precalculated_hash) const {
return m_ht.contains(key, precalculated_hash);
}
std::pair<iterator, iterator> equal_range(const Key& key) { return m_ht.equal_range(key); }
/**
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
*/
std::pair<iterator, iterator> equal_range(const Key& key, std::size_t precalculated_hash) {
return m_ht.equal_range(key, precalculated_hash);
}
std::pair<const_iterator, const_iterator> equal_range(const Key& key) const { return m_ht.equal_range(key); }
/**
* @copydoc equal_range(const Key& key, std::size_t precalculated_hash)
*/
std::pair<const_iterator, const_iterator> equal_range(const Key& key, std::size_t precalculated_hash) const {
return m_ht.equal_range(key, precalculated_hash);
}
/**
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent
* and Compare::is_transparent exist.
* If so, K must be hashable and comparable to Key.
*/
template<class K, class KE = KeyEqual, class CP = Compare,
typename std::enable_if<has_is_transparent<KE>::value && has_is_transparent<CP>::value>::type* = nullptr>
std::pair<iterator, iterator> equal_range(const K& key) { return m_ht.equal_range(key); }
/**
* @copydoc equal_range(const K& key)
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
*/
template<class K, class KE = KeyEqual, class CP = Compare,
typename std::enable_if<has_is_transparent<KE>::value && has_is_transparent<CP>::value>::type* = nullptr>
std::pair<iterator, iterator> equal_range(const K& key, std::size_t precalculated_hash) {
return m_ht.equal_range(key, precalculated_hash);
}
/**
* @copydoc equal_range(const K& key)
*/
template<class K, class KE = KeyEqual, class CP = Compare,
typename std::enable_if<has_is_transparent<KE>::value && has_is_transparent<CP>::value>::type* = nullptr>
std::pair<const_iterator, const_iterator> equal_range(const K& key) const { return m_ht.equal_range(key); }
/**
* @copydoc equal_range(const K& key, std::size_t precalculated_hash)
*/
template<class K, class KE = KeyEqual, class CP = Compare,
typename std::enable_if<has_is_transparent<KE>::value && has_is_transparent<CP>::value>::type* = nullptr>
std::pair<const_iterator, const_iterator> equal_range(const K& key, std::size_t precalculated_hash) const {
return m_ht.equal_range(key, precalculated_hash);
}
/*
* Bucket interface
*/
size_type bucket_count() const { return m_ht.bucket_count(); }
size_type max_bucket_count() const { return m_ht.max_bucket_count(); }
/*
* Hash policy
*/
float load_factor() const { return m_ht.load_factor(); }
float max_load_factor() const { return m_ht.max_load_factor(); }
void max_load_factor(float ml) { m_ht.max_load_factor(ml); }
void rehash(size_type count_) { m_ht.rehash(count_); }
void reserve(size_type count_) { m_ht.reserve(count_); }
/*
* Observers
*/
hasher hash_function() const { return m_ht.hash_function(); }
key_equal key_eq() const { return m_ht.key_eq(); }
key_compare key_comp() const { return m_ht.key_comp(); }
/*
* Other
*/
/**
* Convert a const_iterator to an iterator.
*/
iterator mutable_iterator(const_iterator pos) {
return m_ht.mutable_iterator(pos);
}
size_type overflow_size() const noexcept { return m_ht.overflow_size(); }
friend bool operator==(const bhopscotch_set& lhs, const bhopscotch_set& rhs) {
if(lhs.size() != rhs.size()) {
return false;
}
for(const auto& element_lhs : lhs) {
const auto it_element_rhs = rhs.find(element_lhs);
if(it_element_rhs == rhs.cend()) {
return false;
}
}
return true;
}
friend bool operator!=(const bhopscotch_set& lhs, const bhopscotch_set& rhs) {
return !operator==(lhs, rhs);
}
friend void swap(bhopscotch_set& lhs, bhopscotch_set& rhs) {
lhs.swap(rhs);
}
private:
ht m_ht;
};
/**
* Same as `tsl::bhopscotch_set<Key, Hash, KeyEqual, Compare, Allocator, NeighborhoodSize, StoreHash, tsl::hh::prime_growth_policy>`.
*/
template<class Key,
class Hash = std::hash<Key>,
class KeyEqual = std::equal_to<Key>,
class Compare = std::less<Key>,
class Allocator = std::allocator<Key>,
unsigned int NeighborhoodSize = 62,
bool StoreHash = false>
using bhopscotch_pg_set = bhopscotch_set<Key, Hash, KeyEqual, Compare, Allocator, NeighborhoodSize, StoreHash, tsl::hh::prime_growth_policy>;
} // end namespace tsl
#endif

View File

@@ -0,0 +1,295 @@
/**
* MIT License
*
* Copyright (c) 2018 Tessil
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef TSL_HOPSCOTCH_GROWTH_POLICY_H
#define TSL_HOPSCOTCH_GROWTH_POLICY_H
#include <algorithm>
#include <array>
#include <climits>
#include <cmath>
#include <cstddef>
#include <iterator>
#include <limits>
#include <ratio>
#include <stdexcept>
namespace tsl {
namespace hh {
/**
* Grow the hash table by a factor of GrowthFactor keeping the bucket count to a power of two. It allows
* the table to use a mask operation instead of a modulo operation to map a hash to a bucket.
*
* GrowthFactor must be a power of two >= 2.
*/
template<std::size_t GrowthFactor>
class power_of_two_growth_policy {
public:
/**
* Called on the hash table creation and on rehash. The number of buckets for the table is passed in parameter.
* This number is a minimum, the policy may update this value with a higher value if needed (but not lower).
*
* If 0 is given, min_bucket_count_in_out must still be 0 after the policy creation and
* bucket_for_hash must always return 0 in this case.
*/
explicit power_of_two_growth_policy(std::size_t& min_bucket_count_in_out) {
if(min_bucket_count_in_out > max_bucket_count()) {
throw std::length_error("The hash table exceeds its maxmimum size.");
}
if(min_bucket_count_in_out > 0) {
min_bucket_count_in_out = round_up_to_power_of_two(min_bucket_count_in_out);
m_mask = min_bucket_count_in_out - 1;
}
else {
m_mask = 0;
}
}
/**
* Return the bucket [0, bucket_count()) to which the hash belongs.
* If bucket_count() is 0, it must always return 0.
*/
std::size_t bucket_for_hash(std::size_t hash) const noexcept {
return hash & m_mask;
}
/**
* Return the bucket count to use when the bucket array grows on rehash.
*/
std::size_t next_bucket_count() const {
if((m_mask + 1) > max_bucket_count() / GrowthFactor) {
throw std::length_error("The hash table exceeds its maxmimum size.");
}
return (m_mask + 1) * GrowthFactor;
}
/**
* Return the maximum number of buckets supported by the policy.
*/
std::size_t max_bucket_count() const {
// Largest power of two.
return (std::numeric_limits<std::size_t>::max() / 2) + 1;
}
/**
* Reset the growth policy as if it was created with a bucket count of 0.
* After a clear, the policy must always return 0 when bucket_for_hash is called.
*/
void clear() noexcept {
m_mask = 0;
}
private:
static std::size_t round_up_to_power_of_two(std::size_t value) {
if(is_power_of_two(value)) {
return value;
}
if(value == 0) {
return 1;
}
--value;
for(std::size_t i = 1; i < sizeof(std::size_t) * CHAR_BIT; i *= 2) {
value |= value >> i;
}
return value + 1;
}
static constexpr bool is_power_of_two(std::size_t value) {
return value != 0 && (value & (value - 1)) == 0;
}
private:
static_assert(is_power_of_two(GrowthFactor) && GrowthFactor >= 2, "GrowthFactor must be a power of two >= 2.");
std::size_t m_mask;
};
/**
* Grow the hash table by GrowthFactor::num / GrowthFactor::den and use a modulo to map a hash
* to a bucket. Slower but it can be useful if you want a slower growth.
*/
template<class GrowthFactor = std::ratio<3, 2>>
class mod_growth_policy {
public:
explicit mod_growth_policy(std::size_t& min_bucket_count_in_out) {
if(min_bucket_count_in_out > max_bucket_count()) {
throw std::length_error("The hash table exceeds its maxmimum size.");
}
if(min_bucket_count_in_out > 0) {
m_mod = min_bucket_count_in_out;
}
else {
m_mod = 1;
}
}
std::size_t bucket_for_hash(std::size_t hash) const noexcept {
return hash % m_mod;
}
std::size_t next_bucket_count() const {
if(m_mod == max_bucket_count()) {
throw std::length_error("The hash table exceeds its maxmimum size.");
}
const double next_bucket_count = std::ceil(double(m_mod) * REHASH_SIZE_MULTIPLICATION_FACTOR);
if(!std::isnormal(next_bucket_count)) {
throw std::length_error("The hash table exceeds its maxmimum size.");
}
if(next_bucket_count > double(max_bucket_count())) {
return max_bucket_count();
}
else {
return std::size_t(next_bucket_count);
}
}
std::size_t max_bucket_count() const {
return MAX_BUCKET_COUNT;
}
void clear() noexcept {
m_mod = 1;
}
private:
static constexpr double REHASH_SIZE_MULTIPLICATION_FACTOR = 1.0 * GrowthFactor::num / GrowthFactor::den;
static const std::size_t MAX_BUCKET_COUNT =
std::size_t(double(
std::numeric_limits<std::size_t>::max() / REHASH_SIZE_MULTIPLICATION_FACTOR
));
static_assert(REHASH_SIZE_MULTIPLICATION_FACTOR >= 1.1, "Growth factor should be >= 1.1.");
std::size_t m_mod;
};
namespace detail {
static constexpr const std::array<std::size_t, 40> PRIMES = {{
1ul, 5ul, 17ul, 29ul, 37ul, 53ul, 67ul, 79ul, 97ul, 131ul, 193ul, 257ul, 389ul, 521ul, 769ul, 1031ul,
1543ul, 2053ul, 3079ul, 6151ul, 12289ul, 24593ul, 49157ul, 98317ul, 196613ul, 393241ul, 786433ul,
1572869ul, 3145739ul, 6291469ul, 12582917ul, 25165843ul, 50331653ul, 100663319ul, 201326611ul,
402653189ul, 805306457ul, 1610612741ul, 3221225473ul, 4294967291ul
}};
template<unsigned int IPrime>
static constexpr std::size_t mod(std::size_t hash) { return hash % PRIMES[IPrime]; }
// MOD_PRIME[iprime](hash) returns hash % PRIMES[iprime]. This table allows for faster modulo as the
// compiler can optimize the modulo code better with a constant known at the compilation.
static constexpr const std::array<std::size_t(*)(std::size_t), 40> MOD_PRIME = {{
&mod<0>, &mod<1>, &mod<2>, &mod<3>, &mod<4>, &mod<5>, &mod<6>, &mod<7>, &mod<8>, &mod<9>, &mod<10>,
&mod<11>, &mod<12>, &mod<13>, &mod<14>, &mod<15>, &mod<16>, &mod<17>, &mod<18>, &mod<19>, &mod<20>,
&mod<21>, &mod<22>, &mod<23>, &mod<24>, &mod<25>, &mod<26>, &mod<27>, &mod<28>, &mod<29>, &mod<30>,
&mod<31>, &mod<32>, &mod<33>, &mod<34>, &mod<35>, &mod<36>, &mod<37> , &mod<38>, &mod<39>
}};
}
/**
* Grow the hash table by using prime numbers as bucket count. Slower than tsl::hh::power_of_two_growth_policy in
* general but will probably distribute the values around better in the buckets with a poor hash function.
*
* To allow the compiler to optimize the modulo operation, a lookup table is used with constant primes numbers.
*
* With a switch the code would look like:
* \code
* switch(iprime) { // iprime is the current prime of the hash table
* case 0: hash % 5ul;
* break;
* case 1: hash % 17ul;
* break;
* case 2: hash % 29ul;
* break;
* ...
* }
* \endcode
*
* Due to the constant variable in the modulo the compiler is able to optimize the operation
* by a series of multiplications, substractions and shifts.
*
* The 'hash % 5' could become something like 'hash - (hash * 0xCCCCCCCD) >> 34) * 5' in a 64 bits environement.
*/
class prime_growth_policy {
public:
explicit prime_growth_policy(std::size_t& min_bucket_count_in_out) {
auto it_prime = std::lower_bound(detail::PRIMES.begin(),
detail::PRIMES.end(), min_bucket_count_in_out);
if(it_prime == detail::PRIMES.end()) {
throw std::length_error("The hash table exceeds its maxmimum size.");
}
m_iprime = static_cast<unsigned int>(std::distance(detail::PRIMES.begin(), it_prime));
if(min_bucket_count_in_out > 0) {
min_bucket_count_in_out = *it_prime;
}
else {
min_bucket_count_in_out = 0;
}
}
std::size_t bucket_for_hash(std::size_t hash) const noexcept {
return detail::MOD_PRIME[m_iprime](hash);
}
std::size_t next_bucket_count() const {
if(m_iprime + 1 >= detail::PRIMES.size()) {
throw std::length_error("The hash table exceeds its maxmimum size.");
}
return detail::PRIMES[m_iprime + 1];
}
std::size_t max_bucket_count() const {
return detail::PRIMES.back();
}
void clear() noexcept {
m_iprime = 0;
}
private:
unsigned int m_iprime;
static_assert(std::numeric_limits<decltype(m_iprime)>::max() >= detail::PRIMES.size(),
"The type of m_iprime is not big enough.");
};
}
}
#endif

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,710 @@
/**
* MIT License
*
* Copyright (c) 2017 Tessil
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef TSL_HOPSCOTCH_MAP_H
#define TSL_HOPSCOTCH_MAP_H
#include <algorithm>
#include <cstddef>
#include <functional>
#include <initializer_list>
#include <list>
#include <memory>
#include <type_traits>
#include <utility>
#include "hopscotch_hash.h"
namespace tsl {
/**
* Implementation of a hash map using the hopscotch hashing algorithm.
*
* The Key and the value T must be either nothrow move-constructible, copy-constuctible or both.
*
* The size of the neighborhood (NeighborhoodSize) must be > 0 and <= 62 if StoreHash is false.
* When StoreHash is true, 32-bits of the hash will be stored alongside the neighborhood limiting
* the NeighborhoodSize to <= 30. There is no memory usage difference between
* 'NeighborhoodSize 62; StoreHash false' and 'NeighborhoodSize 30; StoreHash true'.
*
* Storing the hash may improve performance on insert during the rehash process if the hash takes time
* to compute. It may also improve read performance if the KeyEqual function takes time (or incurs a cache-miss).
* If used with simple Hash and KeyEqual it may slow things down.
*
* StoreHash can only be set if the GrowthPolicy is set to tsl::power_of_two_growth_policy.
*
* GrowthPolicy defines how the map grows and consequently how a hash value is mapped to a bucket.
* By default the map uses tsl::power_of_two_growth_policy. This policy keeps the number of buckets
* to a power of two and uses a mask to map the hash to a bucket instead of the slow modulo.
* You may define your own growth policy, check tsl::power_of_two_growth_policy for the interface.
*
* If the destructors of Key or T throw an exception, behaviour of the class is undefined.
*
* Iterators invalidation:
* - clear, operator=, reserve, rehash: always invalidate the iterators.
* - insert, emplace, emplace_hint, operator[]: if there is an effective insert, invalidate the iterators
* if a displacement is needed to resolve a collision (which mean that most of the time,
* insert will invalidate the iterators). Or if there is a rehash.
* - erase: iterator on the erased element is the only one which become invalid.
*/
template<class Key,
class T,
class Hash = std::hash<Key>,
class KeyEqual = std::equal_to<Key>,
class Allocator = std::allocator<std::pair<Key, T>>,
unsigned int NeighborhoodSize = 62,
bool StoreHash = false,
class GrowthPolicy = tsl::hh::power_of_two_growth_policy<2>>
class hopscotch_map {
private:
template<typename U>
using has_is_transparent = tsl::detail_hopscotch_hash::has_is_transparent<U>;
class KeySelect {
public:
using key_type = Key;
const key_type& operator()(const std::pair<Key, T>& key_value) const {
return key_value.first;
}
key_type& operator()(std::pair<Key, T>& key_value) {
return key_value.first;
}
};
class ValueSelect {
public:
using value_type = T;
const value_type& operator()(const std::pair<Key, T>& key_value) const {
return key_value.second;
}
value_type& operator()(std::pair<Key, T>& key_value) {
return key_value.second;
}
};
using overflow_container_type = std::list<std::pair<Key, T>, Allocator>;
using ht = detail_hopscotch_hash::hopscotch_hash<std::pair<Key, T>, KeySelect, ValueSelect,
Hash, KeyEqual,
Allocator, NeighborhoodSize,
StoreHash, GrowthPolicy,
overflow_container_type>;
public:
using key_type = typename ht::key_type;
using mapped_type = T;
using value_type = typename ht::value_type;
using size_type = typename ht::size_type;
using difference_type = typename ht::difference_type;
using hasher = typename ht::hasher;
using key_equal = typename ht::key_equal;
using allocator_type = typename ht::allocator_type;
using reference = typename ht::reference;
using const_reference = typename ht::const_reference;
using pointer = typename ht::pointer;
using const_pointer = typename ht::const_pointer;
using iterator = typename ht::iterator;
using const_iterator = typename ht::const_iterator;
/*
* Constructors
*/
hopscotch_map() : hopscotch_map(ht::DEFAULT_INIT_BUCKETS_SIZE) {
}
explicit hopscotch_map(size_type bucket_count,
const Hash& hash = Hash(),
const KeyEqual& equal = KeyEqual(),
const Allocator& alloc = Allocator()) :
m_ht(bucket_count, hash, equal, alloc, ht::DEFAULT_MAX_LOAD_FACTOR)
{
}
hopscotch_map(size_type bucket_count,
const Allocator& alloc) : hopscotch_map(bucket_count, Hash(), KeyEqual(), alloc)
{
}
hopscotch_map(size_type bucket_count,
const Hash& hash,
const Allocator& alloc) : hopscotch_map(bucket_count, hash, KeyEqual(), alloc)
{
}
explicit hopscotch_map(const Allocator& alloc) : hopscotch_map(ht::DEFAULT_INIT_BUCKETS_SIZE, alloc) {
}
template<class InputIt>
hopscotch_map(InputIt first, InputIt last,
size_type bucket_count = ht::DEFAULT_INIT_BUCKETS_SIZE,
const Hash& hash = Hash(),
const KeyEqual& equal = KeyEqual(),
const Allocator& alloc = Allocator()) : hopscotch_map(bucket_count, hash, equal, alloc)
{
insert(first, last);
}
template<class InputIt>
hopscotch_map(InputIt first, InputIt last,
size_type bucket_count,
const Allocator& alloc) : hopscotch_map(first, last, bucket_count, Hash(), KeyEqual(), alloc)
{
}
template<class InputIt>
hopscotch_map(InputIt first, InputIt last,
size_type bucket_count,
const Hash& hash,
const Allocator& alloc) : hopscotch_map(first, last, bucket_count, hash, KeyEqual(), alloc)
{
}
hopscotch_map(std::initializer_list<value_type> init,
size_type bucket_count = ht::DEFAULT_INIT_BUCKETS_SIZE,
const Hash& hash = Hash(),
const KeyEqual& equal = KeyEqual(),
const Allocator& alloc = Allocator()) :
hopscotch_map(init.begin(), init.end(), bucket_count, hash, equal, alloc)
{
}
hopscotch_map(std::initializer_list<value_type> init,
size_type bucket_count,
const Allocator& alloc) :
hopscotch_map(init.begin(), init.end(), bucket_count, Hash(), KeyEqual(), alloc)
{
}
hopscotch_map(std::initializer_list<value_type> init,
size_type bucket_count,
const Hash& hash,
const Allocator& alloc) :
hopscotch_map(init.begin(), init.end(), bucket_count, hash, KeyEqual(), alloc)
{
}
hopscotch_map& operator=(std::initializer_list<value_type> ilist) {
m_ht.clear();
m_ht.reserve(ilist.size());
m_ht.insert(ilist.begin(), ilist.end());
return *this;
}
allocator_type get_allocator() const { return m_ht.get_allocator(); }
/*
* Iterators
*/
iterator begin() noexcept { return m_ht.begin(); }
const_iterator begin() const noexcept { return m_ht.begin(); }
const_iterator cbegin() const noexcept { return m_ht.cbegin(); }
iterator end() noexcept { return m_ht.end(); }
const_iterator end() const noexcept { return m_ht.end(); }
const_iterator cend() const noexcept { return m_ht.cend(); }
/*
* Capacity
*/
bool empty() const noexcept { return m_ht.empty(); }
size_type size() const noexcept { return m_ht.size(); }
size_type max_size() const noexcept { return m_ht.max_size(); }
/*
* Modifiers
*/
void clear() noexcept { m_ht.clear(); }
std::pair<iterator, bool> insert(const value_type& value) {
return m_ht.insert(value);
}
template<class P, typename std::enable_if<std::is_constructible<value_type, P&&>::value>::type* = nullptr>
std::pair<iterator, bool> insert(P&& value) {
return m_ht.insert(std::forward<P>(value));
}
std::pair<iterator, bool> insert(value_type&& value) {
return m_ht.insert(std::move(value));
}
iterator insert(const_iterator hint, const value_type& value) {
return m_ht.insert(hint, value);
}
template<class P, typename std::enable_if<std::is_constructible<value_type, P&&>::value>::type* = nullptr>
iterator insert(const_iterator hint, P&& value) {
return m_ht.insert(hint, std::forward<P>(value));
}
iterator insert(const_iterator hint, value_type&& value) {
return m_ht.insert(hint, std::move(value));
}
template<class InputIt>
void insert(InputIt first, InputIt last) {
m_ht.insert(first, last);
}
void insert(std::initializer_list<value_type> ilist) {
m_ht.insert(ilist.begin(), ilist.end());
}
template<class M>
std::pair<iterator, bool> insert_or_assign(const key_type& k, M&& obj) {
return m_ht.insert_or_assign(k, std::forward<M>(obj));
}
template<class M>
std::pair<iterator, bool> insert_or_assign(key_type&& k, M&& obj) {
return m_ht.insert_or_assign(std::move(k), std::forward<M>(obj));
}
template<class M>
iterator insert_or_assign(const_iterator hint, const key_type& k, M&& obj) {
return m_ht.insert_or_assign(hint, k, std::forward<M>(obj));
}
template<class M>
iterator insert_or_assign(const_iterator hint, key_type&& k, M&& obj) {
return m_ht.insert_or_assign(hint, std::move(k), std::forward<M>(obj));
}
/**
* Due to the way elements are stored, emplace will need to move or copy the key-value once.
* The method is equivalent to insert(value_type(std::forward<Args>(args)...));
*
* Mainly here for compatibility with the std::unordered_map interface.
*/
template<class... Args>
std::pair<iterator, bool> emplace(Args&&... args) {
return m_ht.emplace(std::forward<Args>(args)...);
}
/**
* Due to the way elements are stored, emplace_hint will need to move or copy the key-value once.
* The method is equivalent to insert(hint, value_type(std::forward<Args>(args)...));
*
* Mainly here for compatibility with the std::unordered_map interface.
*/
template<class... Args>
iterator emplace_hint(const_iterator hint, Args&&... args) {
return m_ht.emplace_hint(hint, std::forward<Args>(args)...);
}
template<class... Args>
std::pair<iterator, bool> try_emplace(const key_type& k, Args&&... args) {
return m_ht.try_emplace(k, std::forward<Args>(args)...);
}
template<class... Args>
std::pair<iterator, bool> try_emplace(key_type&& k, Args&&... args) {
return m_ht.try_emplace(std::move(k), std::forward<Args>(args)...);
}
template<class... Args>
iterator try_emplace(const_iterator hint, const key_type& k, Args&&... args) {
return m_ht.try_emplace(hint, k, std::forward<Args>(args)...);
}
template<class... Args>
iterator try_emplace(const_iterator hint, key_type&& k, Args&&... args) {
return m_ht.try_emplace(hint, std::move(k), std::forward<Args>(args)...);
}
iterator erase(iterator pos) { return m_ht.erase(pos); }
iterator erase(const_iterator pos) { return m_ht.erase(pos); }
iterator erase(const_iterator first, const_iterator last) { return m_ht.erase(first, last); }
size_type erase(const key_type& key) { return m_ht.erase(key); }
/**
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup to the value if you already have the hash.
*/
size_type erase(const key_type& key, std::size_t precalculated_hash) {
return m_ht.erase(key, precalculated_hash);
}
/**
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
* If so, K must be hashable and comparable to Key.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
size_type erase(const K& key) { return m_ht.erase(key); }
/**
* @copydoc erase(const K& key)
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup to the value if you already have the hash.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
size_type erase(const K& key, std::size_t precalculated_hash) {
return m_ht.erase(key, precalculated_hash);
}
void swap(hopscotch_map& other) { other.m_ht.swap(m_ht); }
/*
* Lookup
*/
T& at(const Key& key) { return m_ht.at(key); }
/**
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
*/
T& at(const Key& key, std::size_t precalculated_hash) { return m_ht.at(key, precalculated_hash); }
const T& at(const Key& key) const { return m_ht.at(key); }
/**
* @copydoc at(const Key& key, std::size_t precalculated_hash)
*/
const T& at(const Key& key, std::size_t precalculated_hash) const { return m_ht.at(key, precalculated_hash); }
/**
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
* If so, K must be hashable and comparable to Key.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
T& at(const K& key) { return m_ht.at(key); }
/**
* @copydoc at(const K& key)
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
T& at(const K& key, std::size_t precalculated_hash) { return m_ht.at(key, precalculated_hash); }
/**
* @copydoc at(const K& key)
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
const T& at(const K& key) const { return m_ht.at(key); }
/**
* @copydoc at(const K& key, std::size_t precalculated_hash)
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
const T& at(const K& key, std::size_t precalculated_hash) const { return m_ht.at(key, precalculated_hash); }
T& operator[](const Key& key) { return m_ht[key]; }
T& operator[](Key&& key) { return m_ht[std::move(key)]; }
size_type count(const Key& key) const { return m_ht.count(key); }
/**
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
*/
size_type count(const Key& key, std::size_t precalculated_hash) const {
return m_ht.count(key, precalculated_hash);
}
/**
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
* If so, K must be hashable and comparable to Key.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
size_type count(const K& key) const { return m_ht.count(key); }
/**
* @copydoc count(const K& key) const
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
size_type count(const K& key, std::size_t precalculated_hash) const { return m_ht.count(key, precalculated_hash); }
iterator find(const Key& key) { return m_ht.find(key); }
/**
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
*/
iterator find(const Key& key, std::size_t precalculated_hash) { return m_ht.find(key, precalculated_hash); }
const_iterator find(const Key& key) const { return m_ht.find(key); }
/**
* @copydoc find(const Key& key, std::size_t precalculated_hash)
*/
const_iterator find(const Key& key, std::size_t precalculated_hash) const {
return m_ht.find(key, precalculated_hash);
}
/**
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
* If so, K must be hashable and comparable to Key.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
iterator find(const K& key) { return m_ht.find(key); }
/**
* @copydoc find(const K& key)
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
iterator find(const K& key, std::size_t precalculated_hash) { return m_ht.find(key, precalculated_hash); }
/**
* @copydoc find(const K& key)
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
const_iterator find(const K& key) const { return m_ht.find(key); }
/**
* @copydoc find(const K& key)
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
const_iterator find(const K& key, std::size_t precalculated_hash) const {
return m_ht.find(key, precalculated_hash);
}
bool contains(const Key& key) const { return m_ht.contains(key); }
/**
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
*/
bool contains(const Key& key, std::size_t precalculated_hash) const {
return m_ht.contains(key, precalculated_hash);
}
/**
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
* If so, K must be hashable and comparable to Key.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
bool contains(const K& key) const { return m_ht.contains(key); }
/**
* @copydoc contains(const K& key) const
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
bool contains(const K& key, std::size_t precalculated_hash) const {
return m_ht.contains(key, precalculated_hash);
}
std::pair<iterator, iterator> equal_range(const Key& key) { return m_ht.equal_range(key); }
/**
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
*/
std::pair<iterator, iterator> equal_range(const Key& key, std::size_t precalculated_hash) {
return m_ht.equal_range(key, precalculated_hash);
}
std::pair<const_iterator, const_iterator> equal_range(const Key& key) const { return m_ht.equal_range(key); }
/**
* @copydoc equal_range(const Key& key, std::size_t precalculated_hash)
*/
std::pair<const_iterator, const_iterator> equal_range(const Key& key, std::size_t precalculated_hash) const {
return m_ht.equal_range(key, precalculated_hash);
}
/**
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
* If so, K must be hashable and comparable to Key.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
std::pair<iterator, iterator> equal_range(const K& key) { return m_ht.equal_range(key); }
/**
* @copydoc equal_range(const K& key)
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
std::pair<iterator, iterator> equal_range(const K& key, std::size_t precalculated_hash) {
return m_ht.equal_range(key, precalculated_hash);
}
/**
* @copydoc equal_range(const K& key)
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
std::pair<const_iterator, const_iterator> equal_range(const K& key) const { return m_ht.equal_range(key); }
/**
* @copydoc equal_range(const K& key, std::size_t precalculated_hash)
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
std::pair<const_iterator, const_iterator> equal_range(const K& key, std::size_t precalculated_hash) const {
return m_ht.equal_range(key, precalculated_hash);
}
/*
* Bucket interface
*/
size_type bucket_count() const { return m_ht.bucket_count(); }
size_type max_bucket_count() const { return m_ht.max_bucket_count(); }
/*
* Hash policy
*/
float load_factor() const { return m_ht.load_factor(); }
float max_load_factor() const { return m_ht.max_load_factor(); }
void max_load_factor(float ml) { m_ht.max_load_factor(ml); }
void rehash(size_type count_) { m_ht.rehash(count_); }
void reserve(size_type count_) { m_ht.reserve(count_); }
/*
* Observers
*/
hasher hash_function() const { return m_ht.hash_function(); }
key_equal key_eq() const { return m_ht.key_eq(); }
/*
* Other
*/
/**
* Convert a const_iterator to an iterator.
*/
iterator mutable_iterator(const_iterator pos) {
return m_ht.mutable_iterator(pos);
}
size_type overflow_size() const noexcept { return m_ht.overflow_size(); }
friend bool operator==(const hopscotch_map& lhs, const hopscotch_map& rhs) {
if(lhs.size() != rhs.size()) {
return false;
}
for(const auto& element_lhs : lhs) {
const auto it_element_rhs = rhs.find(element_lhs.first);
if(it_element_rhs == rhs.cend() || element_lhs.second != it_element_rhs->second) {
return false;
}
}
return true;
}
friend bool operator!=(const hopscotch_map& lhs, const hopscotch_map& rhs) {
return !operator==(lhs, rhs);
}
friend void swap(hopscotch_map& lhs, hopscotch_map& rhs) {
lhs.swap(rhs);
}
private:
ht m_ht;
};
/**
* Same as `tsl::hopscotch_map<Key, T, Hash, KeyEqual, Allocator, NeighborhoodSize, StoreHash, tsl::hh::prime_growth_policy>`.
*/
template<class Key,
class T,
class Hash = std::hash<Key>,
class KeyEqual = std::equal_to<Key>,
class Allocator = std::allocator<std::pair<Key, T>>,
unsigned int NeighborhoodSize = 62,
bool StoreHash = false>
using hopscotch_pg_map = hopscotch_map<Key, T, Hash, KeyEqual, Allocator, NeighborhoodSize, StoreHash, tsl::hh::prime_growth_policy>;
} // end namespace tsl
#endif

