Installing recommended packages and update conda, sample code with performance test

This commit is contained in:
Christoph Schranz 2019-12-20 11:23:31 +01:00
parent 2990c25457
commit e3a0bf2799
9 changed files with 7976 additions and 0 deletions

File diff suppressed because one or more lines are too long

View File

@ -0,0 +1,417 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# GPU-Jupyter\n",
"\n",
"This Jupyterlab Instance is connected to the GPU via CUDA drivers. In this notebook, we test the installation and perform some basic operations on the GPU."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Test GPU connection\n",
"\n",
"#### Using the following command, your GPU type and its NVIDIA-SMI driver version should be listed:"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Fri Dec 20 09:42:29 2019 \n",
"+-----------------------------------------------------------------------------+\n",
"| NVIDIA-SMI 440.26 Driver Version: 440.26 CUDA Version: 10.2 |\n",
"|-------------------------------+----------------------+----------------------+\n",
"| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |\n",
"| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |\n",
"|===============================+======================+======================|\n",
"| 0 GeForce RTX 207... Off | 00000000:01:00.0 Off | N/A |\n",
"| 0% 54C P0 38W / 215W | 204MiB / 7974MiB | 0% Default |\n",
"+-------------------------------+----------------------+----------------------+\n",
" \n",
"+-----------------------------------------------------------------------------+\n",
"| Processes: GPU Memory |\n",
"| GPU PID Type Process name Usage |\n",
"|=============================================================================|\n",
"+-----------------------------------------------------------------------------+\n"
]
}
],
"source": [
"!nvidia-smi"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Now, test if PyTorch can access the GPU via CUDA:"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"True"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import torch\n",
"torch.cuda.is_available()"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[name: \"/device:CPU:0\"\n",
" device_type: \"CPU\"\n",
" memory_limit: 268435456\n",
" locality {\n",
" }\n",
" incarnation: 891330946073693377, name: \"/device:XLA_CPU:0\"\n",
" device_type: \"XLA_CPU\"\n",
" memory_limit: 17179869184\n",
" locality {\n",
" }\n",
" incarnation: 9415777875944419380\n",
" physical_device_desc: \"device: XLA_CPU device\"]"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from tensorflow.python.client import device_lib\n",
"device_lib.list_local_devices()"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"tensor([[0.8722, 0.5115, 0.9504],\n",
" [0.7723, 0.2860, 0.5793],\n",
" [0.5388, 0.5681, 0.4295],\n",
" [0.5269, 0.5165, 0.7475],\n",
" [0.4882, 0.8255, 0.6498]])"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from __future__ import print_function\n",
"import numpy as np\n",
"import torch\n",
"a = torch.rand(5, 3)\n",
"a"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Performance test\n",
"\n",
"#### Now we want to know how much faster a typical operation is using GPU. Therefore we do the same operation in numpy, PyTorch and PyTorch with CUDA. The test operation is the calculation of the prediction matrix that is done in a linear regression."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 1) Numpy"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"x = np.random.rand(10000, 256)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"590 ms ± 41.6 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)\n"
]
}
],
"source": [
"%%timeit\n",
"H = x.dot(np.linalg.inv(x.transpose().dot(x))).dot(x.transpose())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 2) PyTorch"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"x = torch.rand(10000, 256)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"853 ms ± 16.6 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)\n"
