rebase to nvidia/cuda:10.1 as 10.2 makes problems, typo, no image in docker-compose required
This commit is contained in:
		@@ -1,6 +1,6 @@
 | 
				
			|||||||
# Use NVIDIA CUDA as base image and run the same installation as in the other packages.
 | 
					# Use NVIDIA CUDA as base image and run the same installation as in the other packages.
 | 
				
			||||||
# The version of cudatoolkit must match those of the base image, see Dockerfile.pytorch
 | 
					# The version of cudatoolkit must match those of the base image, see Dockerfile.pytorch
 | 
				
			||||||
FROM nvidia/cuda:10.2-base-ubuntu18.04
 | 
					FROM nvidia/cuda:10.1-base-ubuntu18.04
 | 
				
			||||||
LABEL maintainer="Jupyter Project <jupyter@googlegroups.com>"
 | 
					LABEL maintainer="Jupyter Project <jupyter@googlegroups.com>"
 | 
				
			||||||
 | 
					
 | 
				
			||||||
############################################################################
 | 
					############################################################################
 | 
				
			||||||
@@ -380,7 +380,7 @@ RUN conda install --quiet --yes \
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
# Install PyTorch, version of cudatoolkit must match those of the base image
 | 
					# Install PyTorch, version of cudatoolkit must match those of the base image
 | 
				
			||||||
RUN conda install -y -c pytorch \
 | 
					RUN conda install -y -c pytorch \
 | 
				
			||||||
    cudatoolkit=10.2 \
 | 
					    cudatoolkit=10.1 \
 | 
				
			||||||
    'pytorch=1.3.1' \
 | 
					    'pytorch=1.3.1' \
 | 
				
			||||||
    torchvision && \
 | 
					    torchvision && \
 | 
				
			||||||
    conda clean --all -f -y && \
 | 
					    conda clean --all -f -y && \
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -75,7 +75,7 @@ In order to stop the local deployment, run:
 | 
				
			|||||||
 
 | 
					 
 | 
				
			||||||
A Jupyter instance often requires data from other services. 
 | 
					A Jupyter instance often requires data from other services. 
 | 
				
			||||||
If that data-source is containerized in Docker and sharing a port for communication shouldn't be allowed, e.g., for security reasons,
 | 
					If that data-source is containerized in Docker and sharing a port for communication shouldn't be allowed, e.g., for security reasons,
 | 
				
			||||||
then connecting the data-source with *GPU-Jupyter* within a Docker Swarm is a great option! \
 | 
					then connecting the data-source with *GPU-Jupyter* within a Docker Swarm is a great option! 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
### Set up Docker Swarm and Registry
 | 
					### Set up Docker Swarm and Registry
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -1,7 +1,6 @@
 | 
				
			|||||||
version: "3.4"
 | 
					version: "3.4"
 | 
				
			||||||
services:
 | 
					services:
 | 
				
			||||||
  gpu-jupyter:
 | 
					  gpu-jupyter:
 | 
				
			||||||
    image: 127.0.0.1:5001/gpu-jupyter
 | 
					 | 
				
			||||||
    build: .build
 | 
					    build: .build
 | 
				
			||||||
    ports:
 | 
					    ports:
 | 
				
			||||||
      - ${JUPYTER_PORT}:8888
 | 
					      - ${JUPYTER_PORT}:8888
 | 
				
			||||||
 
 | 
				
			|||||||
		Reference in New Issue
	
	Block a user