View File

@@ -0,0 +1,556 @@
/**
* MIT License
*
* Copyright (c) 2017 Tessil
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef TSL_HOPSCOTCH_SET_H
#define TSL_HOPSCOTCH_SET_H
#include <algorithm>
#include <cstddef>
#include <functional>
#include <initializer_list>
#include <list>
#include <memory>
#include <type_traits>
#include <utility>
#include "hopscotch_hash.h"
namespace tsl {
/**
* Implementation of a hash set using the hopscotch hashing algorithm.
*
* The Key must be either nothrow move-constructible, copy-constuctible or both.
*
* The size of the neighborhood (NeighborhoodSize) must be > 0 and <= 62 if StoreHash is false.
* When StoreHash is true, 32-bits of the hash will be stored alongside the neighborhood limiting
* the NeighborhoodSize to <= 30. There is no memory usage difference between
* 'NeighborhoodSize 62; StoreHash false' and 'NeighborhoodSize 30; StoreHash true'.
*
* Storing the hash may improve performance on insert during the rehash process if the hash takes time
* to compute. It may also improve read performance if the KeyEqual function takes time (or incurs a cache-miss).
* If used with simple Hash and KeyEqual it may slow things down.
*
* StoreHash can only be set if the GrowthPolicy is set to tsl::power_of_two_growth_policy.
*
* GrowthPolicy defines how the set grows and consequently how a hash value is mapped to a bucket.
* By default the set uses tsl::power_of_two_growth_policy. This policy keeps the number of buckets
* to a power of two and uses a mask to set the hash to a bucket instead of the slow modulo.
* You may define your own growth policy, check tsl::power_of_two_growth_policy for the interface.
*
* If the destructor of Key throws an exception, behaviour of the class is undefined.
*
* Iterators invalidation:
* - clear, operator=, reserve, rehash: always invalidate the iterators.
* - insert, emplace, emplace_hint, operator[]: if there is an effective insert, invalidate the iterators
* if a displacement is needed to resolve a collision (which mean that most of the time,
* insert will invalidate the iterators). Or if there is a rehash.
* - erase: iterator on the erased element is the only one which become invalid.
*/
template<class Key,
class Hash = std::hash<Key>,
class KeyEqual = std::equal_to<Key>,
class Allocator = std::allocator<Key>,
unsigned int NeighborhoodSize = 62,
bool StoreHash = false,
class GrowthPolicy = tsl::hh::power_of_two_growth_policy<2>>
class hopscotch_set {
private:
template<typename U>
using has_is_transparent = tsl::detail_hopscotch_hash::has_is_transparent<U>;
class KeySelect {
public:
using key_type = Key;
const key_type& operator()(const Key& key) const {
return key;
}
key_type& operator()(Key& key) {
return key;
}
};
using overflow_container_type = std::list<Key, Allocator>;
using ht = detail_hopscotch_hash::hopscotch_hash<Key, KeySelect, void,
Hash, KeyEqual,
Allocator, NeighborhoodSize,
StoreHash, GrowthPolicy,
overflow_container_type>;
public:
using key_type = typename ht::key_type;
using value_type = typename ht::value_type;
using size_type = typename ht::size_type;
using difference_type = typename ht::difference_type;
using hasher = typename ht::hasher;
using key_equal = typename ht::key_equal;
using allocator_type = typename ht::allocator_type;
using reference = typename ht::reference;
using const_reference = typename ht::const_reference;
using pointer = typename ht::pointer;
using const_pointer = typename ht::const_pointer;
using iterator = typename ht::iterator;
using const_iterator = typename ht::const_iterator;
/*
* Constructors
*/
hopscotch_set() : hopscotch_set(ht::DEFAULT_INIT_BUCKETS_SIZE) {
}
explicit hopscotch_set(size_type bucket_count,
const Hash& hash = Hash(),
const KeyEqual& equal = KeyEqual(),
const Allocator& alloc = Allocator()) :
m_ht(bucket_count, hash, equal, alloc, ht::DEFAULT_MAX_LOAD_FACTOR)
{
}
hopscotch_set(size_type bucket_count,
const Allocator& alloc) : hopscotch_set(bucket_count, Hash(), KeyEqual(), alloc)
{
}
hopscotch_set(size_type bucket_count,
const Hash& hash,
const Allocator& alloc) : hopscotch_set(bucket_count, hash, KeyEqual(), alloc)
{
}
explicit hopscotch_set(const Allocator& alloc) : hopscotch_set(ht::DEFAULT_INIT_BUCKETS_SIZE, alloc) {
}
template<class InputIt>
hopscotch_set(InputIt first, InputIt last,
size_type bucket_count = ht::DEFAULT_INIT_BUCKETS_SIZE,
const Hash& hash = Hash(),
const KeyEqual& equal = KeyEqual(),
const Allocator& alloc = Allocator()) : hopscotch_set(bucket_count, hash, equal, alloc)
{
insert(first, last);
}
template<class InputIt>
hopscotch_set(InputIt first, InputIt last,
size_type bucket_count,
const Allocator& alloc) : hopscotch_set(first, last, bucket_count, Hash(), KeyEqual(), alloc)
{
}
template<class InputIt>
hopscotch_set(InputIt first, InputIt last,
size_type bucket_count,
const Hash& hash,
const Allocator& alloc) : hopscotch_set(first, last, bucket_count, hash, KeyEqual(), alloc)
{
}
hopscotch_set(std::initializer_list<value_type> init,
size_type bucket_count = ht::DEFAULT_INIT_BUCKETS_SIZE,
const Hash& hash = Hash(),
const KeyEqual& equal = KeyEqual(),
const Allocator& alloc = Allocator()) :
hopscotch_set(init.begin(), init.end(), bucket_count, hash, equal, alloc)
{
}
hopscotch_set(std::initializer_list<value_type> init,
size_type bucket_count,
const Allocator& alloc) :
hopscotch_set(init.begin(), init.end(), bucket_count, Hash(), KeyEqual(), alloc)
{
}
hopscotch_set(std::initializer_list<value_type> init,
size_type bucket_count,
const Hash& hash,
const Allocator& alloc) :
hopscotch_set(init.begin(), init.end(), bucket_count, hash, KeyEqual(), alloc)
{
}
hopscotch_set& operator=(std::initializer_list<value_type> ilist) {
m_ht.clear();
m_ht.reserve(ilist.size());
m_ht.insert(ilist.begin(), ilist.end());
return *this;
}
allocator_type get_allocator() const { return m_ht.get_allocator(); }
/*
* Iterators
*/
iterator begin() noexcept { return m_ht.begin(); }
const_iterator begin() const noexcept { return m_ht.begin(); }
const_iterator cbegin() const noexcept { return m_ht.cbegin(); }
iterator end() noexcept { return m_ht.end(); }
const_iterator end() const noexcept { return m_ht.end(); }
const_iterator cend() const noexcept { return m_ht.cend(); }
/*
* Capacity
*/
bool empty() const noexcept { return m_ht.empty(); }
size_type size() const noexcept { return m_ht.size(); }
size_type max_size() const noexcept { return m_ht.max_size(); }
/*
* Modifiers
*/
void clear() noexcept { m_ht.clear(); }
std::pair<iterator, bool> insert(const value_type& value) { return m_ht.insert(value); }
std::pair<iterator, bool> insert(value_type&& value) { return m_ht.insert(std::move(value)); }
iterator insert(const_iterator hint, const value_type& value) { return m_ht.insert(hint, value); }
iterator insert(const_iterator hint, value_type&& value) { return m_ht.insert(hint, std::move(value)); }
template<class InputIt>
void insert(InputIt first, InputIt last) { m_ht.insert(first, last); }
void insert(std::initializer_list<value_type> ilist) { m_ht.insert(ilist.begin(), ilist.end()); }
/**
* Due to the way elements are stored, emplace will need to move or copy the key-value once.
* The method is equivalent to insert(value_type(std::forward<Args>(args)...));
*
* Mainly here for compatibility with the std::unordered_map interface.
*/
template<class... Args>
std::pair<iterator, bool> emplace(Args&&... args) { return m_ht.emplace(std::forward<Args>(args)...); }
/**
* Due to the way elements are stored, emplace_hint will need to move or copy the key-value once.
* The method is equivalent to insert(hint, value_type(std::forward<Args>(args)...));
*
* Mainly here for compatibility with the std::unordered_map interface.
*/
template<class... Args>
iterator emplace_hint(const_iterator hint, Args&&... args) {
return m_ht.emplace_hint(hint, std::forward<Args>(args)...);
}
iterator erase(iterator pos) { return m_ht.erase(pos); }
iterator erase(const_iterator pos) { return m_ht.erase(pos); }
iterator erase(const_iterator first, const_iterator last) { return m_ht.erase(first, last); }
size_type erase(const key_type& key) { return m_ht.erase(key); }
/**
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup to the value if you already have the hash.
*/
size_type erase(const key_type& key, std::size_t precalculated_hash) {
return m_ht.erase(key, precalculated_hash);
}
/**
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
* If so, K must be hashable and comparable to Key.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
size_type erase(const K& key) { return m_ht.erase(key); }
/**
* @copydoc erase(const K& key)
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup to the value if you already have the hash.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
size_type erase(const K& key, std::size_t precalculated_hash) {
return m_ht.erase(key, precalculated_hash);
}
void swap(hopscotch_set& other) { other.m_ht.swap(m_ht); }
/*
* Lookup
*/
size_type count(const Key& key) const { return m_ht.count(key); }
/**
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
*/
size_type count(const Key& key, std::size_t precalculated_hash) const { return m_ht.count(key, precalculated_hash); }
/**
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
* If so, K must be hashable and comparable to Key.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
size_type count(const K& key) const { return m_ht.count(key); }
/**
* @copydoc count(const K& key) const
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
size_type count(const K& key, std::size_t precalculated_hash) const { return m_ht.count(key, precalculated_hash); }
iterator find(const Key& key) { return m_ht.find(key); }
/**
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
*/
iterator find(const Key& key, std::size_t precalculated_hash) { return m_ht.find(key, precalculated_hash); }
const_iterator find(const Key& key) const { return m_ht.find(key); }
/**
* @copydoc find(const Key& key, std::size_t precalculated_hash)
*/
const_iterator find(const Key& key, std::size_t precalculated_hash) const { return m_ht.find(key, precalculated_hash); }
/**
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
* If so, K must be hashable and comparable to Key.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
iterator find(const K& key) { return m_ht.find(key); }
/**
* @copydoc find(const K& key)
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
iterator find(const K& key, std::size_t precalculated_hash) { return m_ht.find(key, precalculated_hash); }
/**
* @copydoc find(const K& key)
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
const_iterator find(const K& key) const { return m_ht.find(key); }
/**
* @copydoc find(const K& key)
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
const_iterator find(const K& key, std::size_t precalculated_hash) const { return m_ht.find(key, precalculated_hash); }
bool contains(const Key& key) const { return m_ht.contains(key); }
/**
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
*/
bool contains(const Key& key, std::size_t precalculated_hash) const {
return m_ht.contains(key, precalculated_hash);
}
/**
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
* If so, K must be hashable and comparable to Key.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
bool contains(const K& key) const { return m_ht.contains(key); }
/**
* @copydoc contains(const K& key) const
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
bool contains(const K& key, std::size_t precalculated_hash) const {
return m_ht.contains(key, precalculated_hash);
}
std::pair<iterator, iterator> equal_range(const Key& key) { return m_ht.equal_range(key); }
/**
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
*/
std::pair<iterator, iterator> equal_range(const Key& key, std::size_t precalculated_hash) {
return m_ht.equal_range(key, precalculated_hash);
}
std::pair<const_iterator, const_iterator> equal_range(const Key& key) const { return m_ht.equal_range(key); }
/**
* @copydoc equal_range(const Key& key, std::size_t precalculated_hash)
*/
std::pair<const_iterator, const_iterator> equal_range(const Key& key, std::size_t precalculated_hash) const {
return m_ht.equal_range(key, precalculated_hash);
}
/**
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
* If so, K must be hashable and comparable to Key.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
std::pair<iterator, iterator> equal_range(const K& key) { return m_ht.equal_range(key); }
/**
* @copydoc equal_range(const K& key)
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
std::pair<iterator, iterator> equal_range(const K& key, std::size_t precalculated_hash) {
return m_ht.equal_range(key, precalculated_hash);
}
/**
* @copydoc equal_range(const K& key)
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
std::pair<const_iterator, const_iterator> equal_range(const K& key) const { return m_ht.equal_range(key); }
/**
* @copydoc equal_range(const K& key, std::size_t precalculated_hash)
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
std::pair<const_iterator, const_iterator> equal_range(const K& key, std::size_t precalculated_hash) const {
return m_ht.equal_range(key, precalculated_hash);
}
/*
* Bucket interface
*/
size_type bucket_count() const { return m_ht.bucket_count(); }
size_type max_bucket_count() const { return m_ht.max_bucket_count(); }
/*
* Hash policy
*/
float load_factor() const { return m_ht.load_factor(); }
float max_load_factor() const { return m_ht.max_load_factor(); }
void max_load_factor(float ml) { m_ht.max_load_factor(ml); }
void rehash(size_type count_) { m_ht.rehash(count_); }
void reserve(size_type count_) { m_ht.reserve(count_); }
/*
* Observers
*/
hasher hash_function() const { return m_ht.hash_function(); }
key_equal key_eq() const { return m_ht.key_eq(); }
/*
* Other
*/
/**
* Convert a const_iterator to an iterator.
*/
iterator mutable_iterator(const_iterator pos) {
return m_ht.mutable_iterator(pos);
}
size_type overflow_size() const noexcept { return m_ht.overflow_size(); }
friend bool operator==(const hopscotch_set& lhs, const hopscotch_set& rhs) {
if(lhs.size() != rhs.size()) {
return false;
}
for(const auto& element_lhs : lhs) {
const auto it_element_rhs = rhs.find(element_lhs);
if(it_element_rhs == rhs.cend()) {
return false;
}
}
return true;
}
friend bool operator!=(const hopscotch_set& lhs, const hopscotch_set& rhs) {
return !operator==(lhs, rhs);
}
friend void swap(hopscotch_set& lhs, hopscotch_set& rhs) {
lhs.swap(rhs);
}
private:
ht m_ht;
};
/**
* Same as `tsl::hopscotch_set<Key, Hash, KeyEqual, Allocator, NeighborhoodSize, StoreHash, tsl::hh::prime_growth_policy>`.
*/
template<class Key,
class Hash = std::hash<Key>,
class KeyEqual = std::equal_to<Key>,
class Allocator = std::allocator<Key>,
unsigned int NeighborhoodSize = 62,
bool StoreHash = false>
using hopscotch_pg_set = hopscotch_set<Key, Hash, KeyEqual, Allocator, NeighborhoodSize, StoreHash, tsl::hh::prime_growth_policy>;
} // end namespace tsl
#endif