]
}
],
"source": [
"%%timeit\n",
"# Calculate the projection matrix of x\n",
"H = x.mm( (x.t().mm(x)).inverse() ).mm(x.t())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 3) PyTorch on GPU via CUDA"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"tensor([[0.1054, 0.3291, 0.7729, 0.6005, 0.2372],\n",
" [0.1022, 0.4534, 0.3964, 0.9174, 0.2610],\n",
" [0.3969, 0.5472, 0.3876, 0.1979, 0.4063],\n",
" [0.3630, 0.6374, 0.4176, 0.4804, 0.0396],\n",
" [0.8256, 0.2289, 0.2265, 0.4388, 0.6070]], device='cuda:0')\n",
"tensor([[0.1054, 0.3291, 0.7729, 0.6005, 0.2372],\n",
" [0.1022, 0.4534, 0.3964, 0.9174, 0.2610],\n",
" [0.3969, 0.5472, 0.3876, 0.1979, 0.4063],\n",
" [0.3630, 0.6374, 0.4176, 0.4804, 0.0396],\n",
" [0.8256, 0.2289, 0.2265, 0.4388, 0.6070]], dtype=torch.float64)\n"
]
}
],
"source": [
"# let us run this cell only if CUDA is available\n",
"# We will use ``torch.device`` objects to move tensors in and out of GPU\n",
"if torch.cuda.is_available():\n",
" device = torch.device(\"cuda\") # a CUDA device object\n",
" x = torch.rand(10000, 256, device=device) # directly create a tensor on GPU\n",
" y = x.to(device) # or just use strings ``.to(\"cuda\")``\n",
" print(x[0:5, 0:5])\n",
" print(y.to(\"cpu\", torch.double)[0:5, 0:5])"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"11.3 ms ± 60.3 µs per loop (mean ± std. dev. of 7 runs, 1 loop each)\n"
]
}
],
"source": [
"%%timeit\n",
"H = x.mm( (x.t().mm(x)).inverse() ).mm(x.t())"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Exhaustive Testing on GPU"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
"# let us run this cell only if CUDA is available\n",
"# We will use ``torch.device`` objects to move tensors in and out of GPU\n",
"import torch\n",
"if torch.cuda.is_available():\n",
" device = torch.device(\"cuda\") # a CUDA device object\n",
" x = torch.rand(10000, 10, device=device) # directly create a tensor on GPU"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"tensor([[0.3112, 0.7480, 0.1882, 0.8453, 0.8198],\n",
" [0.5953, 0.8401, 0.3126, 0.6025, 0.5252],\n",
" [0.1902, 0.5610, 0.7968, 0.1463, 0.7154],\n",
" [0.7979, 0.2161, 0.6176, 0.2951, 0.1980],\n",
" [0.6451, 0.3837, 0.5305, 0.2740, 0.3330]], device='cuda:0')\n"
]
}
],
"source": [
"if torch.cuda.is_available():\n",
" y = x.to(device) # or just use strings ``.to(\"cuda\")``\n",
" print(x[0:5, 0:5])"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [],
"source": [
"if torch.cuda.is_available():\n",
" # Here is the memory of the GPU a border. \n",
" # A matrix with 100000 lines requires 37 GB, but only 8 GB are available.\n",
" H = x.mm( (x.t().mm(x)).inverse() ).mm(x.t())"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"tensor([[ 1.2748e-03, 5.3656e-04, 1.7376e-04, 3.3888e-06, -1.7049e-04],\n",
" [ 5.3656e-04, 6.3624e-04, 2.5957e-05, 3.3281e-04, -1.6239e-05],\n",
" [ 1.7376e-04, 2.5957e-05, 7.6328e-04, 7.7603e-05, 1.8272e-04],\n",
" [ 3.3888e-06, 3.3281e-04, 7.7603e-05, 9.6281e-04, 1.2375e-04],\n",
" [-1.7049e-04, -1.6239e-05, 1.8272e-04, 1.2375e-04, 6.9231e-04]],\n",
" device='cuda:0')\n"
]
}
],
"source": [
"if torch.cuda.is_available():\n",
" print(H[0:5, 0:5])"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"tensor([[ 1.2748e-03, 5.3656e-04, 1.7376e-04, 3.3888e-06, -1.7049e-04],\n",
" [ 5.3656e-04, 6.3624e-04, 2.5957e-05, 3.3281e-04, -1.6239e-05],\n",
" [ 1.7376e-04, 2.5957e-05, 7.6328e-04, 7.7603e-05, 1.8272e-04],\n",
" [ 3.3888e-06, 3.3281e-04, 7.7603e-05, 9.6281e-04, 1.2375e-04],\n",
" [-1.7049e-04, -1.6239e-05, 1.8272e-04, 1.2375e-04, 6.9231e-04]],\n",
" dtype=torch.float64)\n"
]
}
],
"source": [
"if torch.cuda.is_available():\n",
" # This operation is difficult, as an symmetric matrix is transferred \n",
" # back to the CPU. Is possible up to 30000 rows.\n",
" print(H.to(\"cpu\", torch.double)[0:5, 0:5])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.3"
}
},
"nbformat": 4,
"nbformat_minor": 4
}

