tracing and configuration
This commit is contained in:
		
							
								
								
									
										37
									
								
								README.md
									
									
									
									
									
								
							
							
						
						
									
										37
									
								
								README.md
									
									
									
									
									
								
							@@ -8,6 +8,7 @@
 | 
			
		||||
1. [Requirements](#requirements)
 | 
			
		||||
2. [Quickstart](#quickstart)
 | 
			
		||||
3. [Deployment](#deployment-in-the-docker-swarm)
 | 
			
		||||
4. [Configuration](#configuration)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
## Requirements
 | 
			
		||||
@@ -33,12 +34,20 @@ This will run *gpu-jupyter* on the default port [localhost:8888](http://localhos
 | 
			
		||||
  ```bash
 | 
			
		||||
  ./start-local.sh -p [port]  # port must be an integer with 4 or more digits.
 | 
			
		||||
  ```
 | 
			
		||||
  
 | 
			
		||||
With these commands we can see if everything worked well:
 | 
			
		||||
```bash
 | 
			
		||||
docker-compose ps
 | 
			
		||||
docker logs [service-name]
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
In order to stop the local deployment, run:
 | 
			
		||||
 | 
			
		||||
  ```bash
 | 
			
		||||
  ./stop-local.sh
 | 
			
		||||
  ```
 | 
			
		||||
 
 | 
			
		||||
 
 | 
			
		||||
 ## Deployment in the Docker Swarm
 | 
			
		||||
 
 | 
			
		||||
A Jupyter instance often requires data from other services. 
 | 
			
		||||
@@ -103,3 +112,31 @@ where:
 | 
			
		||||
* and docker-network is the name of the attachable network from the previous step, e.g., here it is **elk_datastack**.
 | 
			
		||||
 | 
			
		||||
Now, *gpu-jupyter* will be accessable on [localhost:port](http://localhost:8888) and shares the network with the other data-source. I.e, all ports of the data-source will be accessable within *gpu-jupyter*, even if they aren't routed it the source's `docker-compose` file.
 | 
			
		||||
 | 
			
		||||
Check if everything works well using:
 | 
			
		||||
```bash
 | 
			
		||||
sudo docker service ps gpu_gpu-jupyter
 | 
			
		||||
docker service ps gpu_gpu-jupyter
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
In order to remove the service from the swarm, use:
 | 
			
		||||
```bash
 | 
			
		||||
./remove-from-swarm.sh
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
## Configuration
 | 
			
		||||
 | 
			
		||||
The password can be set in `src/jupyter_notebook_config.json`. Therefore, hash your 
 | 
			
		||||
password in the form (password)(salt) using a sha1 hash generator, 
 | 
			
		||||
e.g. the sha1 generator of [passwordsgenerator.net](https://passwordsgenerator.net/sha1-hash-generator/). 
 | 
			
		||||
The input with the default password and salt `asdfe49e73b0eb0e` should yield the hash string as shown in the config file below. **Never give away your own unhashed password!**
 | 
			
		||||
 | 
			
		||||
Then update the config file as shown below and restart the service.
 | 
			
		||||
 | 
			
		||||
```json
 | 
			
		||||
{
 | 
			
		||||
  "NotebookApp": {
 | 
			
		||||
    "password": "sha1:e49e73b0eb0e:32edae7a5fd119045e699a0bd04f90819ca90cd6"
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
```
 | 
			
		||||
 
 | 
			
		||||
		Reference in New Issue
	
	Block a user