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,833 @@
/**
* MIT License
*
* Copyright (c) 2017 Tessil
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef TSL_ORDERED_MAP_H
#define TSL_ORDERED_MAP_H
#include <cstddef>
#include <cstdint>
#include <deque>
#include <functional>
#include <initializer_list>
#include <memory>
#include <type_traits>
#include <utility>
#include <vector>
#include "ordered_hash.h"
namespace tsl {
/**
* Implementation of an hash map using open adressing with robin hood with backshift delete to resolve collisions.
*
* The particularity of this hash map is that it remembers the order in which the elements were added and
* provide a way to access the structure which stores these values through the 'values_container()' method.
* The used container is defined by ValueTypeContainer, by default a std::deque is used (grows faster) but
* a std::vector may be used. In this case the map provides a 'data()' method which give a direct access
* to the memory used to store the values (which can be usefull to communicate with C API's).
*
* The Key and T must be copy constructible and/or move constructible. To use `unordered_erase` they both
* must be swappable.
*
* The behaviour of the hash map is undefinded if the destructor of Key or T throws an exception.
*
* By default the maximum size of a map is limited to 2^32 - 1 values, if needed this can be changed through
* the IndexType template parameter. Using an `uint64_t` will raise this limit to 2^64 - 1 values but each
* bucket will use 16 bytes instead of 8 bytes in addition to the space needed to store the values.
*
* Iterators invalidation:
* - clear, operator=, reserve, rehash: always invalidate the iterators (also invalidate end()).
* - insert, emplace, emplace_hint, operator[]: when a std::vector is used as ValueTypeContainer
* and if size() < capacity(), only end().
* Otherwise all the iterators are invalidated if an insert occurs.
* - erase, unordered_erase: when a std::vector is used as ValueTypeContainer invalidate the iterator of
* the erased element and all the ones after the erased element (including end()).
* Otherwise all the iterators are invalidated if an erase occurs.
*/
template<class Key,
class T,
class Hash = std::hash<Key>,
class KeyEqual = std::equal_to<Key>,
class Allocator = std::allocator<std::pair<Key, T>>,
class ValueTypeContainer = std::deque<std::pair<Key, T>, Allocator>,
class IndexType = std::uint_least32_t>
class ordered_map {
private:
template<typename U>
using has_is_transparent = tsl::detail_ordered_hash::has_is_transparent<U>;
class KeySelect {
public:
using key_type = Key;
const key_type& operator()(const std::pair<Key, T>& key_value) const noexcept {
return key_value.first;
}
key_type& operator()(std::pair<Key, T>& key_value) noexcept {
return key_value.first;
}
};
class ValueSelect {
public:
using value_type = T;
const value_type& operator()(const std::pair<Key, T>& key_value) const noexcept {
return key_value.second;
}
value_type& operator()(std::pair<Key, T>& key_value) noexcept {
return key_value.second;
}
};
using ht = detail_ordered_hash::ordered_hash<std::pair<Key, T>, KeySelect, ValueSelect,
Hash, KeyEqual, Allocator, ValueTypeContainer, IndexType>;
public:
using key_type = typename ht::key_type;
using mapped_type = T;
using value_type = typename ht::value_type;
using size_type = typename ht::size_type;
using difference_type = typename ht::difference_type;
using hasher = typename ht::hasher;
using key_equal = typename ht::key_equal;
using allocator_type = typename ht::allocator_type;
using reference = typename ht::reference;
using const_reference = typename ht::const_reference;
using pointer = typename ht::pointer;
using const_pointer = typename ht::const_pointer;
using iterator = typename ht::iterator;
using const_iterator = typename ht::const_iterator;
using reverse_iterator = typename ht::reverse_iterator;
using const_reverse_iterator = typename ht::const_reverse_iterator;
using values_container_type = typename ht::values_container_type;
/*
* Constructors
*/
ordered_map(): ordered_map(ht::DEFAULT_INIT_BUCKETS_SIZE) {
}
explicit ordered_map(size_type bucket_count,
const Hash& hash = Hash(),
const KeyEqual& equal = KeyEqual(),
const Allocator& alloc = Allocator()):
m_ht(bucket_count, hash, equal, alloc, ht::DEFAULT_MAX_LOAD_FACTOR)
{
}
ordered_map(size_type bucket_count,
const Allocator& alloc): ordered_map(bucket_count, Hash(), KeyEqual(), alloc)
{
}
ordered_map(size_type bucket_count,
const Hash& hash,
const Allocator& alloc): ordered_map(bucket_count, hash, KeyEqual(), alloc)
{
}
explicit ordered_map(const Allocator& alloc): ordered_map(ht::DEFAULT_INIT_BUCKETS_SIZE, alloc) {
}
template<class InputIt>
ordered_map(InputIt first, InputIt last,
size_type bucket_count = ht::DEFAULT_INIT_BUCKETS_SIZE,
const Hash& hash = Hash(),
const KeyEqual& equal = KeyEqual(),
const Allocator& alloc = Allocator()): ordered_map(bucket_count, hash, equal, alloc)
{
insert(first, last);
}
template<class InputIt>
ordered_map(InputIt first, InputIt last,
size_type bucket_count,
const Allocator& alloc): ordered_map(first, last, bucket_count, Hash(), KeyEqual(), alloc)
{
}
template<class InputIt>
ordered_map(InputIt first, InputIt last,
size_type bucket_count,
const Hash& hash,
const Allocator& alloc): ordered_map(first, last, bucket_count, hash, KeyEqual(), alloc)
{
}
ordered_map(std::initializer_list<value_type> init,
size_type bucket_count = ht::DEFAULT_INIT_BUCKETS_SIZE,
const Hash& hash = Hash(),
const KeyEqual& equal = KeyEqual(),
const Allocator& alloc = Allocator()):
ordered_map(init.begin(), init.end(), bucket_count, hash, equal, alloc)
{
}
ordered_map(std::initializer_list<value_type> init,
size_type bucket_count,
const Allocator& alloc):
ordered_map(init.begin(), init.end(), bucket_count, Hash(), KeyEqual(), alloc)
{
}
ordered_map(std::initializer_list<value_type> init,
size_type bucket_count,
const Hash& hash,
const Allocator& alloc):
ordered_map(init.begin(), init.end(), bucket_count, hash, KeyEqual(), alloc)
{
}
ordered_map& operator=(std::initializer_list<value_type> ilist) {
m_ht.clear();
m_ht.reserve(ilist.size());
m_ht.insert(ilist.begin(), ilist.end());
return *this;
}
allocator_type get_allocator() const { return m_ht.get_allocator(); }
/*
* Iterators
*/
iterator begin() noexcept { return m_ht.begin(); }
const_iterator begin() const noexcept { return m_ht.begin(); }
const_iterator cbegin() const noexcept { return m_ht.cbegin(); }
iterator end() noexcept { return m_ht.end(); }
const_iterator end() const noexcept { return m_ht.end(); }
const_iterator cend() const noexcept { return m_ht.cend(); }
reverse_iterator rbegin() noexcept { return m_ht.rbegin(); }
const_reverse_iterator rbegin() const noexcept { return m_ht.rbegin(); }
const_reverse_iterator rcbegin() const noexcept { return m_ht.rcbegin(); }
reverse_iterator rend() noexcept { return m_ht.rend(); }
const_reverse_iterator rend() const noexcept { return m_ht.rend(); }
const_reverse_iterator rcend() const noexcept { return m_ht.rcend(); }
/*
* Capacity
*/
bool empty() const noexcept { return m_ht.empty(); }
size_type size() const noexcept { return m_ht.size(); }
size_type max_size() const noexcept { return m_ht.max_size(); }
/*
* Modifiers
*/
void clear() noexcept { m_ht.clear(); }
std::pair<iterator, bool> insert(const value_type& value) { return m_ht.insert(value); }
template<class P, typename std::enable_if<std::is_constructible<value_type, P&&>::value>::type* = nullptr>
std::pair<iterator, bool> insert(P&& value) { return m_ht.emplace(std::forward<P>(value)); }
std::pair<iterator, bool> insert(value_type&& value) { return m_ht.insert(std::move(value)); }
iterator insert(const_iterator hint, const value_type& value) {
return m_ht.insert_hint(hint, value);
}
template<class P, typename std::enable_if<std::is_constructible<value_type, P&&>::value>::type* = nullptr>
iterator insert(const_iterator hint, P&& value) {
return m_ht.emplace_hint(hint, std::forward<P>(value));
}
iterator insert(const_iterator hint, value_type&& value) {
return m_ht.insert_hint(hint, std::move(value));
}
template<class InputIt>
void insert(InputIt first, InputIt last) { m_ht.insert(first, last); }
void insert(std::initializer_list<value_type> ilist) { m_ht.insert(ilist.begin(), ilist.end()); }
template<class M>
std::pair<iterator, bool> insert_or_assign(const key_type& k, M&& obj) {
return m_ht.insert_or_assign(k, std::forward<M>(obj));
}
template<class M>
std::pair<iterator, bool> insert_or_assign(key_type&& k, M&& obj) {
return m_ht.insert_or_assign(std::move(k), std::forward<M>(obj));
}
template<class M>
iterator insert_or_assign(const_iterator hint, const key_type& k, M&& obj) {
return m_ht.insert_or_assign(hint, k, std::forward<M>(obj));
}
template<class M>
iterator insert_or_assign(const_iterator hint, key_type&& k, M&& obj) {
return m_ht.insert_or_assign(hint, std::move(k), std::forward<M>(obj));
}
/**
* Due to the way elements are stored, emplace will need to move or copy the key-value once.
* The method is equivalent to insert(value_type(std::forward<Args>(args)...));
*
* Mainly here for compatibility with the std::unordered_map interface.
*/
template<class... Args>
std::pair<iterator, bool> emplace(Args&&... args) { return m_ht.emplace(std::forward<Args>(args)...); }
/**
* Due to the way elements are stored, emplace_hint will need to move or copy the key-value once.
* The method is equivalent to insert(hint, value_type(std::forward<Args>(args)...));
*
* Mainly here for compatibility with the std::unordered_map interface.
*/
template <class... Args>
iterator emplace_hint(const_iterator hint, Args&&... args) {
return m_ht.emplace_hint(hint, std::forward<Args>(args)...);
}
template<class... Args>
std::pair<iterator, bool> try_emplace(const key_type& k, Args&&... args) {
return m_ht.try_emplace(k, std::forward<Args>(args)...);
}
template<class... Args>
std::pair<iterator, bool> try_emplace(key_type&& k, Args&&... args) {
return m_ht.try_emplace(std::move(k), std::forward<Args>(args)...);
}
template<class... Args>
iterator try_emplace(const_iterator hint, const key_type& k, Args&&... args) {
return m_ht.try_emplace_hint(hint, k, std::forward<Args>(args)...);
}
template<class... Args>
iterator try_emplace(const_iterator hint, key_type&& k, Args&&... args) {
return m_ht.try_emplace_hint(hint, std::move(k), std::forward<Args>(args)...);
}
/**
* When erasing an element, the insert order will be preserved and no holes will be present in the container
* returned by 'values_container()'.
*
* The method is in O(n), if the order is not important 'unordered_erase(...)' method is faster with an O(1)
* average complexity.
*/
iterator erase(iterator pos) { return m_ht.erase(pos); }
/**
* @copydoc erase(iterator pos)
*/
iterator erase(const_iterator pos) { return m_ht.erase(pos); }
/**
* @copydoc erase(iterator pos)
*/
iterator erase(const_iterator first, const_iterator last) { return m_ht.erase(first, last); }
/**
* @copydoc erase(iterator pos)
*/
size_type erase(const key_type& key) { return m_ht.erase(key); }
/**
* @copydoc erase(iterator pos)
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup to the value if you already have the hash.
*/
size_type erase(const key_type& key, std::size_t precalculated_hash) {
return m_ht.erase(key, precalculated_hash);
}
/**
* @copydoc erase(iterator pos)
*
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
* If so, K must be hashable and comparable to Key.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
size_type erase(const K& key) { return m_ht.erase(key); }
/**
* @copydoc erase(const key_type& key, std::size_t precalculated_hash)
*
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
* If so, K must be hashable and comparable to Key.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
size_type erase(const K& key, std::size_t precalculated_hash) {
return m_ht.erase(key, precalculated_hash);
}
void swap(ordered_map& other) { other.m_ht.swap(m_ht); }
/*
* Lookup
*/
T& at(const Key& key) { return m_ht.at(key); }
/**
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
*/
T& at(const Key& key, std::size_t precalculated_hash) { return m_ht.at(key, precalculated_hash); }
const T& at(const Key& key) const { return m_ht.at(key); }
/**
* @copydoc at(const Key& key, std::size_t precalculated_hash)
*/
const T& at(const Key& key, std::size_t precalculated_hash) const { return m_ht.at(key, precalculated_hash); }
/**
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
* If so, K must be hashable and comparable to Key.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
T& at(const K& key) { return m_ht.at(key); }
/**
* @copydoc at(const K& key)
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
T& at(const K& key, std::size_t precalculated_hash) { return m_ht.at(key, precalculated_hash); }
/**
* @copydoc at(const K& key)
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
const T& at(const K& key) const { return m_ht.at(key); }
/**
* @copydoc at(const K& key, std::size_t precalculated_hash)
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
const T& at(const K& key, std::size_t precalculated_hash) const { return m_ht.at(key, precalculated_hash); }
T& operator[](const Key& key) { return m_ht[key]; }
T& operator[](Key&& key) { return m_ht[std::move(key)]; }
size_type count(const Key& key) const { return m_ht.count(key); }
/**
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
*/
size_type count(const Key& key, std::size_t precalculated_hash) const {
return m_ht.count(key, precalculated_hash);
}
/**
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
* If so, K must be hashable and comparable to Key.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
size_type count(const K& key) const { return m_ht.count(key); }
/**
* @copydoc count(const K& key) const
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
size_type count(const K& key, std::size_t precalculated_hash) const {
return m_ht.count(key, precalculated_hash);
}
iterator find(const Key& key) { return m_ht.find(key); }
/**
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
*/
iterator find(const Key& key, std::size_t precalculated_hash) { return m_ht.find(key, precalculated_hash); }
const_iterator find(const Key& key) const { return m_ht.find(key); }
/**
* @copydoc find(const Key& key, std::size_t precalculated_hash)
*/
const_iterator find(const Key& key, std::size_t precalculated_hash) const {
return m_ht.find(key, precalculated_hash);
}
/**
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
* If so, K must be hashable and comparable to Key.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
iterator find(const K& key) { return m_ht.find(key); }
/**
* @copydoc find(const K& key)
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
iterator find(const K& key, std::size_t precalculated_hash) { return m_ht.find(key, precalculated_hash); }
/**
* @copydoc find(const K& key)
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
const_iterator find(const K& key) const { return m_ht.find(key); }
/**
* @copydoc find(const K& key)
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
const_iterator find(const K& key, std::size_t precalculated_hash) const {
return m_ht.find(key, precalculated_hash);
}
std::pair<iterator, iterator> equal_range(const Key& key) { return m_ht.equal_range(key); }
/**
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
*/
std::pair<iterator, iterator> equal_range(const Key& key, std::size_t precalculated_hash) {
return m_ht.equal_range(key, precalculated_hash);
}
std::pair<const_iterator, const_iterator> equal_range(const Key& key) const { return m_ht.equal_range(key); }
/**
* @copydoc equal_range(const Key& key, std::size_t precalculated_hash)
*/
std::pair<const_iterator, const_iterator> equal_range(const Key& key, std::size_t precalculated_hash) const {
return m_ht.equal_range(key, precalculated_hash);
}
/**
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
* If so, K must be hashable and comparable to Key.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
std::pair<iterator, iterator> equal_range(const K& key) { return m_ht.equal_range(key); }
/**
* @copydoc equal_range(const K& key)
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
std::pair<iterator, iterator> equal_range(const K& key, std::size_t precalculated_hash) {
return m_ht.equal_range(key, precalculated_hash);
}
/**
* @copydoc equal_range(const K& key)
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
std::pair<const_iterator, const_iterator> equal_range(const K& key) const { return m_ht.equal_range(key); }
/**
* @copydoc equal_range(const K& key, std::size_t precalculated_hash)
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
std::pair<const_iterator, const_iterator> equal_range(const K& key, std::size_t precalculated_hash) const {
return m_ht.equal_range(key, precalculated_hash);
}
/*
* Bucket interface
*/
size_type bucket_count() const { return m_ht.bucket_count(); }
size_type max_bucket_count() const { return m_ht.max_bucket_count(); }
/*
* Hash policy
*/
float load_factor() const { return m_ht.load_factor(); }
float max_load_factor() const { return m_ht.max_load_factor(); }
void max_load_factor(float ml) { m_ht.max_load_factor(ml); }
void rehash(size_type count) { m_ht.rehash(count); }
void reserve(size_type count) { m_ht.reserve(count); }
/*
* Observers
*/
hasher hash_function() const { return m_ht.hash_function(); }
key_equal key_eq() const { return m_ht.key_eq(); }
/*
* Other
*/
/**
* Convert a const_iterator to an iterator.
*/
iterator mutable_iterator(const_iterator pos) {
return m_ht.mutable_iterator(pos);
}
/**
* Requires index <= size().
*
* Return an iterator to the element at index. Return end() if index == size().
*/
iterator nth(size_type index) { return m_ht.nth(index); }
/**
* @copydoc nth(size_type index)
*/
const_iterator nth(size_type index) const { return m_ht.nth(index); }
/**
* Return const_reference to the first element. Requires the container to not be empty.
*/
const_reference front() const { return m_ht.front(); }
/**
* Return const_reference to the last element. Requires the container to not be empty.
*/
const_reference back() const { return m_ht.back(); }
/**
* Only available if ValueTypeContainer is a std::vector. Same as calling 'values_container().data()'.
*/
template<class U = values_container_type, typename std::enable_if<tsl::detail_ordered_hash::is_vector<U>::value>::type* = nullptr>
const typename values_container_type::value_type* data() const noexcept { return m_ht.data(); }
/**
* Return the container in which the values are stored. The values are in the same order as the insertion order
* and are contiguous in the structure, no holes (size() == values_container().size()).
*/
const values_container_type& values_container() const noexcept { return m_ht.values_container(); }
template<class U = values_container_type, typename std::enable_if<tsl::detail_ordered_hash::is_vector<U>::value>::type* = nullptr>
size_type capacity() const noexcept { return m_ht.capacity(); }
void shrink_to_fit() { m_ht.shrink_to_fit(); }
/**
* Insert the value before pos shifting all the elements on the right of pos (including pos) one position
* to the right.
*
* Amortized linear time-complexity in the distance between pos and end().
*/
std::pair<iterator, bool> insert_at_position(const_iterator pos, const value_type& value) {
return m_ht.insert_at_position(pos, value);
}
/**
* @copydoc insert_at_position(const_iterator pos, const value_type& value)
*/
std::pair<iterator, bool> insert_at_position(const_iterator pos, value_type&& value) {
return m_ht.insert_at_position(pos, std::move(value));
}
/**
* @copydoc insert_at_position(const_iterator pos, const value_type& value)
*
* Same as insert_at_position(pos, value_type(std::forward<Args>(args)...), mainly
* here for coherence.
*/
template<class... Args>
std::pair<iterator, bool> emplace_at_position(const_iterator pos, Args&&... args) {
return m_ht.emplace_at_position(pos, std::forward<Args>(args)...);
}
/**
* @copydoc insert_at_position(const_iterator pos, const value_type& value)
*/
template<class... Args>
std::pair<iterator, bool> try_emplace_at_position(const_iterator pos, const key_type& k, Args&&... args) {
return m_ht.try_emplace_at_position(pos, k, std::forward<Args>(args)...);
}
/**
* @copydoc insert_at_position(const_iterator pos, const value_type& value)
*/
template<class... Args>
std::pair<iterator, bool> try_emplace_at_position(const_iterator pos, key_type&& k, Args&&... args) {
return m_ht.try_emplace_at_position(pos, std::move(k), std::forward<Args>(args)...);
}
void pop_back() { m_ht.pop_back(); }
/**
* Faster erase operation with an O(1) average complexity but it doesn't preserve the insertion order.
*
* If an erasure occurs, the last element of the map will take the place of the erased element.
*/
iterator unordered_erase(iterator pos) { return m_ht.unordered_erase(pos); }
/**
* @copydoc unordered_erase(iterator pos)
*/
iterator unordered_erase(const_iterator pos) { return m_ht.unordered_erase(pos); }
/**
* @copydoc unordered_erase(iterator pos)
*/
size_type unordered_erase(const key_type& key) { return m_ht.unordered_erase(key); }
/**
* @copydoc unordered_erase(iterator pos)
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
*/
size_type unordered_erase(const key_type& key, std::size_t precalculated_hash) {
return m_ht.unordered_erase(key, precalculated_hash);
}
/**
* @copydoc unordered_erase(iterator pos)
*
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
* If so, K must be hashable and comparable to Key.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
size_type unordered_erase(const K& key) { return m_ht.unordered_erase(key); }
/**
* @copydoc unordered_erase(const K& key)
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
size_type unordered_erase(const K& key, std::size_t precalculated_hash) {
return m_ht.unordered_erase(key, precalculated_hash);
}
/**
* Serialize the map through the `serializer` parameter.
*
* The `serializer` parameter must be a function object that supports the following call:
* - `template<typename U> void operator()(const U& value);` where the types `std::uint64_t`, `float` and `std::pair<Key, T>` must be supported for U.
*
* The implementation leaves binary compatibilty (endianness, IEEE 754 for floats, ...) of the types it serializes
* in the hands of the `Serializer` function object if compatibilty is required.
*/
template<class Serializer>
void serialize(Serializer& serializer) const {
m_ht.serialize(serializer);
}
/**
* Deserialize a previouly serialized map through the `deserializer` parameter.
*
* The `deserializer` parameter must be a function object that supports the following calls:
* - `template<typename U> U operator()();` where the types `std::uint64_t`, `float` and `std::pair<Key, T>` must be supported for U.
*
* If the deserialized hash map type is hash compatible with the serialized map, the deserialization process can be
* sped up by setting `hash_compatible` to true. To be hash compatible, the Hash and KeyEqual must behave the same way
* than the ones used on the serialized map. The `std::size_t` must also be of the same size as the one on the platform used
* to serialize the map, the same apply for `IndexType`. If these criteria are not met, the behaviour is undefined with
* `hash_compatible` sets to true.
*
* The behaviour is undefined if the type `Key` and `T` of the `ordered_map` are not the same as the
* types used during serialization.
*
* The implementation leaves binary compatibilty (endianness, IEEE 754 for floats, size of int, ...) of the types it
* deserializes in the hands of the `Deserializer` function object if compatibilty is required.
*/
template<class Deserializer>
static ordered_map deserialize(Deserializer& deserializer, bool hash_compatible = false) {
ordered_map map(0);
map.m_ht.deserialize(deserializer, hash_compatible);
return map;
}
friend bool operator==(const ordered_map& lhs, const ordered_map& rhs) { return lhs.m_ht == rhs.m_ht; }
friend bool operator!=(const ordered_map& lhs, const ordered_map& rhs) { return lhs.m_ht != rhs.m_ht; }
friend bool operator<(const ordered_map& lhs, const ordered_map& rhs) { return lhs.m_ht < rhs.m_ht; }
friend bool operator<=(const ordered_map& lhs, const ordered_map& rhs) { return lhs.m_ht <= rhs.m_ht; }
friend bool operator>(const ordered_map& lhs, const ordered_map& rhs) { return lhs.m_ht > rhs.m_ht; }
friend bool operator>=(const ordered_map& lhs, const ordered_map& rhs) { return lhs.m_ht >= rhs.m_ht; }
friend void swap(ordered_map& lhs, ordered_map& rhs) { lhs.swap(rhs); }
private:
ht m_ht;
};
} // end namespace tsl
#endif