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,337 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Getting Started\n",
"\n",
"**Markdown** is a method to write documentations and even embed `HTML` and `Latex` formulas.\n",
"\n",
"### Jupyter tutorial\n",
"\n",
"[![Jupyter Youtube Tutorial](https://img.youtube.com/vi/CwFq3YDU6_Y/0.jpg)](https://www.youtube.com/watch?v=CwFq3YDU6_Y?rel=0&showinfo=0)\n",
"\n",
"\n",
"### Bayesian Rule\n",
"$$P(A \\mid B) = \\frac{P(B \\mid A)P(A)}{P(B)}$$"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Coding and magic commands"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[1, 8, 27, 64, 125, 216, 343]"
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"[x**3 for x in range(1,8)]"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"application/json": {
"cell": {
"!": "OSMagics",
"HTML": "Other",
"SVG": "Other",
"bash": "Other",
"capture": "ExecutionMagics",
"debug": "ExecutionMagics",
"file": "Other",
"html": "DisplayMagics",
"javascript": "DisplayMagics",
"js": "DisplayMagics",
"latex": "DisplayMagics",
"markdown": "DisplayMagics",
"perl": "Other",
"prun": "ExecutionMagics",
"pypy": "Other",
"python": "Other",
"python2": "Other",
"python3": "Other",
"ruby": "Other",
"script": "ScriptMagics",
"sh": "Other",
"svg": "DisplayMagics",
"sx": "OSMagics",
"system": "OSMagics",
"time": "ExecutionMagics",
"timeit": "ExecutionMagics",
"writefile": "OSMagics"
},
"line": {
"alias": "OSMagics",
"alias_magic": "BasicMagics",
"autoawait": "AsyncMagics",
"autocall": "AutoMagics",
"automagic": "AutoMagics",
"autosave": "KernelMagics",
"bookmark": "OSMagics",
"cat": "Other",
"cd": "OSMagics",
"clear": "KernelMagics",
"colors": "BasicMagics",
"conda": "PackagingMagics",
"config": "ConfigMagics",
"connect_info": "KernelMagics",
"cp": "Other",
"debug": "ExecutionMagics",
"dhist": "OSMagics",
"dirs": "OSMagics",
"doctest_mode": "BasicMagics",
"ed": "Other",
"edit": "KernelMagics",
"env": "OSMagics",
"gui": "BasicMagics",
"hist": "Other",
"history": "HistoryMagics",
"killbgscripts": "ScriptMagics",
"ldir": "Other",
"less": "KernelMagics",
"lf": "Other",
"lk": "Other",
"ll": "Other",
"load": "CodeMagics",
"load_ext": "ExtensionMagics",
"loadpy": "CodeMagics",
"logoff": "LoggingMagics",
"logon": "LoggingMagics",
"logstart": "LoggingMagics",
"logstate": "LoggingMagics",
"logstop": "LoggingMagics",
"ls": "Other",
"lsmagic": "BasicMagics",
"lx": "Other",
"macro": "ExecutionMagics",
"magic": "BasicMagics",
"man": "KernelMagics",
"matplotlib": "PylabMagics",
"mkdir": "Other",
"more": "KernelMagics",
"mv": "Other",
"notebook": "BasicMagics",
"page": "BasicMagics",
"pastebin": "CodeMagics",
"pdb": "ExecutionMagics",
"pdef": "NamespaceMagics",
"pdoc": "NamespaceMagics",
"pfile": "NamespaceMagics",
"pinfo": "NamespaceMagics",
"pinfo2": "NamespaceMagics",
"pip": "PackagingMagics",
"popd": "OSMagics",
"pprint": "BasicMagics",
"precision": "BasicMagics",
"prun": "ExecutionMagics",
"psearch": "NamespaceMagics",
"psource": "NamespaceMagics",
"pushd": "OSMagics",
"pwd": "OSMagics",
"pycat": "OSMagics",
"pylab": "PylabMagics",
"qtconsole": "KernelMagics",
"quickref": "BasicMagics",
"recall": "HistoryMagics",
