rebase to nvidia/cuda:10.1 as 10.2 makes problems, typo, no image in docker-compose required
This commit is contained in:
parent
5b54ba148c
commit
f3306521c2
@ -1,6 +1,6 @@
|
|||||||
# Use NVIDIA CUDA as base image and run the same installation as in the other packages.
|
# Use NVIDIA CUDA as base image and run the same installation as in the other packages.
|
||||||
# The version of cudatoolkit must match those of the base image, see Dockerfile.pytorch
|
# The version of cudatoolkit must match those of the base image, see Dockerfile.pytorch
|
||||||
FROM nvidia/cuda:10.2-base-ubuntu18.04
|
FROM nvidia/cuda:10.1-base-ubuntu18.04
|
||||||
LABEL maintainer="Jupyter Project <jupyter@googlegroups.com>"
|
LABEL maintainer="Jupyter Project <jupyter@googlegroups.com>"
|
||||||
|
|
||||||
############################################################################
|
############################################################################
|
||||||
@ -380,7 +380,7 @@ RUN conda install --quiet --yes \
|
|||||||
|
|
||||||
# Install PyTorch, version of cudatoolkit must match those of the base image
|
# Install PyTorch, version of cudatoolkit must match those of the base image
|
||||||
RUN conda install -y -c pytorch \
|
RUN conda install -y -c pytorch \
|
||||||
cudatoolkit=10.2 \
|
cudatoolkit=10.1 \
|
||||||
'pytorch=1.3.1' \
|
'pytorch=1.3.1' \
|
||||||
torchvision && \
|
torchvision && \
|
||||||
conda clean --all -f -y && \
|
conda clean --all -f -y && \
|
||||||
|
@ -75,7 +75,7 @@ In order to stop the local deployment, run:
|
|||||||
|
|
||||||
A Jupyter instance often requires data from other services.
|
A Jupyter instance often requires data from other services.
|
||||||
If that data-source is containerized in Docker and sharing a port for communication shouldn't be allowed, e.g., for security reasons,
|
If that data-source is containerized in Docker and sharing a port for communication shouldn't be allowed, e.g., for security reasons,
|
||||||
then connecting the data-source with *GPU-Jupyter* within a Docker Swarm is a great option! \
|
then connecting the data-source with *GPU-Jupyter* within a Docker Swarm is a great option!
|
||||||
|
|
||||||
### Set up Docker Swarm and Registry
|
### Set up Docker Swarm and Registry
|
||||||
|
|
||||||
|
@ -1,7 +1,6 @@
|
|||||||
version: "3.4"
|
version: "3.4"
|
||||||
services:
|
services:
|
||||||
gpu-jupyter:
|
gpu-jupyter:
|
||||||
image: 127.0.0.1:5001/gpu-jupyter
|
|
||||||
build: .build
|
build: .build
|
||||||
ports:
|
ports:
|
||||||
- ${JUPYTER_PORT}:8888
|
- ${JUPYTER_PORT}:8888
|
||||||
|
Loading…
Reference in New Issue
Block a user