View File

@@ -0,0 +1,688 @@
/**
* MIT License
*
* Copyright (c) 2017 Tessil
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef TSL_ORDERED_SET_H
#define TSL_ORDERED_SET_H
#include <cstddef>
#include <cstdint>
#include <deque>
#include <functional>
#include <initializer_list>
#include <memory>
#include <type_traits>
#include <utility>
#include <vector>
#include "ordered_hash.h"
namespace tsl {
/**
* Implementation of an hash set using open adressing with robin hood with backshift delete to resolve collisions.
*
* The particularity of this hash set is that it remembers the order in which the elements were added and
* provide a way to access the structure which stores these values through the 'values_container()' method.
* The used container is defined by ValueTypeContainer, by default a std::deque is used (grows faster) but
* a std::vector may be used. In this case the set provides a 'data()' method which give a direct access
* to the memory used to store the values (which can be usefull to communicate with C API's).
*
* The Key must be copy constructible and/or move constructible. To use `unordered_erase` it also must be swappable.
*
* The behaviour of the hash set is undefinded if the destructor of Key throws an exception.
*
* By default the maximum size of a set is limited to 2^32 - 1 values, if needed this can be changed through
* the IndexType template parameter. Using an `uint64_t` will raise this limit to 2^64 - 1 values but each
* bucket will use 16 bytes instead of 8 bytes in addition to the space needed to store the values.
*
* Iterators invalidation:
* - clear, operator=, reserve, rehash: always invalidate the iterators (also invalidate end()).
* - insert, emplace, emplace_hint, operator[]: when a std::vector is used as ValueTypeContainer
* and if size() < capacity(), only end().
* Otherwise all the iterators are invalidated if an insert occurs.
* - erase, unordered_erase: when a std::vector is used as ValueTypeContainer invalidate the iterator of
* the erased element and all the ones after the erased element (including end()).
* Otherwise all the iterators are invalidated if an erase occurs.
*/
template<class Key,
class Hash = std::hash<Key>,
class KeyEqual = std::equal_to<Key>,
class Allocator = std::allocator<Key>,
class ValueTypeContainer = std::deque<Key, Allocator>,
class IndexType = std::uint_least32_t>
class ordered_set {
private:
template<typename U>
using has_is_transparent = tsl::detail_ordered_hash::has_is_transparent<U>;
class KeySelect {
public:
using key_type = Key;
const key_type& operator()(const Key& key) const noexcept {
return key;
}
key_type& operator()(Key& key) noexcept {
return key;
}
};
using ht = detail_ordered_hash::ordered_hash<Key, KeySelect, void,
Hash, KeyEqual, Allocator, ValueTypeContainer, IndexType>;
public:
using key_type = typename ht::key_type;
using value_type = typename ht::value_type;
using size_type = typename ht::size_type;
using difference_type = typename ht::difference_type;
using hasher = typename ht::hasher;
using key_equal = typename ht::key_equal;
using allocator_type = typename ht::allocator_type;
using reference = typename ht::reference;
using const_reference = typename ht::const_reference;
using pointer = typename ht::pointer;
using const_pointer = typename ht::const_pointer;
using iterator = typename ht::iterator;
using const_iterator = typename ht::const_iterator;
using reverse_iterator = typename ht::reverse_iterator;
using const_reverse_iterator = typename ht::const_reverse_iterator;
using values_container_type = typename ht::values_container_type;
/*
* Constructors
*/
ordered_set(): ordered_set(ht::DEFAULT_INIT_BUCKETS_SIZE) {
}
explicit ordered_set(size_type bucket_count,
const Hash& hash = Hash(),
const KeyEqual& equal = KeyEqual(),
const Allocator& alloc = Allocator()):
m_ht(bucket_count, hash, equal, alloc, ht::DEFAULT_MAX_LOAD_FACTOR)
{
}
ordered_set(size_type bucket_count,
const Allocator& alloc): ordered_set(bucket_count, Hash(), KeyEqual(), alloc)
{
}
ordered_set(size_type bucket_count,
const Hash& hash,
const Allocator& alloc): ordered_set(bucket_count, hash, KeyEqual(), alloc)
{
}
explicit ordered_set(const Allocator& alloc): ordered_set(ht::DEFAULT_INIT_BUCKETS_SIZE, alloc) {
}
template<class InputIt>
ordered_set(InputIt first, InputIt last,
size_type bucket_count = ht::DEFAULT_INIT_BUCKETS_SIZE,
const Hash& hash = Hash(),
const KeyEqual& equal = KeyEqual(),
const Allocator& alloc = Allocator()): ordered_set(bucket_count, hash, equal, alloc)
{
insert(first, last);
}
template<class InputIt>
ordered_set(InputIt first, InputIt last,
size_type bucket_count,
const Allocator& alloc): ordered_set(first, last, bucket_count, Hash(), KeyEqual(), alloc)
{
}
template<class InputIt>
ordered_set(InputIt first, InputIt last,
size_type bucket_count,
const Hash& hash,
const Allocator& alloc): ordered_set(first, last, bucket_count, hash, KeyEqual(), alloc)
{
}
ordered_set(std::initializer_list<value_type> init,
size_type bucket_count = ht::DEFAULT_INIT_BUCKETS_SIZE,
const Hash& hash = Hash(),
const KeyEqual& equal = KeyEqual(),
const Allocator& alloc = Allocator()):
ordered_set(init.begin(), init.end(), bucket_count, hash, equal, alloc)
{
}
ordered_set(std::initializer_list<value_type> init,
size_type bucket_count,
const Allocator& alloc):
ordered_set(init.begin(), init.end(), bucket_count, Hash(), KeyEqual(), alloc)
{
}
ordered_set(std::initializer_list<value_type> init,
size_type bucket_count,
const Hash& hash,
const Allocator& alloc):
ordered_set(init.begin(), init.end(), bucket_count, hash, KeyEqual(), alloc)
{
}
ordered_set& operator=(std::initializer_list<value_type> ilist) {
m_ht.clear();
m_ht.reserve(ilist.size());
m_ht.insert(ilist.begin(), ilist.end());
return *this;
}
allocator_type get_allocator() const { return m_ht.get_allocator(); }
/*
* Iterators
*/
iterator begin() noexcept { return m_ht.begin(); }
const_iterator begin() const noexcept { return m_ht.begin(); }
const_iterator cbegin() const noexcept { return m_ht.cbegin(); }
iterator end() noexcept { return m_ht.end(); }
const_iterator end() const noexcept { return m_ht.end(); }
const_iterator cend() const noexcept { return m_ht.cend(); }
reverse_iterator rbegin() noexcept { return m_ht.rbegin(); }
const_reverse_iterator rbegin() const noexcept { return m_ht.rbegin(); }
const_reverse_iterator rcbegin() const noexcept { return m_ht.rcbegin(); }
reverse_iterator rend() noexcept { return m_ht.rend(); }
const_reverse_iterator rend() const noexcept { return m_ht.rend(); }
const_reverse_iterator rcend() const noexcept { return m_ht.rcend(); }
/*
* Capacity
*/
bool empty() const noexcept { return m_ht.empty(); }
size_type size() const noexcept { return m_ht.size(); }
size_type max_size() const noexcept { return m_ht.max_size(); }
/*
* Modifiers
*/
void clear() noexcept { m_ht.clear(); }
std::pair<iterator, bool> insert(const value_type& value) { return m_ht.insert(value); }
std::pair<iterator, bool> insert(value_type&& value) { return m_ht.insert(std::move(value)); }
iterator insert(const_iterator hint, const value_type& value) {
return m_ht.insert_hint(hint, value);
}
iterator insert(const_iterator hint, value_type&& value) {
return m_ht.insert_hint(hint, std::move(value));
}
template<class InputIt>
void insert(InputIt first, InputIt last) { m_ht.insert(first, last); }
void insert(std::initializer_list<value_type> ilist) { m_ht.insert(ilist.begin(), ilist.end()); }
/**
* Due to the way elements are stored, emplace will need to move or copy the key-value once.
* The method is equivalent to insert(value_type(std::forward<Args>(args)...));
*
* Mainly here for compatibility with the std::unordered_map interface.
*/
template<class... Args>
std::pair<iterator, bool> emplace(Args&&... args) { return m_ht.emplace(std::forward<Args>(args)...); }
/**
* Due to the way elements are stored, emplace_hint will need to move or copy the key-value once.
* The method is equivalent to insert(hint, value_type(std::forward<Args>(args)...));
*
* Mainly here for compatibility with the std::unordered_map interface.
*/
template<class... Args>
iterator emplace_hint(const_iterator hint, Args&&... args) {
return m_ht.emplace_hint(hint, std::forward<Args>(args)...);
}
/**
* When erasing an element, the insert order will be preserved and no holes will be present in the container
* returned by 'values_container()'.
*
* The method is in O(n), if the order is not important 'unordered_erase(...)' method is faster with an O(1)
* average complexity.
*/
iterator erase(iterator pos) { return m_ht.erase(pos); }
/**
* @copydoc erase(iterator pos)
*/
iterator erase(const_iterator pos) { return m_ht.erase(pos); }
/**
* @copydoc erase(iterator pos)
*/
iterator erase(const_iterator first, const_iterator last) { return m_ht.erase(first, last); }
/**
* @copydoc erase(iterator pos)
*/
size_type erase(const key_type& key) { return m_ht.erase(key); }
/**
* @copydoc erase(iterator pos)
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup to the value if you already have the hash.
*/
size_type erase(const key_type& key, std::size_t precalculated_hash) {
return m_ht.erase(key, precalculated_hash);
}
/**
* @copydoc erase(iterator pos)
*
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
* If so, K must be hashable and comparable to Key.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
size_type erase(const K& key) { return m_ht.erase(key); }
/**
* @copydoc erase(const key_type& key, std::size_t precalculated_hash)
*
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
* If so, K must be hashable and comparable to Key.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
size_type erase(const K& key, std::size_t precalculated_hash) {
return m_ht.erase(key, precalculated_hash);
}
void swap(ordered_set& other) { other.m_ht.swap(m_ht); }
/*
* Lookup
*/
size_type count(const Key& key) const { return m_ht.count(key); }
/**
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
*/
size_type count(const Key& key, std::size_t precalculated_hash) const {
return m_ht.count(key, precalculated_hash);
}
/**
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
* If so, K must be hashable and comparable to Key.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
size_type count(const K& key) const { return m_ht.count(key); }
/**
* @copydoc count(const K& key) const
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
size_type count(const K& key, std::size_t precalculated_hash) const {
return m_ht.count(key, precalculated_hash);
}
iterator find(const Key& key) { return m_ht.find(key); }
/**
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
*/
iterator find(const Key& key, std::size_t precalculated_hash) { return m_ht.find(key, precalculated_hash); }
const_iterator find(const Key& key) const { return m_ht.find(key); }
/**
* @copydoc find(const Key& key, std::size_t precalculated_hash)
*/
const_iterator find(const Key& key, std::size_t precalculated_hash) const {
return m_ht.find(key, precalculated_hash);
}
/**
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
* If so, K must be hashable and comparable to Key.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
iterator find(const K& key) { return m_ht.find(key); }
/**
* @copydoc find(const K& key)
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
iterator find(const K& key, std::size_t precalculated_hash) { return m_ht.find(key, precalculated_hash); }
/**
* @copydoc find(const K& key)
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
const_iterator find(const K& key) const { return m_ht.find(key); }
/**
* @copydoc find(const K& key)
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
const_iterator find(const K& key, std::size_t precalculated_hash) const {
return m_ht.find(key, precalculated_hash);
}
std::pair<iterator, iterator> equal_range(const Key& key) { return m_ht.equal_range(key); }
/**
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
*/
std::pair<iterator, iterator> equal_range(const Key& key, std::size_t precalculated_hash) {
return m_ht.equal_range(key, precalculated_hash);
}
std::pair<const_iterator, const_iterator> equal_range(const Key& key) const { return m_ht.equal_range(key); }
/**
* @copydoc equal_range(const Key& key, std::size_t precalculated_hash)
*/
std::pair<const_iterator, const_iterator> equal_range(const Key& key, std::size_t precalculated_hash) const {
return m_ht.equal_range(key, precalculated_hash);
}
/**
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
* If so, K must be hashable and comparable to Key.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
std::pair<iterator, iterator> equal_range(const K& key) { return m_ht.equal_range(key); }
/**
* @copydoc equal_range(const K& key)
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
std::pair<iterator, iterator> equal_range(const K& key, std::size_t precalculated_hash) {
return m_ht.equal_range(key, precalculated_hash);
}
/**
* @copydoc equal_range(const K& key)
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
std::pair<const_iterator, const_iterator> equal_range(const K& key) const { return m_ht.equal_range(key); }
/**
* @copydoc equal_range(const K& key, std::size_t precalculated_hash)
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
std::pair<const_iterator, const_iterator> equal_range(const K& key, std::size_t precalculated_hash) const {
return m_ht.equal_range(key, precalculated_hash);
}
/*
* Bucket interface
*/
size_type bucket_count() const { return m_ht.bucket_count(); }
size_type max_bucket_count() const { return m_ht.max_bucket_count(); }
/*
* Hash policy
*/
float load_factor() const { return m_ht.load_factor(); }
float max_load_factor() const { return m_ht.max_load_factor(); }
void max_load_factor(float ml) { m_ht.max_load_factor(ml); }
void rehash(size_type count) { m_ht.rehash(count); }
void reserve(size_type count) { m_ht.reserve(count); }
/*
* Observers
*/
hasher hash_function() const { return m_ht.hash_function(); }
key_equal key_eq() const { return m_ht.key_eq(); }
/*
* Other
*/
/**
* Convert a const_iterator to an iterator.
*/
iterator mutable_iterator(const_iterator pos) {
return m_ht.mutable_iterator(pos);
}
/**
* Requires index <= size().
*
* Return an iterator to the element at index. Return end() if index == size().
*/
iterator nth(size_type index) { return m_ht.nth(index); }
/**
* @copydoc nth(size_type index)
*/
const_iterator nth(size_type index) const { return m_ht.nth(index); }
/**
* Return const_reference to the first element. Requires the container to not be empty.
*/
const_reference front() const { return m_ht.front(); }
/**
* Return const_reference to the last element. Requires the container to not be empty.
*/
const_reference back() const { return m_ht.back(); }
/**
* Only available if ValueTypeContainer is a std::vector. Same as calling 'values_container().data()'.
*/
template<class U = values_container_type, typename std::enable_if<tsl::detail_ordered_hash::is_vector<U>::value>::type* = nullptr>
const typename values_container_type::value_type* data() const noexcept { return m_ht.data(); }
/**
* Return the container in which the values are stored. The values are in the same order as the insertion order
* and are contiguous in the structure, no holes (size() == values_container().size()).
*/
const values_container_type& values_container() const noexcept { return m_ht.values_container(); }
template<class U = values_container_type, typename std::enable_if<tsl::detail_ordered_hash::is_vector<U>::value>::type* = nullptr>
size_type capacity() const noexcept { return m_ht.capacity(); }
void shrink_to_fit() { m_ht.shrink_to_fit(); }
/**
* Insert the value before pos shifting all the elements on the right of pos (including pos) one position
* to the right.
*
* Amortized linear time-complexity in the distance between pos and end().
*/
std::pair<iterator, bool> insert_at_position(const_iterator pos, const value_type& value) {
return m_ht.insert_at_position(pos, value);
}
/**
* @copydoc insert_at_position(const_iterator pos, const value_type& value)
*/
std::pair<iterator, bool> insert_at_position(const_iterator pos, value_type&& value) {
return m_ht.insert_at_position(pos, std::move(value));
}
/**
* @copydoc insert_at_position(const_iterator pos, const value_type& value)
*
* Same as insert_at_position(pos, value_type(std::forward<Args>(args)...), mainly
* here for coherence.
*/
template<class... Args>
std::pair<iterator, bool> emplace_at_position(const_iterator pos, Args&&... args) {
return m_ht.emplace_at_position(pos, std::forward<Args>(args)...);
}
void pop_back() { m_ht.pop_back(); }
/**
* Faster erase operation with an O(1) average complexity but it doesn't preserve the insertion order.
*
* If an erasure occurs, the last element of the map will take the place of the erased element.
*/
iterator unordered_erase(iterator pos) { return m_ht.unordered_erase(pos); }
/**
* @copydoc unordered_erase(iterator pos)
*/
iterator unordered_erase(const_iterator pos) { return m_ht.unordered_erase(pos); }
/**
* @copydoc unordered_erase(iterator pos)
*/
size_type unordered_erase(const key_type& key) { return m_ht.unordered_erase(key); }
/**
* @copydoc unordered_erase(iterator pos)
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
*/
size_type unordered_erase(const key_type& key, std::size_t precalculated_hash) {
return m_ht.unordered_erase(key, precalculated_hash);
}
/**
* @copydoc unordered_erase(iterator pos)
*
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
* If so, K must be hashable and comparable to Key.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
size_type unordered_erase(const K& key) { return m_ht.unordered_erase(key); }
/**
* @copydoc unordered_erase(const K& key)
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
size_type unordered_erase(const K& key, std::size_t precalculated_hash) {
return m_ht.unordered_erase(key, precalculated_hash);
}
/**
* Serialize the set through the `serializer` parameter.
*
* The `serializer` parameter must be a function object that supports the following call:
* - `void operator()(const U& value);` where the types `std::uint64_t`, `float` and `Key` must be supported for U.
*
* The implementation leaves binary compatibilty (endianness, IEEE 754 for floats, ...) of the types it serializes
* in the hands of the `Serializer` function object if compatibilty is required.
*/
template<class Serializer>
void serialize(Serializer& serializer) const {
m_ht.serialize(serializer);
}
/**
* Deserialize a previouly serialized set through the `deserializer` parameter.
*
* The `deserializer` parameter must be a function object that supports the following calls:
* - `template<typename U> U operator()();` where the types `std::uint64_t`, `float` and `Key` must be supported for U.
*
* If the deserialized hash set type is hash compatible with the serialized set, the deserialization process can be
* sped up by setting `hash_compatible` to true. To be hash compatible, the Hash and KeyEqual must behave the same way
* than the ones used on the serialized map. The `std::size_t` must also be of the same size as the one on the platform used
* to serialize the map, the same apply for `IndexType`. If these criteria are not met, the behaviour is undefined with
* `hash_compatible` sets to true.
*
* The behaviour is undefined if the type `Key` of the `ordered_set` is not the same as the
* type used during serialization.
*
* The implementation leaves binary compatibilty (endianness, IEEE 754 for floats, size of int, ...) of the types it
* deserializes in the hands of the `Deserializer` function object if compatibilty is required.
*/
template<class Deserializer>
static ordered_set deserialize(Deserializer& deserializer, bool hash_compatible = false) {
ordered_set set(0);
set.m_ht.deserialize(deserializer, hash_compatible);
return set;
}
friend bool operator==(const ordered_set& lhs, const ordered_set& rhs) { return lhs.m_ht == rhs.m_ht; }
friend bool operator!=(const ordered_set& lhs, const ordered_set& rhs) { return lhs.m_ht != rhs.m_ht; }
friend bool operator<(const ordered_set& lhs, const ordered_set& rhs) { return lhs.m_ht < rhs.m_ht; }
friend bool operator<=(const ordered_set& lhs, const ordered_set& rhs) { return lhs.m_ht <= rhs.m_ht; }
friend bool operator>(const ordered_set& lhs, const ordered_set& rhs) { return lhs.m_ht > rhs.m_ht; }
friend bool operator>=(const ordered_set& lhs, const ordered_set& rhs) { return lhs.m_ht >= rhs.m_ht; }
friend void swap(ordered_set& lhs, ordered_set& rhs) { lhs.swap(rhs); }
private:
ht m_ht;
};
} // end namespace tsl
#endif

View File

@@ -0,0 +1,348 @@
/**
* MIT License
*
* Copyright (c) 2017 Tessil
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef TSL_ROBIN_GROWTH_POLICY_H
#define TSL_ROBIN_GROWTH_POLICY_H
#include <algorithm>
#include <array>
#include <climits>
#include <cmath>
#include <cstddef>
#include <cstdint>
#include <iterator>
#include <limits>
#include <ratio>
#include <stdexcept>
#ifdef TSL_DEBUG
# define tsl_rh_assert(expr) assert(expr)
#else
# define tsl_rh_assert(expr) (static_cast<void>(0))
#endif
/**
* If exceptions are enabled, throw the exception passed in parameter, otherwise call std::terminate.
*/
#if (defined(__cpp_exceptions) || defined(__EXCEPTIONS) || (defined (_MSC_VER) && defined (_CPPUNWIND))) && !defined(TSL_NO_EXCEPTIONS)
# define TSL_RH_THROW_OR_TERMINATE(ex, msg) throw ex(msg)
#else
# define TSL_RH_NO_EXCEPTIONS
# ifdef NDEBUG
# define TSL_RH_THROW_OR_TERMINATE(ex, msg) std::terminate()
# else
# include <iostream>
# define TSL_RH_THROW_OR_TERMINATE(ex, msg) do { std::cerr << msg << std::endl; std::terminate(); } while(0)
# endif
#endif
#if defined(__GNUC__) || defined(__clang__)
# define TSL_RH_LIKELY(exp) (__builtin_expect(!!(exp), true))
#else
# define TSL_RH_LIKELY(exp) (exp)
#endif
namespace tsl {
namespace rh {
/**
* Grow the hash table by a factor of GrowthFactor keeping the bucket count to a power of two. It allows
* the table to use a mask operation instead of a modulo operation to map a hash to a bucket.
*
* GrowthFactor must be a power of two >= 2.
*/
template<std::size_t GrowthFactor>
class power_of_two_growth_policy {
public:
/**
* Called on the hash table creation and on rehash. The number of buckets for the table is passed in parameter.
* This number is a minimum, the policy may update this value with a higher value if needed (but not lower).
*
* If 0 is given, min_bucket_count_in_out must still be 0 after the policy creation and
* bucket_for_hash must always return 0 in this case.
*/
explicit power_of_two_growth_policy(std::size_t& min_bucket_count_in_out) {
if(min_bucket_count_in_out > max_bucket_count()) {
TSL_RH_THROW_OR_TERMINATE(std::length_error, "The hash table exceeds its maxmimum size.");
}
if(min_bucket_count_in_out > 0) {
min_bucket_count_in_out = round_up_to_power_of_two(min_bucket_count_in_out);
m_mask = min_bucket_count_in_out - 1;
}
else {
m_mask = 0;
}
}
/**
* Return the bucket [0, bucket_count()) to which the hash belongs.
* If bucket_count() is 0, it must always return 0.
*/
std::size_t bucket_for_hash(std::size_t hash) const noexcept {
return hash & m_mask;
}
/**
* Return the number of buckets that should be used on next growth.
*/
std::size_t next_bucket_count() const {
if((m_mask + 1) > max_bucket_count() / GrowthFactor) {
TSL_RH_THROW_OR_TERMINATE(std::length_error, "The hash table exceeds its maxmimum size.");
}
return (m_mask + 1) * GrowthFactor;
}
/**
* Return the maximum number of buckets supported by the policy.
*/
std::size_t max_bucket_count() const {
// Largest power of two.
return (std::numeric_limits<std::size_t>::max() / 2) + 1;
}
/**
* Reset the growth policy as if it was created with a bucket count of 0.
* After a clear, the policy must always return 0 when bucket_for_hash is called.
*/
void clear() noexcept {
m_mask = 0;
}
private:
static std::size_t round_up_to_power_of_two(std::size_t value) {
if(is_power_of_two(value)) {
return value;
}
if(value == 0) {
return 1;
}
--value;
for(std::size_t i = 1; i < sizeof(std::size_t) * CHAR_BIT; i *= 2) {
value |= value >> i;
}
return value + 1;
}
static constexpr bool is_power_of_two(std::size_t value) {
return value != 0 && (value & (value - 1)) == 0;
}
protected:
static_assert(is_power_of_two(GrowthFactor) && GrowthFactor >= 2, "GrowthFactor must be a power of two >= 2.");
std::size_t m_mask;
};
/**
* Grow the hash table by GrowthFactor::num / GrowthFactor::den and use a modulo to map a hash
* to a bucket. Slower but it can be useful if you want a slower growth.
*/
template<class GrowthFactor = std::ratio<3, 2>>
class mod_growth_policy {
public:
explicit mod_growth_policy(std::size_t& min_bucket_count_in_out) {
if(min_bucket_count_in_out > max_bucket_count()) {
TSL_RH_THROW_OR_TERMINATE(std::length_error, "The hash table exceeds its maxmimum size.");
}
if(min_bucket_count_in_out > 0) {
m_mod = min_bucket_count_in_out;
}
else {
m_mod = 1;
}
}
std::size_t bucket_for_hash(std::size_t hash) const noexcept {
return hash % m_mod;
}
std::size_t next_bucket_count() const {
if(m_mod == max_bucket_count()) {
TSL_RH_THROW_OR_TERMINATE(std::length_error, "The hash table exceeds its maxmimum size.");
}
const double next_bucket_count = std::ceil(double(m_mod) * REHASH_SIZE_MULTIPLICATION_FACTOR);
if(!std::isnormal(next_bucket_count)) {
TSL_RH_THROW_OR_TERMINATE(std::length_error, "The hash table exceeds its maxmimum size.");
}
if(next_bucket_count > double(max_bucket_count())) {
return max_bucket_count();
}
else {
return std::size_t(next_bucket_count);
}
}
std::size_t max_bucket_count() const {
return MAX_BUCKET_COUNT;
}
void clear() noexcept {
m_mod = 1;
}
private:
static constexpr double REHASH_SIZE_MULTIPLICATION_FACTOR = 1.0 * GrowthFactor::num / GrowthFactor::den;
static const std::size_t MAX_BUCKET_COUNT =
std::size_t(double(
std::numeric_limits<std::size_t>::max() / REHASH_SIZE_MULTIPLICATION_FACTOR
));
static_assert(REHASH_SIZE_MULTIPLICATION_FACTOR >= 1.1, "Growth factor should be >= 1.1.");
std::size_t m_mod;
};
namespace detail {
#if SIZE_MAX >= ULLONG_MAX
#define TSL_RH_NB_PRIMES 51
#elif SIZE_MAX >= ULONG_MAX
#define TSL_RH_NB_PRIMES 40
#else
#define TSL_RH_NB_PRIMES 23
#endif
static constexpr const std::array<std::size_t, TSL_RH_NB_PRIMES> PRIMES = {{
1u, 5u, 17u, 29u, 37u, 53u, 67u, 79u, 97u, 131u, 193u, 257u, 389u, 521u, 769u, 1031u,
1543u, 2053u, 3079u, 6151u, 12289u, 24593u, 49157u,
#if SIZE_MAX >= ULONG_MAX
98317ul, 196613ul, 393241ul, 786433ul, 1572869ul, 3145739ul, 6291469ul, 12582917ul,
25165843ul, 50331653ul, 100663319ul, 201326611ul, 402653189ul, 805306457ul, 1610612741ul,
3221225473ul, 4294967291ul,
#endif
#if SIZE_MAX >= ULLONG_MAX
6442450939ull, 12884901893ull, 25769803751ull, 51539607551ull, 103079215111ull, 206158430209ull,
412316860441ull, 824633720831ull, 1649267441651ull, 3298534883309ull, 6597069766657ull,
#endif
}};
template<unsigned int IPrime>
static constexpr std::size_t mod(std::size_t hash) { return hash % PRIMES[IPrime]; }
// MOD_PRIME[iprime](hash) returns hash % PRIMES[iprime]. This table allows for faster modulo as the
// compiler can optimize the modulo code better with a constant known at the compilation.
static constexpr const std::array<std::size_t(*)(std::size_t), TSL_RH_NB_PRIMES> MOD_PRIME = {{
&mod<0>, &mod<1>, &mod<2>, &mod<3>, &mod<4>, &mod<5>, &mod<6>, &mod<7>, &mod<8>, &mod<9>, &mod<10>,
&mod<11>, &mod<12>, &mod<13>, &mod<14>, &mod<15>, &mod<16>, &mod<17>, &mod<18>, &mod<19>, &mod<20>,
&mod<21>, &mod<22>,
#if SIZE_MAX >= ULONG_MAX
&mod<23>, &mod<24>, &mod<25>, &mod<26>, &mod<27>, &mod<28>, &mod<29>, &mod<30>, &mod<31>, &mod<32>,
&mod<33>, &mod<34>, &mod<35>, &mod<36>, &mod<37> , &mod<38>, &mod<39>,
#endif
#if SIZE_MAX >= ULLONG_MAX
&mod<40>, &mod<41>, &mod<42>, &mod<43>, &mod<44>, &mod<45>, &mod<46>, &mod<47>, &mod<48>, &mod<49>,
&mod<50>,
#endif
}};
}
/**
* Grow the hash table by using prime numbers as bucket count. Slower than tsl::rh::power_of_two_growth_policy in
* general but will probably distribute the values around better in the buckets with a poor hash function.
*
* To allow the compiler to optimize the modulo operation, a lookup table is used with constant primes numbers.
*
* With a switch the code would look like:
* \code
* switch(iprime) { // iprime is the current prime of the hash table
* case 0: hash % 5ul;
* break;
* case 1: hash % 17ul;
* break;
* case 2: hash % 29ul;
* break;
* ...
* }
* \endcode
*
* Due to the constant variable in the modulo the compiler is able to optimize the operation
* by a series of multiplications, substractions and shifts.
*
* The 'hash % 5' could become something like 'hash - (hash * 0xCCCCCCCD) >> 34) * 5' in a 64 bits environement.
*/
class prime_growth_policy {
public:
explicit prime_growth_policy(std::size_t& min_bucket_count_in_out) {
auto it_prime = std::lower_bound(detail::PRIMES.begin(),
detail::PRIMES.end(), min_bucket_count_in_out);
if(it_prime == detail::PRIMES.end()) {
TSL_RH_THROW_OR_TERMINATE(std::length_error, "The hash table exceeds its maxmimum size.");
}
m_iprime = static_cast<unsigned int>(std::distance(detail::PRIMES.begin(), it_prime));
if(min_bucket_count_in_out > 0) {
min_bucket_count_in_out = *it_prime;
}
else {
min_bucket_count_in_out = 0;
}
}
std::size_t bucket_for_hash(std::size_t hash) const noexcept {
return detail::MOD_PRIME[m_iprime](hash);
}
std::size_t next_bucket_count() const {
if(m_iprime + 1 >= detail::PRIMES.size()) {
TSL_RH_THROW_OR_TERMINATE(std::length_error, "The hash table exceeds its maxmimum size.");
}
return detail::PRIMES[m_iprime + 1];
}
std::size_t max_bucket_count() const {
return detail::PRIMES.back();
}
void clear() noexcept {
m_iprime = 0;
}
private:
unsigned int m_iprime;
static_assert(std::numeric_limits<decltype(m_iprime)>::max() >= detail::PRIMES.size(),
"The type of m_iprime is not big enough.");
};
}
}
#endif