"rehashx": "OSMagics",
"reload_ext": "ExtensionMagics",
"rep": "Other",
"rerun": "HistoryMagics",
"reset": "NamespaceMagics",
"reset_selective": "NamespaceMagics",
"rm": "Other",
"rmdir": "Other",
"run": "ExecutionMagics",
"save": "CodeMagics",
"sc": "OSMagics",
"set_env": "OSMagics",
"store": "StoreMagics",
"sx": "OSMagics",
"system": "OSMagics",
"tb": "ExecutionMagics",
"time": "ExecutionMagics",
"timeit": "ExecutionMagics",
"unalias": "OSMagics",
"unload_ext": "ExtensionMagics",
"who": "NamespaceMagics",
"who_ls": "NamespaceMagics",
"whos": "NamespaceMagics",
"xdel": "NamespaceMagics",
"xmode": "BasicMagics"
}
},
"text/plain": [
"Available line magics:\n",
"%alias %alias_magic %autoawait %autocall %automagic %autosave %bookmark %cat %cd %clear %colors %conda %config %connect_info %cp %debug %dhist %dirs %doctest_mode %ed %edit %env %gui %hist %history %killbgscripts %ldir %less %lf %lk %ll %load %load_ext %loadpy %logoff %logon %logstart %logstate %logstop %ls %lsmagic %lx %macro %magic %man %matplotlib %mkdir %more %mv %notebook %page %pastebin %pdb %pdef %pdoc %pfile %pinfo %pinfo2 %pip %popd %pprint %precision %prun %psearch %psource %pushd %pwd %pycat %pylab %qtconsole %quickref %recall %rehashx %reload_ext %rep %rerun %reset %reset_selective %rm %rmdir %run %save %sc %set_env %store %sx %system %tb %time %timeit %unalias %unload_ext %who %who_ls %whos %xdel %xmode\n",
"\n",
"Available cell magics:\n",
"%%! %%HTML %%SVG %%bash %%capture %%debug %%file %%html %%javascript %%js %%latex %%markdown %%perl %%prun %%pypy %%python %%python2 %%python3 %%ruby %%script %%sh %%svg %%sx %%system %%time %%timeit %%writefile\n",
"\n",
"Automagic is ON, % prefix IS NOT needed for line magics."
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# List all magic commands\n",
"%lsmagic"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np \n",
"x = np.random.normal(0, 1, 1_000_000)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"1.03 ms ± 4.93 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)\n"
]
}
],
"source": [
"%%timeit \n",
"x.mean()**2 - (x**2).mean()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Send variables back and fourth in bash\n",
"\n",
"The strings will be saved as files in the working directory"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"string_0\n",
"string_1\n",
"string_2\n",
"string_3\n",
"string_4\n"
]
}
],
"source": [
"for i in range(5):\n",
" string = \"string_{}\".format(i)\n",
" print(string)\n",
" !touch $string"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"-rw-r--r-- 1 jovyan users 0 Dec 19 08:44 string_0\n",
"-rw-r--r-- 1 jovyan users 0 Dec 19 08:44 string_1\n",
"-rw-r--r-- 1 jovyan users 0 Dec 19 08:44 string_2\n",
"-rw-r--r-- 1 jovyan users 0 Dec 19 08:44 string_3\n",
"-rw-r--r-- 1 jovyan users 0 Dec 19 08:44 string_4\n"
]
}
],
"source": [
"!ls -l | grep string_"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"['string_0', 'string_1', 'string_2', 'string_3', 'string_4']"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"files = !ls -1 string_*\n",
"!rm string_*\n",
"files"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.3"
}
},
"nbformat": 4,
"nbformat_minor": 4
}