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,715 @@
/**
* MIT License
*
* Copyright (c) 2017 Tessil
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef TSL_ROBIN_MAP_H
#define TSL_ROBIN_MAP_H
#include <cstddef>
#include <functional>
#include <initializer_list>
#include <memory>
#include <type_traits>
#include <utility>
#include "robin_hash.h"
namespace tsl {
/**
* Implementation of a hash map using open-adressing and the robin hood hashing algorithm with backward shift deletion.
*
* For operations modifying the hash map (insert, erase, rehash, ...), the strong exception guarantee
* is only guaranteed when the expression `std::is_nothrow_swappable<std::pair<Key, T>>::value &&
* std::is_nothrow_move_constructible<std::pair<Key, T>>::value` is true, otherwise if an exception
* is thrown during the swap or the move, the hash map may end up in a undefined state. Per the standard
* a `Key` or `T` with a noexcept copy constructor and no move constructor also satisfies the
* `std::is_nothrow_move_constructible<std::pair<Key, T>>::value` criterion (and will thus guarantee the
* strong exception for the map).
*
* When `StoreHash` is true, 32 bits of the hash are stored alongside the values. It can improve
* the performance during lookups if the `KeyEqual` function takes time (if it engenders a cache-miss for example)
* as we then compare the stored hashes before comparing the keys. When `tsl::rh::power_of_two_growth_policy` is used
* as `GrowthPolicy`, it may also speed-up the rehash process as we can avoid to recalculate the hash.
* When it is detected that storing the hash will not incur any memory penality due to alignement (i.e.
* `sizeof(tsl::detail_robin_hash::bucket_entry<ValueType, true>) ==
* sizeof(tsl::detail_robin_hash::bucket_entry<ValueType, false>)`) and `tsl::rh::power_of_two_growth_policy` is
* used, the hash will be stored even if `StoreHash` is false so that we can speed-up the rehash (but it will
* not be used on lookups unless `StoreHash` is true).
*
* `GrowthPolicy` defines how the map grows and consequently how a hash value is mapped to a bucket.
* By default the map uses `tsl::rh::power_of_two_growth_policy`. This policy keeps the number of buckets
* to a power of two and uses a mask to map the hash to a bucket instead of the slow modulo.
* Other growth policies are available and you may define your own growth policy,
* check `tsl::rh::power_of_two_growth_policy` for the interface.
*
* `std::pair<Key, T>` must be swappable.
*
* `Key` and `T` must be copy and/or move constructible.
*
* If the destructor of `Key` or `T` throws an exception, the behaviour of the class is undefined.
*
* Iterators invalidation:
* - clear, operator=, reserve, rehash: always invalidate the iterators.
* - insert, emplace, emplace_hint, operator[]: if there is an effective insert, invalidate the iterators.
* - erase: always invalidate the iterators.
*/
template<class Key,
class T,
class Hash = std::hash<Key>,
class KeyEqual = std::equal_to<Key>,
class Allocator = std::allocator<std::pair<Key, T>>,
bool StoreHash = false,
class GrowthPolicy = tsl::rh::power_of_two_growth_policy<2>>
class robin_map {
private:
template<typename U>
using has_is_transparent = tsl::detail_robin_hash::has_is_transparent<U>;
class KeySelect {
public:
using key_type = Key;
const key_type& operator()(const std::pair<Key, T>& key_value) const noexcept {
return key_value.first;
}
key_type& operator()(std::pair<Key, T>& key_value) noexcept {
return key_value.first;
}
};
class ValueSelect {
public:
using value_type = T;
const value_type& operator()(const std::pair<Key, T>& key_value) const noexcept {
return key_value.second;
}
value_type& operator()(std::pair<Key, T>& key_value) noexcept {
return key_value.second;
}
};
using ht = detail_robin_hash::robin_hash<std::pair<Key, T>, KeySelect, ValueSelect,
Hash, KeyEqual, Allocator, StoreHash, GrowthPolicy>;
public:
using key_type = typename ht::key_type;
using mapped_type = T;
using value_type = typename ht::value_type;
using size_type = typename ht::size_type;
using difference_type = typename ht::difference_type;
using hasher = typename ht::hasher;
using key_equal = typename ht::key_equal;
using allocator_type = typename ht::allocator_type;
using reference = typename ht::reference;
using const_reference = typename ht::const_reference;
using pointer = typename ht::pointer;
using const_pointer = typename ht::const_pointer;
using iterator = typename ht::iterator;
using const_iterator = typename ht::const_iterator;
public:
/*
* Constructors
*/
robin_map(): robin_map(ht::DEFAULT_INIT_BUCKETS_SIZE) {
}
explicit robin_map(size_type bucket_count,
const Hash& hash = Hash(),
const KeyEqual& equal = KeyEqual(),
const Allocator& alloc = Allocator()):
m_ht(bucket_count, hash, equal, alloc)
{
}
robin_map(size_type bucket_count,
const Allocator& alloc): robin_map(bucket_count, Hash(), KeyEqual(), alloc)
{
}
robin_map(size_type bucket_count,
const Hash& hash,
const Allocator& alloc): robin_map(bucket_count, hash, KeyEqual(), alloc)
{
}
explicit robin_map(const Allocator& alloc): robin_map(ht::DEFAULT_INIT_BUCKETS_SIZE, alloc) {
}
template<class InputIt>
robin_map(InputIt first, InputIt last,
size_type bucket_count = ht::DEFAULT_INIT_BUCKETS_SIZE,
const Hash& hash = Hash(),
const KeyEqual& equal = KeyEqual(),
const Allocator& alloc = Allocator()): robin_map(bucket_count, hash, equal, alloc)
{
insert(first, last);
}
template<class InputIt>
robin_map(InputIt first, InputIt last,
size_type bucket_count,
const Allocator& alloc): robin_map(first, last, bucket_count, Hash(), KeyEqual(), alloc)
{
}
template<class InputIt>
robin_map(InputIt first, InputIt last,
size_type bucket_count,
const Hash& hash,
const Allocator& alloc): robin_map(first, last, bucket_count, hash, KeyEqual(), alloc)
{
}
robin_map(std::initializer_list<value_type> init,
size_type bucket_count = ht::DEFAULT_INIT_BUCKETS_SIZE,
const Hash& hash = Hash(),
const KeyEqual& equal = KeyEqual(),
const Allocator& alloc = Allocator()):
robin_map(init.begin(), init.end(), bucket_count, hash, equal, alloc)
{
}
robin_map(std::initializer_list<value_type> init,
size_type bucket_count,
const Allocator& alloc):
robin_map(init.begin(), init.end(), bucket_count, Hash(), KeyEqual(), alloc)
{
}
robin_map(std::initializer_list<value_type> init,
size_type bucket_count,
const Hash& hash,
const Allocator& alloc):
robin_map(init.begin(), init.end(), bucket_count, hash, KeyEqual(), alloc)
{
}
robin_map& operator=(std::initializer_list<value_type> ilist) {
m_ht.clear();
m_ht.reserve(ilist.size());
m_ht.insert(ilist.begin(), ilist.end());
return *this;
}
allocator_type get_allocator() const { return m_ht.get_allocator(); }
/*
* Iterators
*/
iterator begin() noexcept { return m_ht.begin(); }
const_iterator begin() const noexcept { return m_ht.begin(); }
const_iterator cbegin() const noexcept { return m_ht.cbegin(); }
iterator end() noexcept { return m_ht.end(); }
const_iterator end() const noexcept { return m_ht.end(); }
const_iterator cend() const noexcept { return m_ht.cend(); }
/*
* Capacity
*/
bool empty() const noexcept { return m_ht.empty(); }
size_type size() const noexcept { return m_ht.size(); }
size_type max_size() const noexcept { return m_ht.max_size(); }
/*
* Modifiers
*/
void clear() noexcept { m_ht.clear(); }
std::pair<iterator, bool> insert(const value_type& value) {
return m_ht.insert(value);
}
template<class P, typename std::enable_if<std::is_constructible<value_type, P&&>::value>::type* = nullptr>
std::pair<iterator, bool> insert(P&& value) {
return m_ht.emplace(std::forward<P>(value));
}
std::pair<iterator, bool> insert(value_type&& value) {
return m_ht.insert(std::move(value));
}
iterator insert(const_iterator hint, const value_type& value) {
return m_ht.insert_hint(hint, value);
}
template<class P, typename std::enable_if<std::is_constructible<value_type, P&&>::value>::type* = nullptr>
iterator insert(const_iterator hint, P&& value) {
return m_ht.emplace_hint(hint, std::forward<P>(value));
}
iterator insert(const_iterator hint, value_type&& value) {
return m_ht.insert_hint(hint, std::move(value));
}
template<class InputIt>
void insert(InputIt first, InputIt last) {
m_ht.insert(first, last);
}
void insert(std::initializer_list<value_type> ilist) {
m_ht.insert(ilist.begin(), ilist.end());
}
template<class M>
std::pair<iterator, bool> insert_or_assign(const key_type& k, M&& obj) {
return m_ht.insert_or_assign(k, std::forward<M>(obj));
}
template<class M>
std::pair<iterator, bool> insert_or_assign(key_type&& k, M&& obj) {
return m_ht.insert_or_assign(std::move(k), std::forward<M>(obj));
}
template<class M>
iterator insert_or_assign(const_iterator hint, const key_type& k, M&& obj) {
return m_ht.insert_or_assign(hint, k, std::forward<M>(obj));
}
template<class M>
iterator insert_or_assign(const_iterator hint, key_type&& k, M&& obj) {
return m_ht.insert_or_assign(hint, std::move(k), std::forward<M>(obj));
}
/**
* Due to the way elements are stored, emplace will need to move or copy the key-value once.
* The method is equivalent to insert(value_type(std::forward<Args>(args)...));
*
* Mainly here for compatibility with the std::unordered_map interface.
*/
template<class... Args>
std::pair<iterator, bool> emplace(Args&&... args) {
return m_ht.emplace(std::forward<Args>(args)...);
}
/**
* Due to the way elements are stored, emplace_hint will need to move or copy the key-value once.
* The method is equivalent to insert(hint, value_type(std::forward<Args>(args)...));
*
* Mainly here for compatibility with the std::unordered_map interface.
*/
template<class... Args>
iterator emplace_hint(const_iterator hint, Args&&... args) {
return m_ht.emplace_hint(hint, std::forward<Args>(args)...);
}
template<class... Args>
std::pair<iterator, bool> try_emplace(const key_type& k, Args&&... args) {
return m_ht.try_emplace(k, std::forward<Args>(args)...);
}
template<class... Args>
std::pair<iterator, bool> try_emplace(key_type&& k, Args&&... args) {
return m_ht.try_emplace(std::move(k), std::forward<Args>(args)...);
}
template<class... Args>
iterator try_emplace(const_iterator hint, const key_type& k, Args&&... args) {
return m_ht.try_emplace_hint(hint, k, std::forward<Args>(args)...);
}
template<class... Args>
iterator try_emplace(const_iterator hint, key_type&& k, Args&&... args) {
return m_ht.try_emplace_hint(hint, std::move(k), std::forward<Args>(args)...);
}
iterator erase(iterator pos) { return m_ht.erase(pos); }
iterator erase(const_iterator pos) { return m_ht.erase(pos); }
iterator erase(const_iterator first, const_iterator last) { return m_ht.erase(first, last); }
size_type erase(const key_type& key) { return m_ht.erase(key); }
/**
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup to the value if you already have the hash.
*/
size_type erase(const key_type& key, std::size_t precalculated_hash) {
return m_ht.erase(key, precalculated_hash);
}
/**
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
* If so, K must be hashable and comparable to Key.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
size_type erase(const K& key) { return m_ht.erase(key); }
/**
* @copydoc erase(const K& key)
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup to the value if you already have the hash.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
size_type erase(const K& key, std::size_t precalculated_hash) {
return m_ht.erase(key, precalculated_hash);
}
void swap(robin_map& other) { other.m_ht.swap(m_ht); }
/*
* Lookup
*/
T& at(const Key& key) { return m_ht.at(key); }
/**
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
*/
T& at(const Key& key, std::size_t precalculated_hash) { return m_ht.at(key, precalculated_hash); }
const T& at(const Key& key) const { return m_ht.at(key); }
/**
* @copydoc at(const Key& key, std::size_t precalculated_hash)
*/
const T& at(const Key& key, std::size_t precalculated_hash) const { return m_ht.at(key, precalculated_hash); }
/**
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
* If so, K must be hashable and comparable to Key.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
T& at(const K& key) { return m_ht.at(key); }
/**
* @copydoc at(const K& key)
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
T& at(const K& key, std::size_t precalculated_hash) { return m_ht.at(key, precalculated_hash); }
/**
* @copydoc at(const K& key)
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
const T& at(const K& key) const { return m_ht.at(key); }
/**
* @copydoc at(const K& key, std::size_t precalculated_hash)
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
const T& at(const K& key, std::size_t precalculated_hash) const { return m_ht.at(key, precalculated_hash); }
T& operator[](const Key& key) { return m_ht[key]; }
T& operator[](Key&& key) { return m_ht[std::move(key)]; }
size_type count(const Key& key) const { return m_ht.count(key); }
/**
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
*/
size_type count(const Key& key, std::size_t precalculated_hash) const {
return m_ht.count(key, precalculated_hash);
}
/**
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
* If so, K must be hashable and comparable to Key.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
size_type count(const K& key) const { return m_ht.count(key); }
/**
* @copydoc count(const K& key) const
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
size_type count(const K& key, std::size_t precalculated_hash) const { return m_ht.count(key, precalculated_hash); }
iterator find(const Key& key) { return m_ht.find(key); }
/**
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
*/
iterator find(const Key& key, std::size_t precalculated_hash) { return m_ht.find(key, precalculated_hash); }
const_iterator find(const Key& key) const { return m_ht.find(key); }
/**
* @copydoc find(const Key& key, std::size_t precalculated_hash)
*/
const_iterator find(const Key& key, std::size_t precalculated_hash) const {
return m_ht.find(key, precalculated_hash);
}
/**
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
* If so, K must be hashable and comparable to Key.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
iterator find(const K& key) { return m_ht.find(key); }
/**
* @copydoc find(const K& key)
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
iterator find(const K& key, std::size_t precalculated_hash) { return m_ht.find(key, precalculated_hash); }
/**
* @copydoc find(const K& key)
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
const_iterator find(const K& key) const { return m_ht.find(key); }
/**
* @copydoc find(const K& key)
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
const_iterator find(const K& key, std::size_t precalculated_hash) const {
return m_ht.find(key, precalculated_hash);
}
bool contains(const Key& key) const { return m_ht.contains(key); }
/**
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
*/
bool contains(const Key& key, std::size_t precalculated_hash) const {
return m_ht.contains(key, precalculated_hash);
}
/**
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
* If so, K must be hashable and comparable to Key.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
bool contains(const K& key) const { return m_ht.contains(key); }
/**
* @copydoc contains(const K& key) const
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
bool contains(const K& key, std::size_t precalculated_hash) const {
return m_ht.contains(key, precalculated_hash);
}
std::pair<iterator, iterator> equal_range(const Key& key) { return m_ht.equal_range(key); }
/**
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
*/
std::pair<iterator, iterator> equal_range(const Key& key, std::size_t precalculated_hash) {
return m_ht.equal_range(key, precalculated_hash);
}
std::pair<const_iterator, const_iterator> equal_range(const Key& key) const { return m_ht.equal_range(key); }
/**
* @copydoc equal_range(const Key& key, std::size_t precalculated_hash)
*/
std::pair<const_iterator, const_iterator> equal_range(const Key& key, std::size_t precalculated_hash) const {
return m_ht.equal_range(key, precalculated_hash);
}
/**
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
* If so, K must be hashable and comparable to Key.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
std::pair<iterator, iterator> equal_range(const K& key) { return m_ht.equal_range(key); }
/**
* @copydoc equal_range(const K& key)
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
std::pair<iterator, iterator> equal_range(const K& key, std::size_t precalculated_hash) {
return m_ht.equal_range(key, precalculated_hash);
}
/**
* @copydoc equal_range(const K& key)
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
std::pair<const_iterator, const_iterator> equal_range(const K& key) const { return m_ht.equal_range(key); }
/**
* @copydoc equal_range(const K& key, std::size_t precalculated_hash)
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
std::pair<const_iterator, const_iterator> equal_range(const K& key, std::size_t precalculated_hash) const {
return m_ht.equal_range(key, precalculated_hash);
}
/*
* Bucket interface
*/
size_type bucket_count() const { return m_ht.bucket_count(); }
size_type max_bucket_count() const { return m_ht.max_bucket_count(); }
/*
* Hash policy
*/
float load_factor() const { return m_ht.load_factor(); }
float min_load_factor() const { return m_ht.min_load_factor(); }
float max_load_factor() const { return m_ht.max_load_factor(); }
/**
* Set the `min_load_factor` to `ml`. When the `load_factor` of the map goes
* below `min_load_factor` after some erase operations, the map will be
* shrunk when an insertion occurs. The erase method itself never shrinks
* the map.
*
* The default value of `min_load_factor` is 0.0f, the map never shrinks by default.
*/
void min_load_factor(float ml) { m_ht.min_load_factor(ml); }
void max_load_factor(float ml) { m_ht.max_load_factor(ml); }
void rehash(size_type count) { m_ht.rehash(count); }
void reserve(size_type count) { m_ht.reserve(count); }
/*
* Observers
*/
hasher hash_function() const { return m_ht.hash_function(); }
key_equal key_eq() const { return m_ht.key_eq(); }
/*
* Other
*/
/**
* Convert a const_iterator to an iterator.
*/
iterator mutable_iterator(const_iterator pos) {
return m_ht.mutable_iterator(pos);
}
friend bool operator==(const robin_map& lhs, const robin_map& rhs) {
if(lhs.size() != rhs.size()) {
return false;
}
for(const auto& element_lhs: lhs) {
const auto it_element_rhs = rhs.find(element_lhs.first);
if(it_element_rhs == rhs.cend() || element_lhs.second != it_element_rhs->second) {
return false;
}
}
return true;
}
friend bool operator!=(const robin_map& lhs, const robin_map& rhs) {
return !operator==(lhs, rhs);
}
friend void swap(robin_map& lhs, robin_map& rhs) {
lhs.swap(rhs);
}
private:
ht m_ht;
};
/**
* Same as `tsl::robin_map<Key, T, Hash, KeyEqual, Allocator, StoreHash, tsl::rh::prime_growth_policy>`.
*/
template<class Key,
class T,
class Hash = std::hash<Key>,
class KeyEqual = std::equal_to<Key>,
class Allocator = std::allocator<std::pair<Key, T>>,
bool StoreHash = false>
using robin_pg_map = robin_map<Key, T, Hash, KeyEqual, Allocator, StoreHash, tsl::rh::prime_growth_policy>;
} // end namespace tsl
#endif

View File

@@ -0,0 +1,582 @@
/**
* MIT License
*
* Copyright (c) 2017 Tessil
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef TSL_ROBIN_SET_H
#define TSL_ROBIN_SET_H
#include <cstddef>
#include <functional>
#include <initializer_list>
#include <memory>
#include <type_traits>
#include <utility>
#include "robin_hash.h"
namespace tsl {
/**
* Implementation of a hash set using open-adressing and the robin hood hashing algorithm with backward shift deletion.
*
* For operations modifying the hash set (insert, erase, rehash, ...), the strong exception guarantee
* is only guaranteed when the expression `std::is_nothrow_swappable<Key>::value &&
* std::is_nothrow_move_constructible<Key>::value` is true, otherwise if an exception
* is thrown during the swap or the move, the hash set may end up in a undefined state. Per the standard
* a `Key` with a noexcept copy constructor and no move constructor also satisfies the
* `std::is_nothrow_move_constructible<Key>::value` criterion (and will thus guarantee the
* strong exception for the set).
*
* When `StoreHash` is true, 32 bits of the hash are stored alongside the values. It can improve
* the performance during lookups if the `KeyEqual` function takes time (or engenders a cache-miss for example)
* as we then compare the stored hashes before comparing the keys. When `tsl::rh::power_of_two_growth_policy` is used
* as `GrowthPolicy`, it may also speed-up the rehash process as we can avoid to recalculate the hash.
* When it is detected that storing the hash will not incur any memory penality due to alignement (i.e.
* `sizeof(tsl::detail_robin_hash::bucket_entry<ValueType, true>) ==
* sizeof(tsl::detail_robin_hash::bucket_entry<ValueType, false>)`) and `tsl::rh::power_of_two_growth_policy` is
* used, the hash will be stored even if `StoreHash` is false so that we can speed-up the rehash (but it will
* not be used on lookups unless `StoreHash` is true).
*
* `GrowthPolicy` defines how the set grows and consequently how a hash value is mapped to a bucket.
* By default the set uses `tsl::rh::power_of_two_growth_policy`. This policy keeps the number of buckets
* to a power of two and uses a mask to set the hash to a bucket instead of the slow modulo.
* Other growth policies are available and you may define your own growth policy,
* check `tsl::rh::power_of_two_growth_policy` for the interface.
*
* `Key` must be swappable.
*
* `Key` must be copy and/or move constructible.
*
* If the destructor of `Key` throws an exception, the behaviour of the class is undefined.
*
* Iterators invalidation:
* - clear, operator=, reserve, rehash: always invalidate the iterators.
* - insert, emplace, emplace_hint, operator[]: if there is an effective insert, invalidate the iterators.
* - erase: always invalidate the iterators.
*/
template<class Key,
class Hash = std::hash<Key>,
class KeyEqual = std::equal_to<Key>,
class Allocator = std::allocator<Key>,
bool StoreHash = false,
class GrowthPolicy = tsl::rh::power_of_two_growth_policy<2>>
class robin_set {
private:
template<typename U>
using has_is_transparent = tsl::detail_robin_hash::has_is_transparent<U>;
class KeySelect {
public:
using key_type = Key;
const key_type& operator()(const Key& key) const noexcept {
return key;
}
key_type& operator()(Key& key) noexcept {
return key;
}
};
using ht = detail_robin_hash::robin_hash<Key, KeySelect, void,
Hash, KeyEqual, Allocator, StoreHash, GrowthPolicy>;
public:
using key_type = typename ht::key_type;
using value_type = typename ht::value_type;
using size_type = typename ht::size_type;
using difference_type = typename ht::difference_type;
using hasher = typename ht::hasher;
using key_equal = typename ht::key_equal;
using allocator_type = typename ht::allocator_type;
using reference = typename ht::reference;
using const_reference = typename ht::const_reference;
using pointer = typename ht::pointer;
using const_pointer = typename ht::const_pointer;
using iterator = typename ht::iterator;
using const_iterator = typename ht::const_iterator;
/*
* Constructors
*/
robin_set(): robin_set(ht::DEFAULT_INIT_BUCKETS_SIZE) {
}
explicit robin_set(size_type bucket_count,
const Hash& hash = Hash(),
const KeyEqual& equal = KeyEqual(),
const Allocator& alloc = Allocator()):
m_ht(bucket_count, hash, equal, alloc)
{
}
robin_set(size_type bucket_count,
const Allocator& alloc): robin_set(bucket_count, Hash(), KeyEqual(), alloc)
{
}
robin_set(size_type bucket_count,
const Hash& hash,
const Allocator& alloc): robin_set(bucket_count, hash, KeyEqual(), alloc)
{
}
explicit robin_set(const Allocator& alloc): robin_set(ht::DEFAULT_INIT_BUCKETS_SIZE, alloc) {
}
template<class InputIt>
robin_set(InputIt first, InputIt last,
size_type bucket_count = ht::DEFAULT_INIT_BUCKETS_SIZE,
const Hash& hash = Hash(),
const KeyEqual& equal = KeyEqual(),
const Allocator& alloc = Allocator()): robin_set(bucket_count, hash, equal, alloc)
{
insert(first, last);
}
template<class InputIt>
robin_set(InputIt first, InputIt last,
size_type bucket_count,
const Allocator& alloc): robin_set(first, last, bucket_count, Hash(), KeyEqual(), alloc)
{
}
template<class InputIt>
robin_set(InputIt first, InputIt last,
size_type bucket_count,
const Hash& hash,
const Allocator& alloc): robin_set(first, last, bucket_count, hash, KeyEqual(), alloc)
{
}
robin_set(std::initializer_list<value_type> init,
size_type bucket_count = ht::DEFAULT_INIT_BUCKETS_SIZE,
const Hash& hash = Hash(),
const KeyEqual& equal = KeyEqual(),
const Allocator& alloc = Allocator()):
robin_set(init.begin(), init.end(), bucket_count, hash, equal, alloc)
{
}
robin_set(std::initializer_list<value_type> init,
size_type bucket_count,
const Allocator& alloc):
robin_set(init.begin(), init.end(), bucket_count, Hash(), KeyEqual(), alloc)
{
}
robin_set(std::initializer_list<value_type> init,
size_type bucket_count,
const Hash& hash,
const Allocator& alloc):
robin_set(init.begin(), init.end(), bucket_count, hash, KeyEqual(), alloc)
{
}
robin_set& operator=(std::initializer_list<value_type> ilist) {
m_ht.clear();
m_ht.reserve(ilist.size());
m_ht.insert(ilist.begin(), ilist.end());
return *this;
}
allocator_type get_allocator() const { return m_ht.get_allocator(); }
/*
* Iterators
*/
iterator begin() noexcept { return m_ht.begin(); }
const_iterator begin() const noexcept { return m_ht.begin(); }
const_iterator cbegin() const noexcept { return m_ht.cbegin(); }
iterator end() noexcept { return m_ht.end(); }
const_iterator end() const noexcept { return m_ht.end(); }
const_iterator cend() const noexcept { return m_ht.cend(); }
/*
* Capacity
*/
bool empty() const noexcept { return m_ht.empty(); }
size_type size() const noexcept { return m_ht.size(); }
size_type max_size() const noexcept { return m_ht.max_size(); }
/*
* Modifiers
*/
void clear() noexcept { m_ht.clear(); }
std::pair<iterator, bool> insert(const value_type& value) {
return m_ht.insert(value);
}
std::pair<iterator, bool> insert(value_type&& value) {
return m_ht.insert(std::move(value));
}
iterator insert(const_iterator hint, const value_type& value) {
return m_ht.insert_hint(hint, value);
}
iterator insert(const_iterator hint, value_type&& value) {
return m_ht.insert_hint(hint, std::move(value));
}
template<class InputIt>
void insert(InputIt first, InputIt last) {
m_ht.insert(first, last);
}
void insert(std::initializer_list<value_type> ilist) {
m_ht.insert(ilist.begin(), ilist.end());
}
/**
* Due to the way elements are stored, emplace will need to move or copy the key-value once.
* The method is equivalent to insert(value_type(std::forward<Args>(args)...));
*
* Mainly here for compatibility with the std::unordered_map interface.
*/
template<class... Args>
std::pair<iterator, bool> emplace(Args&&... args) {
return m_ht.emplace(std::forward<Args>(args)...);
}
/**
* Due to the way elements are stored, emplace_hint will need to move or copy the key-value once.
* The method is equivalent to insert(hint, value_type(std::forward<Args>(args)...));
*
* Mainly here for compatibility with the std::unordered_map interface.
*/
template<class... Args>
iterator emplace_hint(const_iterator hint, Args&&... args) {
return m_ht.emplace_hint(hint, std::forward<Args>(args)...);
}
iterator erase(iterator pos) { return m_ht.erase(pos); }
iterator erase(const_iterator pos) { return m_ht.erase(pos); }
iterator erase(const_iterator first, const_iterator last) { return m_ht.erase(first, last); }
size_type erase(const key_type& key) { return m_ht.erase(key); }
/**
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup to the value if you already have the hash.
*/
size_type erase(const key_type& key, std::size_t precalculated_hash) {
return m_ht.erase(key, precalculated_hash);
}
/**
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
* If so, K must be hashable and comparable to Key.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
size_type erase(const K& key) { return m_ht.erase(key); }
/**
* @copydoc erase(const K& key)
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup to the value if you already have the hash.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
size_type erase(const K& key, std::size_t precalculated_hash) {
return m_ht.erase(key, precalculated_hash);
}
void swap(robin_set& other) { other.m_ht.swap(m_ht); }
/*
* Lookup
*/
size_type count(const Key& key) const { return m_ht.count(key); }
/**
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
*/
size_type count(const Key& key, std::size_t precalculated_hash) const { return m_ht.count(key, precalculated_hash); }
/**
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
* If so, K must be hashable and comparable to Key.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
size_type count(const K& key) const { return m_ht.count(key); }
/**
* @copydoc count(const K& key) const
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
size_type count(const K& key, std::size_t precalculated_hash) const { return m_ht.count(key, precalculated_hash); }
iterator find(const Key& key) { return m_ht.find(key); }
/**
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
*/
iterator find(const Key& key, std::size_t precalculated_hash) { return m_ht.find(key, precalculated_hash); }
const_iterator find(const Key& key) const { return m_ht.find(key); }
/**
* @copydoc find(const Key& key, std::size_t precalculated_hash)
*/
const_iterator find(const Key& key, std::size_t precalculated_hash) const { return m_ht.find(key, precalculated_hash); }
/**
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
* If so, K must be hashable and comparable to Key.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
iterator find(const K& key) { return m_ht.find(key); }
/**
* @copydoc find(const K& key)
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
iterator find(const K& key, std::size_t precalculated_hash) { return m_ht.find(key, precalculated_hash); }
/**
* @copydoc find(const K& key)
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
const_iterator find(const K& key) const { return m_ht.find(key); }
/**
* @copydoc find(const K& key)
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
const_iterator find(const K& key, std::size_t precalculated_hash) const { return m_ht.find(key, precalculated_hash); }
bool contains(const Key& key) const { return m_ht.contains(key); }
/**
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
*/
bool contains(const Key& key, std::size_t precalculated_hash) const {
return m_ht.contains(key, precalculated_hash);
}
/**
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
* If so, K must be hashable and comparable to Key.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
bool contains(const K& key) const { return m_ht.contains(key); }
/**
* @copydoc contains(const K& key) const
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
bool contains(const K& key, std::size_t precalculated_hash) const {
return m_ht.contains(key, precalculated_hash);
}
std::pair<iterator, iterator> equal_range(const Key& key) { return m_ht.equal_range(key); }
/**
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
*/
std::pair<iterator, iterator> equal_range(const Key& key, std::size_t precalculated_hash) {
return m_ht.equal_range(key, precalculated_hash);
}
std::pair<const_iterator, const_iterator> equal_range(const Key& key) const { return m_ht.equal_range(key); }
/**
* @copydoc equal_range(const Key& key, std::size_t precalculated_hash)
*/
std::pair<const_iterator, const_iterator> equal_range(const Key& key, std::size_t precalculated_hash) const {
return m_ht.equal_range(key, precalculated_hash);
}
/**
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
* If so, K must be hashable and comparable to Key.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
std::pair<iterator, iterator> equal_range(const K& key) { return m_ht.equal_range(key); }
/**
* @copydoc equal_range(const K& key)
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
std::pair<iterator, iterator> equal_range(const K& key, std::size_t precalculated_hash) {
return m_ht.equal_range(key, precalculated_hash);
}
/**
* @copydoc equal_range(const K& key)
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
std::pair<const_iterator, const_iterator> equal_range(const K& key) const { return m_ht.equal_range(key); }
/**
* @copydoc equal_range(const K& key, std::size_t precalculated_hash)
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
std::pair<const_iterator, const_iterator> equal_range(const K& key, std::size_t precalculated_hash) const {
return m_ht.equal_range(key, precalculated_hash);
}
/*
* Bucket interface
*/
size_type bucket_count() const { return m_ht.bucket_count(); }
size_type max_bucket_count() const { return m_ht.max_bucket_count(); }
/*
* Hash policy
*/
float load_factor() const { return m_ht.load_factor(); }
float min_load_factor() const { return m_ht.min_load_factor(); }
float max_load_factor() const { return m_ht.max_load_factor(); }
/**
* Set the `min_load_factor` to `ml`. When the `load_factor` of the set goes
* below `min_load_factor` after some erase operations, the set will be
* shrunk when an insertion occurs. The erase method itself never shrinks
* the set.
*
* The default value of `min_load_factor` is 0.0f, the set never shrinks by default.
*/
void min_load_factor(float ml) { m_ht.min_load_factor(ml); }
void max_load_factor(float ml) { m_ht.max_load_factor(ml); }
void rehash(size_type count) { m_ht.rehash(count); }
void reserve(size_type count) { m_ht.reserve(count); }
/*
* Observers
*/
hasher hash_function() const { return m_ht.hash_function(); }
key_equal key_eq() const { return m_ht.key_eq(); }
/*
* Other
*/
/**
* Convert a const_iterator to an iterator.
*/
iterator mutable_iterator(const_iterator pos) {
return m_ht.mutable_iterator(pos);
}
friend bool operator==(const robin_set& lhs, const robin_set& rhs) {
if(lhs.size() != rhs.size()) {
return false;
}
for(const auto& element_lhs: lhs) {
const auto it_element_rhs = rhs.find(element_lhs);
if(it_element_rhs == rhs.cend()) {
return false;
}
}
return true;
}
friend bool operator!=(const robin_set& lhs, const robin_set& rhs) {
return !operator==(lhs, rhs);
}
friend void swap(robin_set& lhs, robin_set& rhs) {
lhs.swap(rhs);
}
private:
ht m_ht;
};
/**
* Same as `tsl::robin_set<Key, Hash, KeyEqual, Allocator, StoreHash, tsl::rh::prime_growth_policy>`.
*/
template<class Key,
class Hash = std::hash<Key>,
class KeyEqual = std::equal_to<Key>,
class Allocator = std::allocator<Key>,
bool StoreHash = false>
using robin_pg_set = robin_set<Key, Hash, KeyEqual, Allocator, StoreHash, tsl::rh::prime_growth_policy>;
} // end namespace tsl
#endif

View File

@@ -0,0 +1,295 @@
/**
* MIT License
*
* Copyright (c) 2017 Tessil
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef TSL_SPARSE_GROWTH_POLICY_H
#define TSL_SPARSE_GROWTH_POLICY_H
#include <algorithm>
#include <array>
#include <climits>
#include <cmath>
#include <cstddef>
#include <iterator>
#include <limits>
#include <ratio>
#include <stdexcept>
namespace tsl {
namespace sh {
/**
* Grow the hash table by a factor of GrowthFactor keeping the bucket count to a power of two. It allows
* the table to use a mask operation instead of a modulo operation to map a hash to a bucket.
*
* GrowthFactor must be a power of two >= 2.
*/
template<std::size_t GrowthFactor>
class power_of_two_growth_policy {
public:
/**
* Called on the hash table creation and on rehash. The number of buckets for the table is passed in parameter.
* This number is a minimum, the policy may update this value with a higher value if needed (but not lower).
*
* If 0 is given, min_bucket_count_in_out must still be 0 after the policy creation and
* bucket_for_hash must always return 0 in this case.
*/
explicit power_of_two_growth_policy(std::size_t& min_bucket_count_in_out) {
if(min_bucket_count_in_out > max_bucket_count()) {
throw std::length_error("The hash table exceeds its maxmimum size.");
}
if(min_bucket_count_in_out > 0) {
min_bucket_count_in_out = round_up_to_power_of_two(min_bucket_count_in_out);
m_mask = min_bucket_count_in_out - 1;
}
else {
m_mask = 0;
}
}
/**
* Return the bucket [0, bucket_count()) to which the hash belongs.
* If bucket_count() is 0, it must always return 0.
*/
std::size_t bucket_for_hash(std::size_t hash) const noexcept {
return hash & m_mask;
}
/**
* Return the number of buckets that should be used on next growth.
*/
std::size_t next_bucket_count() const {
if((m_mask + 1) > max_bucket_count() / GrowthFactor) {
throw std::length_error("The hash table exceeds its maxmimum size.");
}
return (m_mask + 1) * GrowthFactor;
}
/**
* Return the maximum number of buckets supported by the policy.
*/
std::size_t max_bucket_count() const {
// Largest power of two.
return (std::numeric_limits<std::size_t>::max() / 2) + 1;
}
/**
* Reset the growth policy as if it was created with a bucket count of 0.
* After a clear, the policy must always return 0 when bucket_for_hash is called.
*/
void clear() noexcept {
m_mask = 0;
}
private:
static std::size_t round_up_to_power_of_two(std::size_t value) {
if(is_power_of_two(value)) {
return value;
}
if(value == 0) {
return 1;
}
--value;
for(std::size_t i = 1; i < sizeof(std::size_t) * CHAR_BIT; i *= 2) {
value |= value >> i;
}
return value + 1;
}
static constexpr bool is_power_of_two(std::size_t value) {
return value != 0 && (value & (value - 1)) == 0;
}
protected:
static_assert(is_power_of_two(GrowthFactor) && GrowthFactor >= 2, "GrowthFactor must be a power of two >= 2.");
std::size_t m_mask;
};
/**
* Grow the hash table by GrowthFactor::num / GrowthFactor::den and use a modulo to map a hash
* to a bucket. Slower but it can be useful if you want a slower growth.
*/
template<class GrowthFactor = std::ratio<3, 2>>
class mod_growth_policy {
public:
explicit mod_growth_policy(std::size_t& min_bucket_count_in_out) {
if(min_bucket_count_in_out > max_bucket_count()) {
throw std::length_error("The hash table exceeds its maxmimum size.");
}
if(min_bucket_count_in_out > 0) {
m_mod = min_bucket_count_in_out;
}
else {
m_mod = 1;
}
}
std::size_t bucket_for_hash(std::size_t hash) const noexcept {
return hash % m_mod;
}
std::size_t next_bucket_count() const {
if(m_mod == max_bucket_count()) {
throw std::length_error("The hash table exceeds its maxmimum size.");
}
const double next_bucket_count = std::ceil(double(m_mod) * REHASH_SIZE_MULTIPLICATION_FACTOR);
if(!std::isnormal(next_bucket_count)) {
throw std::length_error("The hash table exceeds its maxmimum size.");
}
if(next_bucket_count > double(max_bucket_count())) {
return max_bucket_count();
}
else {
return std::size_t(next_bucket_count);
}
}
std::size_t max_bucket_count() const {
return MAX_BUCKET_COUNT;
}
void clear() noexcept {
m_mod = 1;
}
private:
static constexpr double REHASH_SIZE_MULTIPLICATION_FACTOR = 1.0 * GrowthFactor::num / GrowthFactor::den;
static const std::size_t MAX_BUCKET_COUNT =
std::size_t(double(
std::numeric_limits<std::size_t>::max() / REHASH_SIZE_MULTIPLICATION_FACTOR
));
static_assert(REHASH_SIZE_MULTIPLICATION_FACTOR >= 1.1, "Growth factor should be >= 1.1.");
std::size_t m_mod;
};
namespace detail {
static constexpr const std::array<std::size_t, 40> PRIMES = {{
1ul, 5ul, 17ul, 29ul, 37ul, 53ul, 67ul, 79ul, 97ul, 131ul, 193ul, 257ul, 389ul, 521ul, 769ul, 1031ul,
1543ul, 2053ul, 3079ul, 6151ul, 12289ul, 24593ul, 49157ul, 98317ul, 196613ul, 393241ul, 786433ul,
1572869ul, 3145739ul, 6291469ul, 12582917ul, 25165843ul, 50331653ul, 100663319ul, 201326611ul,
402653189ul, 805306457ul, 1610612741ul, 3221225473ul, 4294967291ul
}};
template<unsigned int IPrime>
static constexpr std::size_t mod(std::size_t hash) { return hash % PRIMES[IPrime]; }
// MOD_PRIME[iprime](hash) returns hash % PRIMES[iprime]. This table allows for faster modulo as the
// compiler can optimize the modulo code better with a constant known at the compilation.
static constexpr const std::array<std::size_t(*)(std::size_t), 40> MOD_PRIME = {{
&mod<0>, &mod<1>, &mod<2>, &mod<3>, &mod<4>, &mod<5>, &mod<6>, &mod<7>, &mod<8>, &mod<9>, &mod<10>,
&mod<11>, &mod<12>, &mod<13>, &mod<14>, &mod<15>, &mod<16>, &mod<17>, &mod<18>, &mod<19>, &mod<20>,
&mod<21>, &mod<22>, &mod<23>, &mod<24>, &mod<25>, &mod<26>, &mod<27>, &mod<28>, &mod<29>, &mod<30>,
&mod<31>, &mod<32>, &mod<33>, &mod<34>, &mod<35>, &mod<36>, &mod<37> , &mod<38>, &mod<39>
}};
}
/**
* Grow the hash table by using prime numbers as bucket count. Slower than tsl::sh::power_of_two_growth_policy in
* general but will probably distribute the values around better in the buckets with a poor hash function.
*
* To allow the compiler to optimize the modulo operation, a lookup table is used with constant primes numbers.
*
* With a switch the code would look like:
* \code
* switch(iprime) { // iprime is the current prime of the hash table
* case 0: hash % 5ul;
* break;
* case 1: hash % 17ul;
* break;
* case 2: hash % 29ul;
* break;
* ...
* }
* \endcode
*
* Due to the constant variable in the modulo the compiler is able to optimize the operation
* by a series of multiplications, substractions and shifts.
*
* The 'hash % 5' could become something like 'hash - (hash * 0xCCCCCCCD) >> 34) * 5' in a 64 bits environement.
*/
class prime_growth_policy {
public:
explicit prime_growth_policy(std::size_t& min_bucket_count_in_out) {
auto it_prime = std::lower_bound(detail::PRIMES.begin(),
detail::PRIMES.end(), min_bucket_count_in_out);
if(it_prime == detail::PRIMES.end()) {
throw std::length_error("The hash table exceeds its maxmimum size.");
}
m_iprime = static_cast<unsigned int>(std::distance(detail::PRIMES.begin(), it_prime));
if(min_bucket_count_in_out > 0) {
min_bucket_count_in_out = *it_prime;
}
else {
min_bucket_count_in_out = 0;
}
}
std::size_t bucket_for_hash(std::size_t hash) const noexcept {
return detail::MOD_PRIME[m_iprime](hash);
}
std::size_t next_bucket_count() const {
if(m_iprime + 1 >= detail::PRIMES.size()) {
throw std::length_error("The hash table exceeds its maxmimum size.");
}
return detail::PRIMES[m_iprime + 1];
}
std::size_t max_bucket_count() const {
return detail::PRIMES.back();
}
void clear() noexcept {
m_iprime = 0;
}
private:
unsigned int m_iprime;
static_assert(std::numeric_limits<decltype(m_iprime)>::max() >= detail::PRIMES.size(),
"The type of m_iprime is not big enough.");
};
}
}
#endif