File diff suppressed because one or more lines are too long

Binary file not shown.

After

Width:  |  Height:  |  Size: 118 KiB

View File

@ -0,0 +1,57 @@
def scroller(index, quantity, timerange=timedelta(days=0), startdt="", enddt=""):
print("Starting to scroll", end='')
# Retrieve the datetimes, note that timerange has a higher priority
if timerange.total_seconds() > 0:
now = datetime.utcnow().replace(tzinfo=pytz.UTC)
startdt = (now - timerange).isoformat()
enddt = now.isoformat()
# search the first page and write the result to data
response = es.search(
index=index,
body={
"query": {
"bool": {
"must": [
{"range" : {
"phenomenonTime" : {
#"gte": "2018-02-20T09:08:34.230693+00:00",
"gte": startdt,
"lte": enddt,
"time_zone": "+01:00"
}
}},
{
"match_phrase": {
"Datastream.name.keyword": quantity
}
}
]
}
}
},
scroll='10m'
)
data = [[row["_source"]["phenomenonTime"], row["_source"]["result"]] for row in response['hits']['hits']]
# Append new pages until there aren't any left
while len(response['hits']['hits']):
print(".", end='')
# process results
# print([item["_id"] for item in response["hits"]["hits"]])
response = es.scroll(scroll_id=response['_scroll_id'], scroll='10m')
data += [[row["_source"]["phenomenonTime"], row["_source"]["result"]] for row in response['hits']['hits']]
# Convert data to a DataFrame and return it
df = pd.DataFrame(data, columns=["phenomenonTime", quantity])
# df.index = pd.to_datetime(df["phenomenonTime"].map(lambda t: t.split(".")[0]), utc=True)
df.index = pd.to_datetime(df["phenomenonTime"].map(lambda t: roundto(t, 1)), utc=True)
df = df.drop(["phenomenonTime"], axis=1)
print("\nFetched {} tuples.".format(df.shape[0]))
return df
def roundto(string, n):
base = string.split(".")[0]
if n > 0:
base += "." + string.split(".")[1][:n]
return base

BIN
extra/performance-test.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 346 KiB

View File

@ -417,6 +417,44 @@ RUN conda install -y -c pytorch \
############################ Useful packages ###############################
############################################################################
# Update conda
RUN conda update -n base conda -y
# Install elasticsearch libs
USER root
RUN apt-get update \
&& curl -sL http://central.maven.org/maven2/org/elasticsearch/elasticsearch-hadoop/6.8.1/elasticsearch-hadoop-6.8.1.jar
RUN pip install --no-cache-dir elasticsearch==7.1.0
# Install rpy2 to share data between Python and R
RUN conda install rpy2=2.9.4 plotly=4.4.1
RUN conda install -c conda-forge ipyleaflet
# Install important packages and Graphviz
RUN set -ex \
&& buildDeps=' \
graphviz==0.11 \
' \
&& apt-get update \
&& apt-get -y install htop apt-utils graphviz libgraphviz-dev \
&& pip install --no-cache-dir $buildDeps
# Install various extensions
RUN jupyter labextension install @jupyterlab/github
RUN jupyter labextension install jupyterlab-drawio
RUN jupyter labextension install jupyter-leaflet
RUN jupyter labextension install @jupyterlab/plotly-extension
RUN jupyter labextension install @jupyter-widgets/jupyterlab-manager
RUN pip install --no-cache-dir jupyter-tabnine==1.0.2 && \
jupyter nbextension install --py jupyter_tabnine && \
jupyter nbextension enable --py jupyter_tabnine && \
jupyter serverextension enable --py jupyter_tabnine
RUN conda install -c conda-forge jupyter_contrib_nbextensions && \
conda install -c conda-forge jupyter_nbextensions_configurator && \
jupyter nbextension enable codefolding/main
RUN jupyter labextension install @ijmbarr/jupyterlab_spellchecker
# Copying config and fix permissions
COPY jupyter_notebook_config.json /etc/jupyter/
RUN fix-permissions /home/$NB_USER