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,749 @@
/**
* MIT License
*
* Copyright (c) 2017 Tessil
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef TSL_SPARSE_MAP_H
#define TSL_SPARSE_MAP_H
#include <cstddef>
#include <functional>
#include <initializer_list>
#include <memory>
#include <type_traits>
#include <utility>
#include "sparse_hash.h"
namespace tsl {
/**
* Implementation of a sparse hash map using open-addressing with quadratic probing.
* The goal on the hash map is to be the most memory efficient possible, even at low load factor,
* while keeping reasonable performances.
*
* `GrowthPolicy` defines how the map grows and consequently how a hash value is mapped to a bucket.
* By default the map uses `tsl::sh::power_of_two_growth_policy`. This policy keeps the number of buckets
* to a power of two and uses a mask to map the hash to a bucket instead of the slow modulo.
* Other growth policies are available and you may define your own growth policy,
* check `tsl::sh::power_of_two_growth_policy` for the interface.
*
* `ExceptionSafety` defines the exception guarantee provided by the class. By default only the basic
* exception safety is guaranteed which mean that all resources used by the hash map will be freed (no memory leaks)
* but the hash map may end-up in an undefined state if an exception is thrown (undefined here means that some elements
* may be missing). This can ONLY happen on rehash (either on insert or if `rehash` is called explicitly) and will
* occur if the Allocator can't allocate memory (`std::bad_alloc`) or if the copy constructor (when a nothrow
* move constructor is not available) throws an exception. This can be avoided by calling `reserve` beforehand.
* This basic guarantee is similar to the one of `google::sparse_hash_map` and `spp::sparse_hash_map`.
* It is possible to ask for the strong exception guarantee with `tsl::sh::exception_safety::strong`, the drawback
* is that the map will be slower on rehashes and will also need more memory on rehashes.
*
* `Sparsity` defines how much the hash set will compromise between insertion speed and memory usage. A high
* sparsity means less memory usage but longer insertion times, and vice-versa for low sparsity. The default
* `tsl::sh::sparsity::medium` sparsity offers a good compromise. It doesn't change the lookup speed.
*
* `Key` and `T` must be nothrow move constructible and/or copy constructible.
*
* If the destructor of `Key` or `T` throws an exception, the behaviour of the class is undefined.
*
* Iterators invalidation:
* - clear, operator=, reserve, rehash: always invalidate the iterators.
* - insert, emplace, emplace_hint, operator[]: if there is an effective insert, invalidate the iterators.
* - erase: always invalidate the iterators.
*/
template<class Key,
class T,
class Hash = std::hash<Key>,
class KeyEqual = std::equal_to<Key>,
class Allocator = std::allocator<std::pair<Key, T>>,
class GrowthPolicy = tsl::sh::power_of_two_growth_policy<2>,
tsl::sh::exception_safety ExceptionSafety = tsl::sh::exception_safety::basic,
tsl::sh::sparsity Sparsity = tsl::sh::sparsity::medium>
class sparse_map {
private:
template<typename U>
using has_is_transparent = tsl::detail_sparse_hash::has_is_transparent<U>;
class KeySelect {
public:
using key_type = Key;
const key_type& operator()(const std::pair<Key, T>& key_value) const noexcept {
return key_value.first;
}
key_type& operator()(std::pair<Key, T>& key_value) noexcept {
return key_value.first;
}
};
class ValueSelect {
public:
using value_type = T;
const value_type& operator()(const std::pair<Key, T>& key_value) const noexcept {
return key_value.second;
}
value_type& operator()(std::pair<Key, T>& key_value) noexcept {
return key_value.second;
}
};
using ht = detail_sparse_hash::sparse_hash<std::pair<Key, T>, KeySelect, ValueSelect,
Hash, KeyEqual, Allocator, GrowthPolicy,
ExceptionSafety, Sparsity,
tsl::sh::probing::quadratic>;
public:
using key_type = typename ht::key_type;
using mapped_type = T;
using value_type = typename ht::value_type;
using size_type = typename ht::size_type;
using difference_type = typename ht::difference_type;
using hasher = typename ht::hasher;
using key_equal = typename ht::key_equal;
using allocator_type = typename ht::allocator_type;
using reference = typename ht::reference;
using const_reference = typename ht::const_reference;
using pointer = typename ht::pointer;
using const_pointer = typename ht::const_pointer;
using iterator = typename ht::iterator;
using const_iterator = typename ht::const_iterator;
public:
/*
* Constructors
*/
sparse_map(): sparse_map(ht::DEFAULT_INIT_BUCKET_COUNT) {
}
explicit sparse_map(size_type bucket_count,
const Hash& hash = Hash(),
const KeyEqual& equal = KeyEqual(),
const Allocator& alloc = Allocator()):
m_ht(bucket_count, hash, equal, alloc, ht::DEFAULT_MAX_LOAD_FACTOR)
{
}
sparse_map(size_type bucket_count,
const Allocator& alloc): sparse_map(bucket_count, Hash(), KeyEqual(), alloc)
{
}
sparse_map(size_type bucket_count,
const Hash& hash,
const Allocator& alloc): sparse_map(bucket_count, hash, KeyEqual(), alloc)
{
}
explicit sparse_map(const Allocator& alloc): sparse_map(ht::DEFAULT_INIT_BUCKET_COUNT, alloc) {
}
template<class InputIt>
sparse_map(InputIt first, InputIt last,
size_type bucket_count = ht::DEFAULT_INIT_BUCKET_COUNT,
const Hash& hash = Hash(),
const KeyEqual& equal = KeyEqual(),
const Allocator& alloc = Allocator()): sparse_map(bucket_count, hash, equal, alloc)
{
insert(first, last);
}
template<class InputIt>
sparse_map(InputIt first, InputIt last,
size_type bucket_count,
const Allocator& alloc): sparse_map(first, last, bucket_count, Hash(), KeyEqual(), alloc)
{
}
template<class InputIt>
sparse_map(InputIt first, InputIt last,
size_type bucket_count,
const Hash& hash,
const Allocator& alloc): sparse_map(first, last, bucket_count, hash, KeyEqual(), alloc)
{
}
sparse_map(std::initializer_list<value_type> init,
size_type bucket_count = ht::DEFAULT_INIT_BUCKET_COUNT,
const Hash& hash = Hash(),
const KeyEqual& equal = KeyEqual(),
const Allocator& alloc = Allocator()):
sparse_map(init.begin(), init.end(), bucket_count, hash, equal, alloc)
{
}
sparse_map(std::initializer_list<value_type> init,
size_type bucket_count,
const Allocator& alloc):
sparse_map(init.begin(), init.end(), bucket_count, Hash(), KeyEqual(), alloc)
{
}
sparse_map(std::initializer_list<value_type> init,
size_type bucket_count,
const Hash& hash,
const Allocator& alloc):
sparse_map(init.begin(), init.end(), bucket_count, hash, KeyEqual(), alloc)
{
}
sparse_map& operator=(std::initializer_list<value_type> ilist) {
m_ht.clear();
m_ht.reserve(ilist.size());
m_ht.insert(ilist.begin(), ilist.end());
return *this;
}
allocator_type get_allocator() const { return m_ht.get_allocator(); }
/*
* Iterators
*/
iterator begin() noexcept { return m_ht.begin(); }
const_iterator begin() const noexcept { return m_ht.begin(); }
const_iterator cbegin() const noexcept { return m_ht.cbegin(); }
iterator end() noexcept { return m_ht.end(); }
const_iterator end() const noexcept { return m_ht.end(); }
const_iterator cend() const noexcept { return m_ht.cend(); }
/*
* Capacity
*/
bool empty() const noexcept { return m_ht.empty(); }
size_type size() const noexcept { return m_ht.size(); }
size_type max_size() const noexcept { return m_ht.max_size(); }
/*
* Modifiers
*/
void clear() noexcept { m_ht.clear(); }
std::pair<iterator, bool> insert(const value_type& value) {
return m_ht.insert(value);
}
template<class P, typename std::enable_if<std::is_constructible<value_type, P&&>::value>::type* = nullptr>
std::pair<iterator, bool> insert(P&& value) {
return m_ht.emplace(std::forward<P>(value));
}
std::pair<iterator, bool> insert(value_type&& value) {
return m_ht.insert(std::move(value));
}
iterator insert(const_iterator hint, const value_type& value) {
return m_ht.insert_hint(hint, value);
}
template<class P, typename std::enable_if<std::is_constructible<value_type, P&&>::value>::type* = nullptr>
iterator insert(const_iterator hint, P&& value) {
return m_ht.emplace_hint(hint, std::forward<P>(value));
}
iterator insert(const_iterator hint, value_type&& value) {
return m_ht.insert_hint(hint, std::move(value));
}
template<class InputIt>
void insert(InputIt first, InputIt last) {
m_ht.insert(first, last);
}
void insert(std::initializer_list<value_type> ilist) {
m_ht.insert(ilist.begin(), ilist.end());
}
template<class M>
std::pair<iterator, bool> insert_or_assign(const key_type& k, M&& obj) {
return m_ht.insert_or_assign(k, std::forward<M>(obj));
}
template<class M>
std::pair<iterator, bool> insert_or_assign(key_type&& k, M&& obj) {
return m_ht.insert_or_assign(std::move(k), std::forward<M>(obj));
}
template<class M>
iterator insert_or_assign(const_iterator hint, const key_type& k, M&& obj) {
return m_ht.insert_or_assign(hint, k, std::forward<M>(obj));
}
template<class M>
iterator insert_or_assign(const_iterator hint, key_type&& k, M&& obj) {
return m_ht.insert_or_assign(hint, std::move(k), std::forward<M>(obj));
}
/**
* Due to the way elements are stored, emplace will need to move or copy the key-value once.
* The method is equivalent to `insert(value_type(std::forward<Args>(args)...));`.
*
* Mainly here for compatibility with the `std::unordered_map` interface.
*/
template<class... Args>
std::pair<iterator, bool> emplace(Args&&... args) {
return m_ht.emplace(std::forward<Args>(args)...);
}
/**
* Due to the way elements are stored, emplace_hint will need to move or copy the key-value once.
* The method is equivalent to `insert(hint, value_type(std::forward<Args>(args)...));`.
*
* Mainly here for compatibility with the `std::unordered_map` interface.
*/
template<class... Args>
iterator emplace_hint(const_iterator hint, Args&&... args) {
return m_ht.emplace_hint(hint, std::forward<Args>(args)...);
}
template<class... Args>
std::pair<iterator, bool> try_emplace(const key_type& k, Args&&... args) {
return m_ht.try_emplace(k, std::forward<Args>(args)...);
}
template<class... Args>
std::pair<iterator, bool> try_emplace(key_type&& k, Args&&... args) {
return m_ht.try_emplace(std::move(k), std::forward<Args>(args)...);
}
template<class... Args>
iterator try_emplace(const_iterator hint, const key_type& k, Args&&... args) {
return m_ht.try_emplace_hint(hint, k, std::forward<Args>(args)...);
}
template<class... Args>
iterator try_emplace(const_iterator hint, key_type&& k, Args&&... args) {
return m_ht.try_emplace_hint(hint, std::move(k), std::forward<Args>(args)...);
}
iterator erase(iterator pos) { return m_ht.erase(pos); }
iterator erase(const_iterator pos) { return m_ht.erase(pos); }
iterator erase(const_iterator first, const_iterator last) { return m_ht.erase(first, last); }
size_type erase(const key_type& key) { return m_ht.erase(key); }
/**
* Use the hash value `precalculated_hash` instead of hashing the key. The hash value should be the same
* as `hash_function()(key)`, otherwise the behaviour is undefined. Useful to speed-up the lookup
* if you already have the hash.
*/
size_type erase(const key_type& key, std::size_t precalculated_hash) {
return m_ht.erase(key, precalculated_hash);
}
/**
* This overload only participates in the overload resolution if the typedef `KeyEqual::is_transparent` exists.
* If so, `K` must be hashable and comparable to `Key`.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
size_type erase(const K& key) { return m_ht.erase(key); }
/**
* @copydoc erase(const K& key)
*
* Use the hash value `precalculated_hash` instead of hashing the key. The hash value should be the same
* as `hash_function()(key)`, otherwise the behaviour is undefined. Useful to speed-up the lookup
* if you already have the hash.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
size_type erase(const K& key, std::size_t precalculated_hash) {
return m_ht.erase(key, precalculated_hash);
}
void swap(sparse_map& other) { other.m_ht.swap(m_ht); }
/*
* Lookup
*/
T& at(const Key& key) { return m_ht.at(key); }
/**
* Use the hash value `precalculated_hash` instead of hashing the key. The hash value should be the same
* as `hash_function()(key)`, otherwise the behaviour is undefined. Useful to speed-up the lookup
* if you already have the hash.
*/
T& at(const Key& key, std::size_t precalculated_hash) { return m_ht.at(key, precalculated_hash); }
const T& at(const Key& key) const { return m_ht.at(key); }
/**
* @copydoc at(const Key& key, std::size_t precalculated_hash)
*/
const T& at(const Key& key, std::size_t precalculated_hash) const { return m_ht.at(key, precalculated_hash); }
/**
* This overload only participates in the overload resolution if the typedef `KeyEqual::is_transparent` exists.
* If so, `K` must be hashable and comparable to `Key`.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
T& at(const K& key) { return m_ht.at(key); }
/**
* @copydoc at(const K& key)
*
* Use the hash value `precalculated_hash` instead of hashing the key. The hash value should be the same
* as `hash_function()(key)`, otherwise the behaviour is undefined. Useful to speed-up the lookup
* if you already have the hash.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
T& at(const K& key, std::size_t precalculated_hash) { return m_ht.at(key, precalculated_hash); }
/**
* @copydoc at(const K& key)
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
const T& at(const K& key) const { return m_ht.at(key); }
/**
* @copydoc at(const K& key, std::size_t precalculated_hash)
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
const T& at(const K& key, std::size_t precalculated_hash) const { return m_ht.at(key, precalculated_hash); }
T& operator[](const Key& key) { return m_ht[key]; }
T& operator[](Key&& key) { return m_ht[std::move(key)]; }
size_type count(const Key& key) const { return m_ht.count(key); }
/**
* Use the hash value `precalculated_hash` instead of hashing the key. The hash value should be the same
* as `hash_function()(key)`, otherwise the behaviour is undefined. Useful to speed-up the lookup
* if you already have the hash.
*/
size_type count(const Key& key, std::size_t precalculated_hash) const {
return m_ht.count(key, precalculated_hash);
}
/**
* This overload only participates in the overload resolution if the typedef `KeyEqual::is_transparent` exists.
* If so, `K` must be hashable and comparable to `Key`.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
size_type count(const K& key) const { return m_ht.count(key); }
/**
* @copydoc count(const K& key) const
*
* Use the hash value `precalculated_hash` instead of hashing the key. The hash value should be the same
* as `hash_function()(key)`, otherwise the behaviour is undefined. Useful to speed-up the lookup
* if you already have the hash.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
size_type count(const K& key, std::size_t precalculated_hash) const { return m_ht.count(key, precalculated_hash); }
iterator find(const Key& key) { return m_ht.find(key); }
/**
* Use the hash value `precalculated_hash` instead of hashing the key. The hash value should be the same
* as `hash_function()(key)`, otherwise the behaviour is undefined. Useful to speed-up the lookup
* if you already have the hash.
*/
iterator find(const Key& key, std::size_t precalculated_hash) { return m_ht.find(key, precalculated_hash); }
const_iterator find(const Key& key) const { return m_ht.find(key); }
/**
* @copydoc find(const Key& key, std::size_t precalculated_hash)
*/
const_iterator find(const Key& key, std::size_t precalculated_hash) const {
return m_ht.find(key, precalculated_hash);
}
/**
* This overload only participates in the overload resolution if the typedef `KeyEqual::is_transparent` exists.
* If so, `K` must be hashable and comparable to `Key`.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
iterator find(const K& key) { return m_ht.find(key); }
/**
* @copydoc find(const K& key)
*
* Use the hash value `precalculated_hash` instead of hashing the key. The hash value should be the same
* as `hash_function()(key)`, otherwise the behaviour is undefined. Useful to speed-up the lookup
* if you already have the hash.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
iterator find(const K& key, std::size_t precalculated_hash) { return m_ht.find(key, precalculated_hash); }
/**
* @copydoc find(const K& key)
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
const_iterator find(const K& key) const { return m_ht.find(key); }
/**
* @copydoc find(const K& key)
*
* Use the hash value `precalculated_hash` instead of hashing the key. The hash value should be the same
* as `hash_function()(key)`, otherwise the behaviour is undefined. Useful to speed-up the lookup
* if you already have the hash.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
const_iterator find(const K& key, std::size_t precalculated_hash) const {
return m_ht.find(key, precalculated_hash);
}
bool contains(const Key& key) const { return m_ht.contains(key); }
/**
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
*/
bool contains(const Key& key, std::size_t precalculated_hash) const {
return m_ht.contains(key, precalculated_hash);
}
/**
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
* If so, K must be hashable and comparable to Key.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
bool contains(const K& key) const { return m_ht.contains(key); }
/**
* @copydoc contains(const K& key) const
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
bool contains(const K& key, std::size_t precalculated_hash) const {
return m_ht.contains(key, precalculated_hash);
}
std::pair<iterator, iterator> equal_range(const Key& key) { return m_ht.equal_range(key); }
/**
* Use the hash value `precalculated_hash` instead of hashing the key. The hash value should be the same
* as `hash_function()(key)`, otherwise the behaviour is undefined. Useful to speed-up the lookup
* if you already have the hash.
*/
std::pair<iterator, iterator> equal_range(const Key& key, std::size_t precalculated_hash) {
return m_ht.equal_range(key, precalculated_hash);
}
std::pair<const_iterator, const_iterator> equal_range(const Key& key) const { return m_ht.equal_range(key); }
/**
* @copydoc equal_range(const Key& key, std::size_t precalculated_hash)
*/
std::pair<const_iterator, const_iterator> equal_range(const Key& key, std::size_t precalculated_hash) const {
return m_ht.equal_range(key, precalculated_hash);
}
/**
* This overload only participates in the overload resolution if the typedef `KeyEqual::is_transparent` exists.
* If so, `K` must be hashable and comparable to `Key`.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
std::pair<iterator, iterator> equal_range(const K& key) { return m_ht.equal_range(key); }
/**
* @copydoc equal_range(const K& key)
*
* Use the hash value `precalculated_hash` instead of hashing the key. The hash value should be the same
* as `hash_function()(key)`, otherwise the behaviour is undefined. Useful to speed-up the lookup
* if you already have the hash.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
std::pair<iterator, iterator> equal_range(const K& key, std::size_t precalculated_hash) {
return m_ht.equal_range(key, precalculated_hash);
}
/**
* @copydoc equal_range(const K& key)
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
std::pair<const_iterator, const_iterator> equal_range(const K& key) const { return m_ht.equal_range(key); }
/**
* @copydoc equal_range(const K& key, std::size_t precalculated_hash)
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
std::pair<const_iterator, const_iterator> equal_range(const K& key, std::size_t precalculated_hash) const {
return m_ht.equal_range(key, precalculated_hash);
}
/*
* Bucket interface
*/
size_type bucket_count() const { return m_ht.bucket_count(); }
size_type max_bucket_count() const { return m_ht.max_bucket_count(); }
/*
* Hash policy
*/
float load_factor() const { return m_ht.load_factor(); }
float max_load_factor() const { return m_ht.max_load_factor(); }
void max_load_factor(float ml) { m_ht.max_load_factor(ml); }
void rehash(size_type count) { m_ht.rehash(count); }
void reserve(size_type count) { m_ht.reserve(count); }
/*
* Observers
*/
hasher hash_function() const { return m_ht.hash_function(); }
key_equal key_eq() const { return m_ht.key_eq(); }
/*
* Other
*/
/**
* Convert a `const_iterator` to an `iterator`.
*/
iterator mutable_iterator(const_iterator pos) {
return m_ht.mutable_iterator(pos);
}
/**
* Serialize the map through the `serializer` parameter.
*
* The `serializer` parameter must be a function object that supports the following call:
* - `template<typename U> void operator()(const U& value);` where the types `std::uint64_t`, `float` and `std::pair<Key, T>` must be supported for U.
*
* The implementation leaves binary compatibilty (endianness, IEEE 754 for floats, ...) of the types it serializes
* in the hands of the `Serializer` function object if compatibilty is required.
*/
template<class Serializer>
void serialize(Serializer& serializer) const {
m_ht.serialize(serializer);
}
/**
* Deserialize a previouly serialized map through the `deserializer` parameter.
*
* The `deserializer` parameter must be a function object that supports the following calls:
* - `template<typename U> U operator()();` where the types `std::uint64_t`, `float` and `std::pair<Key, T>` must be supported for U.
*
* If the deserialized hash map type is hash compatible with the serialized map, the deserialization process can be
* sped up by setting `hash_compatible` to true. To be hash compatible, the Hash, KeyEqual and GrowthPolicy must behave the
* same way than the ones used on the serialized map. The `std::size_t` must also be of the same size as the one on the platform used
* to serialize the map. If these criteria are not met, the behaviour is undefined with `hash_compatible` sets to true.
*
* The behaviour is undefined if the type `Key` and `T` of the `sparse_map` are not the same as the
* types used during serialization.
*
* The implementation leaves binary compatibilty (endianness, IEEE 754 for floats, size of int, ...) of the types it
* deserializes in the hands of the `Deserializer` function object if compatibilty is required.
*/
template<class Deserializer>
static sparse_map deserialize(Deserializer& deserializer, bool hash_compatible = false) {
sparse_map map(0);
map.m_ht.deserialize(deserializer, hash_compatible);
return map;
}
friend bool operator==(const sparse_map& lhs, const sparse_map& rhs) {
if(lhs.size() != rhs.size()) {
return false;
}
for(const auto& element_lhs: lhs) {
const auto it_element_rhs = rhs.find(element_lhs.first);
if(it_element_rhs == rhs.cend() || element_lhs.second != it_element_rhs->second) {
return false;
}
}
return true;
}
friend bool operator!=(const sparse_map& lhs, const sparse_map& rhs) {
return !operator==(lhs, rhs);
}
friend void swap(sparse_map& lhs, sparse_map& rhs) {
lhs.swap(rhs);
}
private:
ht m_ht;
};
/**
* Same as `tsl::sparse_map<Key, T, Hash, KeyEqual, Allocator, tsl::sh::prime_growth_policy>`.
*/
template<class Key,
class T,
class Hash = std::hash<Key>,
class KeyEqual = std::equal_to<Key>,
class Allocator = std::allocator<std::pair<Key, T>>>
using sparse_pg_map = sparse_map<Key, T, Hash, KeyEqual, Allocator, tsl::sh::prime_growth_policy>;
} // end namespace tsl
#endif

View File

@@ -0,0 +1,612 @@
/**
* MIT License
*
* Copyright (c) 2017 Tessil
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef TSL_SPARSE_SET_H
#define TSL_SPARSE_SET_H
#include <cstddef>
#include <functional>
#include <initializer_list>
#include <memory>
#include <type_traits>
#include <utility>
#include "sparse_hash.h"
namespace tsl {
/**
* Implementation of a sparse hash set using open-addressing with quadratic probing.
* The goal on the hash set is to be the most memory efficient possible, even at low load factor,
* while keeping reasonable performances.
*
* `GrowthPolicy` defines how the set grows and consequently how a hash value is mapped to a bucket.
* By default the set uses `tsl::sh::power_of_two_growth_policy`. This policy keeps the number of buckets
* to a power of two and uses a mask to map the hash to a bucket instead of the slow modulo.
* Other growth policies are available and you may define your own growth policy,
* check `tsl::sh::power_of_two_growth_policy` for the interface.
*
* `ExceptionSafety` defines the exception guarantee provided by the class. By default only the basic
* exception safety is guaranteed which mean that all resources used by the hash set will be freed (no memory leaks)
* but the hash set may end-up in an undefined state if an exception is thrown (undefined here means that some elements
* may be missing). This can ONLY happen on rehash (either on insert or if `rehash` is called explicitly) and will
* occur if the Allocator can't allocate memory (`std::bad_alloc`) or if the copy constructor (when a nothrow
* move constructor is not available) throws an exception. This can be avoided by calling `reserve` beforehand.
* This basic guarantee is similar to the one of `google::sparse_hash_map` and `spp::sparse_hash_map`.
* It is possible to ask for the strong exception guarantee with `tsl::sh::exception_safety::strong`, the drawback
* is that the set will be slower on rehashes and will also need more memory on rehashes.
*
* `Sparsity` defines how much the hash set will compromise between insertion speed and memory usage. A high
* sparsity means less memory usage but longer insertion times, and vice-versa for low sparsity. The default
* `tsl::sh::sparsity::medium` sparsity offers a good compromise. It doesn't change the lookup speed.
*
* `Key` must be nothrow move constructible and/or copy constructible.
*
* If the destructor of `Key` throws an exception, the behaviour of the class is undefined.
*
* Iterators invalidation:
* - clear, operator=, reserve, rehash: always invalidate the iterators.
* - insert, emplace, emplace_hint: if there is an effective insert, invalidate the iterators.
* - erase: always invalidate the iterators.
*/
template<class Key,
class Hash = std::hash<Key>,
class KeyEqual = std::equal_to<Key>,
class Allocator = std::allocator<Key>,
class GrowthPolicy = tsl::sh::power_of_two_growth_policy<2>,
tsl::sh::exception_safety ExceptionSafety = tsl::sh::exception_safety::basic,
tsl::sh::sparsity Sparsity = tsl::sh::sparsity::medium>
class sparse_set {
private:
template<typename U>
using has_is_transparent = tsl::detail_sparse_hash::has_is_transparent<U>;
class KeySelect {
public:
using key_type = Key;
const key_type& operator()(const Key& key) const noexcept {
return key;
}
key_type& operator()(Key& key) noexcept {
return key;
}
};
using ht = detail_sparse_hash::sparse_hash<Key, KeySelect, void, Hash, KeyEqual, Allocator, GrowthPolicy,
ExceptionSafety, Sparsity,
tsl::sh::probing::quadratic>;
public:
using key_type = typename ht::key_type;
using value_type = typename ht::value_type;
using size_type = typename ht::size_type;
using difference_type = typename ht::difference_type;
using hasher = typename ht::hasher;
using key_equal = typename ht::key_equal;
using allocator_type = typename ht::allocator_type;
using reference = typename ht::reference;
using const_reference = typename ht::const_reference;
using pointer = typename ht::pointer;
using const_pointer = typename ht::const_pointer;
using iterator = typename ht::iterator;
using const_iterator = typename ht::const_iterator;
/*
* Constructors
*/
sparse_set(): sparse_set(ht::DEFAULT_INIT_BUCKET_COUNT) {
}
explicit sparse_set(size_type bucket_count,
const Hash& hash = Hash(),
const KeyEqual& equal = KeyEqual(),
const Allocator& alloc = Allocator()):
m_ht(bucket_count, hash, equal, alloc, ht::DEFAULT_MAX_LOAD_FACTOR)
{
}
sparse_set(size_type bucket_count,
const Allocator& alloc): sparse_set(bucket_count, Hash(), KeyEqual(), alloc)
{
}
sparse_set(size_type bucket_count,
const Hash& hash,
const Allocator& alloc): sparse_set(bucket_count, hash, KeyEqual(), alloc)
{
}
explicit sparse_set(const Allocator& alloc): sparse_set(ht::DEFAULT_INIT_BUCKET_COUNT, alloc) {
}
template<class InputIt>
sparse_set(InputIt first, InputIt last,
size_type bucket_count = ht::DEFAULT_INIT_BUCKET_COUNT,
const Hash& hash = Hash(),
const KeyEqual& equal = KeyEqual(),
const Allocator& alloc = Allocator()): sparse_set(bucket_count, hash, equal, alloc)
{
insert(first, last);
}
template<class InputIt>
sparse_set(InputIt first, InputIt last,
size_type bucket_count,
const Allocator& alloc): sparse_set(first, last, bucket_count, Hash(), KeyEqual(), alloc)
{
}
template<class InputIt>
sparse_set(InputIt first, InputIt last,
size_type bucket_count,
const Hash& hash,
const Allocator& alloc): sparse_set(first, last, bucket_count, hash, KeyEqual(), alloc)
{
}
sparse_set(std::initializer_list<value_type> init,
size_type bucket_count = ht::DEFAULT_INIT_BUCKET_COUNT,
const Hash& hash = Hash(),
const KeyEqual& equal = KeyEqual(),
const Allocator& alloc = Allocator()):
sparse_set(init.begin(), init.end(), bucket_count, hash, equal, alloc)
{
}
sparse_set(std::initializer_list<value_type> init,
size_type bucket_count,
const Allocator& alloc):
sparse_set(init.begin(), init.end(), bucket_count, Hash(), KeyEqual(), alloc)
{
}
sparse_set(std::initializer_list<value_type> init,
size_type bucket_count,
const Hash& hash,
const Allocator& alloc):
sparse_set(init.begin(), init.end(), bucket_count, hash, KeyEqual(), alloc)
{
}
sparse_set& operator=(std::initializer_list<value_type> ilist) {
m_ht.clear();
m_ht.reserve(ilist.size());
m_ht.insert(ilist.begin(), ilist.end());
return *this;
}
allocator_type get_allocator() const { return m_ht.get_allocator(); }
/*
* Iterators
*/
iterator begin() noexcept { return m_ht.begin(); }
const_iterator begin() const noexcept { return m_ht.begin(); }
const_iterator cbegin() const noexcept { return m_ht.cbegin(); }
iterator end() noexcept { return m_ht.end(); }
const_iterator end() const noexcept { return m_ht.end(); }
const_iterator cend() const noexcept { return m_ht.cend(); }
/*
* Capacity
*/
bool empty() const noexcept { return m_ht.empty(); }
size_type size() const noexcept { return m_ht.size(); }
size_type max_size() const noexcept { return m_ht.max_size(); }
/*
* Modifiers
*/
void clear() noexcept { m_ht.clear(); }
std::pair<iterator, bool> insert(const value_type& value) {
return m_ht.insert(value);
}
std::pair<iterator, bool> insert(value_type&& value) {
return m_ht.insert(std::move(value));
}
iterator insert(const_iterator hint, const value_type& value) {
return m_ht.insert_hint(hint, value);
}
iterator insert(const_iterator hint, value_type&& value) {
return m_ht.insert_hint(hint, std::move(value));
}
template<class InputIt>
void insert(InputIt first, InputIt last) {
m_ht.insert(first, last);
}
void insert(std::initializer_list<value_type> ilist) {
m_ht.insert(ilist.begin(), ilist.end());
}
/**
* Due to the way elements are stored, emplace will need to move or copy the key-value once.
* The method is equivalent to `insert(value_type(std::forward<Args>(args)...));`.
*
* Mainly here for compatibility with the `std::unordered_map` interface.
*/
template<class... Args>
std::pair<iterator, bool> emplace(Args&&... args) {
return m_ht.emplace(std::forward<Args>(args)...);
}
/**
* Due to the way elements are stored, emplace_hint will need to move or copy the key-value once.
* The method is equivalent to `insert(hint, value_type(std::forward<Args>(args)...));`.
*
* Mainly here for compatibility with the `std::unordered_map` interface.
*/
template<class... Args>
iterator emplace_hint(const_iterator hint, Args&&... args) {
return m_ht.emplace_hint(hint, std::forward<Args>(args)...);
}
iterator erase(iterator pos) { return m_ht.erase(pos); }
iterator erase(const_iterator pos) { return m_ht.erase(pos); }
iterator erase(const_iterator first, const_iterator last) { return m_ht.erase(first, last); }
size_type erase(const key_type& key) { return m_ht.erase(key); }
/**
* Use the hash value `precalculated_hash` instead of hashing the key. The hash value should be the same
* as `hash_function()(key)`, otherwise the behaviour is undefined. Useful to speed-up the lookup
* if you already have the hash.
*/
size_type erase(const key_type& key, std::size_t precalculated_hash) {
return m_ht.erase(key, precalculated_hash);
}
/**
* This overload only participates in the overload resolution if the typedef `KeyEqual::is_transparent` exists.
* If so, `K` must be hashable and comparable to `Key`.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
size_type erase(const K& key) { return m_ht.erase(key); }
/**
* @copydoc erase(const K& key)
*
* Use the hash value `precalculated_hash` instead of hashing the key. The hash value should be the same
* as `hash_function()(key)`, otherwise the behaviour is undefined. Useful to speed-up the lookup
* if you already have the hash.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
size_type erase(const K& key, std::size_t precalculated_hash) {
return m_ht.erase(key, precalculated_hash);
}
void swap(sparse_set& other) { other.m_ht.swap(m_ht); }
/*
* Lookup
*/
size_type count(const Key& key) const { return m_ht.count(key); }
/**
* Use the hash value `precalculated_hash` instead of hashing the key. The hash value should be the same
* as `hash_function()(key)`, otherwise the behaviour is undefined. Useful to speed-up the lookup
* if you already have the hash.
*/
size_type count(const Key& key, std::size_t precalculated_hash) const { return m_ht.count(key, precalculated_hash); }
/**
* This overload only participates in the overload resolution if the typedef `KeyEqual::is_transparent` exists.
* If so, `K` must be hashable and comparable to `Key`.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
size_type count(const K& key) const { return m_ht.count(key); }
/**
* @copydoc count(const K& key) const
*
* Use the hash value `precalculated_hash` instead of hashing the key. The hash value should be the same
* as `hash_function()(key)`, otherwise the behaviour is undefined. Useful to speed-up the lookup
* if you already have the hash.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
size_type count(const K& key, std::size_t precalculated_hash) const { return m_ht.count(key, precalculated_hash); }
iterator find(const Key& key) { return m_ht.find(key); }
/**
* Use the hash value `precalculated_hash` instead of hashing the key. The hash value should be the same
* as `hash_function()(key)`, otherwise the behaviour is undefined. Useful to speed-up the lookup
* if you already have the hash.
*/
iterator find(const Key& key, std::size_t precalculated_hash) { return m_ht.find(key, precalculated_hash); }
const_iterator find(const Key& key) const { return m_ht.find(key); }
/**
* @copydoc find(const Key& key, std::size_t precalculated_hash)
*/
const_iterator find(const Key& key, std::size_t precalculated_hash) const { return m_ht.find(key, precalculated_hash); }
/**
* This overload only participates in the overload resolution if the typedef `KeyEqual::is_transparent` exists.
* If so, `K` must be hashable and comparable to `Key`.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
iterator find(const K& key) { return m_ht.find(key); }
/**
* @copydoc find(const K& key)
*
* Use the hash value `precalculated_hash` instead of hashing the key. The hash value should be the same
* as `hash_function()(key)`, otherwise the behaviour is undefined. Useful to speed-up the lookup
* if you already have the hash.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
iterator find(const K& key, std::size_t precalculated_hash) { return m_ht.find(key, precalculated_hash); }
/**
* @copydoc find(const K& key)
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
const_iterator find(const K& key) const { return m_ht.find(key); }
/**
* @copydoc find(const K& key)
*
* Use the hash value `precalculated_hash` instead of hashing the key. The hash value should be the same
* as `hash_function()(key)`, otherwise the behaviour is undefined. Useful to speed-up the lookup
* if you already have the hash.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
const_iterator find(const K& key, std::size_t precalculated_hash) const { return m_ht.find(key, precalculated_hash); }
bool contains(const Key& key) const { return m_ht.contains(key); }
/**
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
*/
bool contains(const Key& key, std::size_t precalculated_hash) const {
return m_ht.contains(key, precalculated_hash);
}
/**
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
* If so, K must be hashable and comparable to Key.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
bool contains(const K& key) const { return m_ht.contains(key); }
/**
* @copydoc contains(const K& key) const
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
bool contains(const K& key, std::size_t precalculated_hash) const {
return m_ht.contains(key, precalculated_hash);
}
std::pair<iterator, iterator> equal_range(const Key& key) { return m_ht.equal_range(key); }
/**
* Use the hash value `precalculated_hash` instead of hashing the key. The hash value should be the same
* as `hash_function()(key)`, otherwise the behaviour is undefined. Useful to speed-up the lookup
* if you already have the hash.
*/
std::pair<iterator, iterator> equal_range(const Key& key, std::size_t precalculated_hash) {
return m_ht.equal_range(key, precalculated_hash);
}
std::pair<const_iterator, const_iterator> equal_range(const Key& key) const { return m_ht.equal_range(key); }
/**
* @copydoc equal_range(const Key& key, std::size_t precalculated_hash)
*/
std::pair<const_iterator, const_iterator> equal_range(const Key& key, std::size_t precalculated_hash) const {
return m_ht.equal_range(key, precalculated_hash);
}
/**
* This overload only participates in the overload resolution if the typedef `KeyEqual::is_transparent` exists.
* If so, `K` must be hashable and comparable to `Key`.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
std::pair<iterator, iterator> equal_range(const K& key) { return m_ht.equal_range(key); }
/**
* @copydoc equal_range(const K& key)
*
* Use the hash value `precalculated_hash` instead of hashing the key. The hash value should be the same
* as `hash_function()(key)`, otherwise the behaviour is undefined. Useful to speed-up the lookup
* if you already have the hash.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
std::pair<iterator, iterator> equal_range(const K& key, std::size_t precalculated_hash) {
return m_ht.equal_range(key, precalculated_hash);
}
/**
* @copydoc equal_range(const K& key)
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
std::pair<const_iterator, const_iterator> equal_range(const K& key) const { return m_ht.equal_range(key); }
/**
* @copydoc equal_range(const K& key, std::size_t precalculated_hash)
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
std::pair<const_iterator, const_iterator> equal_range(const K& key, std::size_t precalculated_hash) const {
return m_ht.equal_range(key, precalculated_hash);
}
/*
* Bucket interface
*/
size_type bucket_count() const { return m_ht.bucket_count(); }
size_type max_bucket_count() const { return m_ht.max_bucket_count(); }
/*
* Hash policy
*/
float load_factor() const { return m_ht.load_factor(); }
float max_load_factor() const { return m_ht.max_load_factor(); }
void max_load_factor(float ml) { m_ht.max_load_factor(ml); }
void rehash(size_type count) { m_ht.rehash(count); }
void reserve(size_type count) { m_ht.reserve(count); }
/*
* Observers
*/
hasher hash_function() const { return m_ht.hash_function(); }
key_equal key_eq() const { return m_ht.key_eq(); }
/*
* Other
*/
/**
* Convert a `const_iterator` to an `iterator`.
*/
iterator mutable_iterator(const_iterator pos) {
return m_ht.mutable_iterator(pos);
}
/**
* Serialize the set through the `serializer` parameter.
*
* The `serializer` parameter must be a function object that supports the following call:
* - `void operator()(const U& value);` where the types `std::uint64_t`, `float` and `Key` must be supported for U.
*
* The implementation leaves binary compatibilty (endianness, IEEE 754 for floats, ...) of the types it serializes
* in the hands of the `Serializer` function object if compatibilty is required.
*/
template<class Serializer>
void serialize(Serializer& serializer) const {
m_ht.serialize(serializer);
}
/**
* Deserialize a previouly serialized set through the `deserializer` parameter.
*
* The `deserializer` parameter must be a function object that supports the following calls:
* - `template<typename U> U operator()();` where the types `std::uint64_t`, `float` and `Key` must be supported for U.
*
* If the deserialized hash set type is hash compatible with the serialized set, the deserialization process can be
* sped up by setting `hash_compatible` to true. To be hash compatible, the Hash, KeyEqual and GrowthPolicy must behave the
* same way than the ones used on the serialized set. The `std::size_t` must also be of the same size as the one on the platform used
* to serialize the set. If these criteria are not met, the behaviour is undefined with `hash_compatible` sets to true.
*
* The behaviour is undefined if the type `Key` of the `sparse_set` is not the same as the
* type used during serialization.
*
* The implementation leaves binary compatibilty (endianness, IEEE 754 for floats, size of int, ...) of the types it
* deserializes in the hands of the `Deserializer` function object if compatibilty is required.
*/
template<class Deserializer>
static sparse_set deserialize(Deserializer& deserializer, bool hash_compatible = false) {
sparse_set set(0);
set.m_ht.deserialize(deserializer, hash_compatible);
return set;
}
friend bool operator==(const sparse_set& lhs, const sparse_set& rhs) {
if(lhs.size() != rhs.size()) {
return false;
}
for(const auto& element_lhs: lhs) {
const auto it_element_rhs = rhs.find(element_lhs);
if(it_element_rhs == rhs.cend()) {
return false;
}
}
return true;
}
friend bool operator!=(const sparse_set& lhs, const sparse_set& rhs) {
return !operator==(lhs, rhs);
}
friend void swap(sparse_set& lhs, sparse_set& rhs) {
lhs.swap(rhs);
}
private:
ht m_ht;
};
/**
* Same as `tsl::sparse_set<Key, Hash, KeyEqual, Allocator, tsl::sh::prime_growth_policy>`.
*/
template<class Key,
class Hash = std::hash<Key>,
class KeyEqual = std::equal_to<Key>,
class Allocator = std::allocator<Key>>
using sparse_pg_set = sparse_set<Key, Hash, KeyEqual, Allocator, tsl::sh::prime_growth_policy>;
} // end namespace tsl
#endif

View File

@@ -5,13 +5,14 @@
#include <ostream> #include <ostream>
#include <iostream> #include <iostream>
#include <thread> #include <thread>
#include <fstream>
vector<int> sizes = { vector<int> sizes = {
50000, 100000, 150000, 200000, 250000, 300000, 350000, 400000, 500000, 50000, 100000, 150000, 200000, 250000, 300000, 350000, 400000, 500000,
600000, 700000, 800000, 900000, 1000000, 600000, 700000, 800000, 900000, 1000000,
2000000, 3000000, 4000000, 5000000, 6000000, 7000000, 8000000, 9000000, 10000000, // 2000000, 3000000, 4000000, 5000000, 6000000, 7000000, 8000000, 9000000, 10000000,
15000000, 20000000, 25000000, 30000000, 35000000, 40000000, 45000000, 50000000 // 15000000, 20000000, 25000000, 30000000, 35000000, 40000000, 45000000, 50000000
}; };
// to print type info // to print type info

179
src/includes/prepare.h Normal file
View File

@@ -0,0 +1,179 @@
#ifndef PREPARE_H
#define PREPARE_H
#include <string>
// hashmaps and hash
#include <unordered_map>
#include <sparsehash/sparse_hash_map>
#include <sparsehash/dense_hash_map>
#include "./3thparty/abseil-cpp/absl/container/node_hash_map.h"
#include "./3thparty/abseil-cpp/absl/container/flat_hash_map.h"
#include "./3thparty/abseil-cpp/absl/hash/hash.h"
#include "./3thparty/tsl/sparse_map.h"
#include "./3thparty/tsl/array_map.h"
#include "./3thparty/tsl/ordered_map.h"
#include "./3thparty/tsl/robin_map.h"
#include "./3thparty/tsl/hopscotch_map.h"
#include <boost/unordered_map.hpp>
#include "./3thparty/skarupke/bytell_hash_map.hpp"
#include "./3thparty/skarupke/flat_hash_map.hpp"
#include "./3thparty/skarupke/unordered_map.hpp"
#include "./3thparty/parallel_hashmap/phmap.h"
#include "./3thparty/emilib/hash_map.hpp"
#include "3thparty/robinhood/robin_hood.h"
using std::string;
using absl::Hash;
// since my testing is based on this hashmap, this one doesn't need no prep
void prepare(std::unordered_map<int, int>& map,int size){
map.reserve(size);
}
void prepare(std::unordered_map<string, string>& map,int size){
map.reserve(size);
}
// goooooogle
void prepare(google::sparse_hash_map<int, int>& map, int size){
map.set_deleted_key(0);
}
void prepare(google::sparse_hash_map<string, string>& map, int size){
map.set_deleted_key("");
}
void prepare(google::dense_hash_map<int, int>& map, int size){
map.set_empty_key(0);
map.set_deleted_key(-1);
}
void prepare(google::dense_hash_map<string, string>& map, int size){
map.set_deleted_key("a");
map.set_empty_key("");
}
//absl
void prepare(absl::node_hash_map<int, int>& map, int size){
map.reserve(size);
}
void prepare(absl::node_hash_map<string, string>& map, int size){
map.reserve(size);
}
void prepare(absl::flat_hash_map<int, int>& map, int size){
map.reserve(size);
}
void prepare(absl::flat_hash_map<string, string>& map, int size){
map.reserve(size);
}
// tessil
void prepare(tsl::sparse_map<int, int>& map, int size){
map.reserve(size);
}
void prepare(tsl::sparse_map<string, string>& map, int size){
map.reserve(size);
}
void prepare(tsl::array_map<int, int>& map, int size){
// map.reserve(size);
}
void prepare(tsl::array_map<string, string>& map, int size){
// map.reserve(size);
}
void prepare(tsl::ordered_map<int, int>& map, int size){
map.reserve(size);
}
void prepare(tsl::ordered_map<string, string>& map, int size){
map.reserve(size);
}
void prepare(tsl::robin_map<int, int>& map, int size){
map.reserve(size);
}
void prepare(tsl::robin_map<string, string>& map, int size){
map.reserve(size);
}
void prepare(tsl::hopscotch_map<int, int>& map, int size){
map.reserve(size);
}
void prepare(tsl::hopscotch_map<string, string>& map, int size){
map.reserve(size);
}
// booooooost
void prepare(boost::unordered_map<int, int>& map, int size){
map.reserve(size);
}
void prepare(boost::unordered_map<string, string>& map, int size){
map.reserve(size);
}
// skarupke's maps
void prepare(ska::bytell_hash_map<int, int>& map, int size){
map.reserve(size);
}
void prepare(ska::bytell_hash_map<string, string>& map, int size){
map.reserve(size);
}
void prepare(ska::flat_hash_map<int, int>& map, int size){
map.reserve(size);
}
void prepare(ska::flat_hash_map<string, string>& map, int size){
map.reserve(size);
}
void prepare(ska::unordered_map<int, int>& map, int size){
map.reserve(size);
}
void prepare(ska::unordered_map<string, string>& map, int size){
map.reserve(size);
}
// Gregory Popovitch' paralel hashmaps
void prepare(phmap::parallel_flat_hash_map<int, int>& map, int size){
map.reserve(size);
}
void prepare(phmap::parallel_flat_hash_map<string, string>& map, int size){
map.reserve(size);
}
void prepare(phmap::parallel_node_hash_map<int, int>& map, int size){
map.reserve(size);
}
void prepare(phmap::parallel_node_hash_map<string, string>& map, int size){
map.reserve(size);
}
// emilib (Emil Ernerfeld library)
void prepare(emilib::HashMap<int, int>& map, int size){
map.reserve(size);
}
void prepare(emilib::HashMap<string, string>& map, int size){
map.reserve(size);
}
// martin robinhood
void prepare(robin_hood::unordered_flat_map<int, int>& map, int size){
map.reserve(size);
}
void prepare(robin_hood::unordered_flat_map<string, string>& map, int size){
map.reserve(size);
}
void prepare(robin_hood::unordered_node_map<int, int>& map, int size){
map.reserve(size);
}
void prepare(robin_hood::unordered_node_map<string, string>& map, int size){
map.reserve(size);
}
#endif /* TESTS_H */

View File

@@ -7,35 +7,20 @@
#include <iterator> #include <iterator>
#include <chrono> #include <chrono>
// maps
// #include <sparsehash/sparse_hash_map>
// own // own
#include "./generator.h" #include "./generator.h"
#include "./prepare.h"
using namespace std::chrono; using namespace std::chrono;
using std::vector; using std::vector;
using std::string;
using std::cout; using std::cout;
// since my testing is based on this function, this one doesn't need no prep
void prepare(std::unordered_map<int, int>& map,int size){
map.reserve(size);
return;
}
void prepare(std::unordered_map<string, string>& map,int size){
map.reserve(size);
return;
}
// void prepare(google::sparse_hash_map<int, int>& map, int size){
// map.set_deleted_key(0);
// return;
// }
template <class T> template <class T>
vector<int> int_test(T testmap, int size){ vector<int> int_test(T map, int size){
vector<int> results; // insert, lookup, unsuccesful lookup, delete times vector<int> results; // insert, lookup, unsuccesful lookup, delete times
vector<int> sample_keys; // get a sample of keys to lookup and later delete vector<int> sample_keys; // get a sample of keys to lookup and later delete
@@ -47,7 +32,7 @@ vector<int> int_test(T testmap, int size){
vector<int> insert_keys(10000); vector<int> insert_keys(10000);
std::generate(insert_keys.begin(), insert_keys.end(), gen_int); std::generate(insert_keys.begin(), insert_keys.end(), gen_int);
// T testmap {}; T testmap{};
prepare(testmap, size); // do special actions, such as setting the tombstone marker for other, more exotic hashmaps prepare(testmap, size); // do special actions, such as setting the tombstone marker for other, more exotic hashmaps
{ // seperate scope, so all_keys gets destroyed. for good measure, empty it too { // seperate scope, so all_keys gets destroyed. for good measure, empty it too
@@ -120,8 +105,6 @@ vector<int> int_test(T testmap, int size){
template <class T> template <class T>
vector<int> string_test(T map, int size){ vector<int> string_test(T map, int size){
vector<int> results; // insert, lookup, unsuccesful lookup, delete times vector<int> results; // insert, lookup, unsuccesful lookup, delete times
@@ -135,7 +118,8 @@ vector<int> string_test(T map, int size){
vector<string> insert_keys(10000); vector<string> insert_keys(10000);
std::generate(insert_keys.begin(), insert_keys.end(), gen_string); std::generate(insert_keys.begin(), insert_keys.end(), gen_string);
T testmap {};
T testmap{};
prepare(testmap, size); // do special actions, such as setting the tombstone marker for other, more exotic hashmaps prepare(testmap, size); // do special actions, such as setting the tombstone marker for other, more exotic hashmaps
{ // seperate scope, so all_keys gets destroyed. for good measure, empty it too { // seperate scope, so all_keys gets destroyed. for good measure, empty it too