forked from MassiveAtoms/hashmap-bench
750 lines
29 KiB
C++
750 lines
29 KiB
C++
/**
|
|
* MIT License
|
|
*
|
|
* Copyright (c) 2017 Tessil
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in all
|
|
* copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*/
|
|
#ifndef TSL_SPARSE_MAP_H
|
|
#define TSL_SPARSE_MAP_H
|
|
|
|
|
|
#include <cstddef>
|
|
#include <functional>
|
|
#include <initializer_list>
|
|
#include <memory>
|
|
#include <type_traits>
|
|
#include <utility>
|
|
#include "sparse_hash.h"
|
|
|
|
|
|
namespace tsl {
|
|
|
|
|
|
/**
|
|
* Implementation of a sparse hash map using open-addressing with quadratic probing.
|
|
* The goal on the hash map is to be the most memory efficient possible, even at low load factor,
|
|
* while keeping reasonable performances.
|
|
*
|
|
* `GrowthPolicy` defines how the map grows and consequently how a hash value is mapped to a bucket.
|
|
* By default the map uses `tsl::sh::power_of_two_growth_policy`. This policy keeps the number of buckets
|
|
* to a power of two and uses a mask to map the hash to a bucket instead of the slow modulo.
|
|
* Other growth policies are available and you may define your own growth policy,
|
|
* check `tsl::sh::power_of_two_growth_policy` for the interface.
|
|
*
|
|
* `ExceptionSafety` defines the exception guarantee provided by the class. By default only the basic
|
|
* exception safety is guaranteed which mean that all resources used by the hash map will be freed (no memory leaks)
|
|
* but the hash map may end-up in an undefined state if an exception is thrown (undefined here means that some elements
|
|
* may be missing). This can ONLY happen on rehash (either on insert or if `rehash` is called explicitly) and will
|
|
* occur if the Allocator can't allocate memory (`std::bad_alloc`) or if the copy constructor (when a nothrow
|
|
* move constructor is not available) throws an exception. This can be avoided by calling `reserve` beforehand.
|
|
* This basic guarantee is similar to the one of `google::sparse_hash_map` and `spp::sparse_hash_map`.
|
|
* It is possible to ask for the strong exception guarantee with `tsl::sh::exception_safety::strong`, the drawback
|
|
* is that the map will be slower on rehashes and will also need more memory on rehashes.
|
|
*
|
|
* `Sparsity` defines how much the hash set will compromise between insertion speed and memory usage. A high
|
|
* sparsity means less memory usage but longer insertion times, and vice-versa for low sparsity. The default
|
|
* `tsl::sh::sparsity::medium` sparsity offers a good compromise. It doesn't change the lookup speed.
|
|
*
|
|
* `Key` and `T` must be nothrow move constructible and/or copy constructible.
|
|
*
|
|
* If the destructor of `Key` or `T` throws an exception, the behaviour of the class is undefined.
|
|
*
|
|
* Iterators invalidation:
|
|
* - clear, operator=, reserve, rehash: always invalidate the iterators.
|
|
* - insert, emplace, emplace_hint, operator[]: if there is an effective insert, invalidate the iterators.
|
|
* - erase: always invalidate the iterators.
|
|
*/
|
|
template<class Key,
|
|
class T,
|
|
class Hash = std::hash<Key>,
|
|
class KeyEqual = std::equal_to<Key>,
|
|
class Allocator = std::allocator<std::pair<Key, T>>,
|
|
class GrowthPolicy = tsl::sh::power_of_two_growth_policy<2>,
|
|
tsl::sh::exception_safety ExceptionSafety = tsl::sh::exception_safety::basic,
|
|
tsl::sh::sparsity Sparsity = tsl::sh::sparsity::medium>
|
|
class sparse_map {
|
|
private:
|
|
template<typename U>
|
|
using has_is_transparent = tsl::detail_sparse_hash::has_is_transparent<U>;
|
|
|
|
class KeySelect {
|
|
public:
|
|
using key_type = Key;
|
|
|
|
const key_type& operator()(const std::pair<Key, T>& key_value) const noexcept {
|
|
return key_value.first;
|
|
}
|
|
|
|
key_type& operator()(std::pair<Key, T>& key_value) noexcept {
|
|
return key_value.first;
|
|
}
|
|
};
|
|
|
|
class ValueSelect {
|
|
public:
|
|
using value_type = T;
|
|
|
|
const value_type& operator()(const std::pair<Key, T>& key_value) const noexcept {
|
|
return key_value.second;
|
|
}
|
|
|
|
value_type& operator()(std::pair<Key, T>& key_value) noexcept {
|
|
return key_value.second;
|
|
}
|
|
};
|
|
|
|
using ht = detail_sparse_hash::sparse_hash<std::pair<Key, T>, KeySelect, ValueSelect,
|
|
Hash, KeyEqual, Allocator, GrowthPolicy,
|
|
ExceptionSafety, Sparsity,
|
|
tsl::sh::probing::quadratic>;
|
|
|
|
public:
|
|
using key_type = typename ht::key_type;
|
|
using mapped_type = T;
|
|
using value_type = typename ht::value_type;
|
|
using size_type = typename ht::size_type;
|
|
using difference_type = typename ht::difference_type;
|
|
using hasher = typename ht::hasher;
|
|
using key_equal = typename ht::key_equal;
|
|
using allocator_type = typename ht::allocator_type;
|
|
using reference = typename ht::reference;
|
|
using const_reference = typename ht::const_reference;
|
|
using pointer = typename ht::pointer;
|
|
using const_pointer = typename ht::const_pointer;
|
|
using iterator = typename ht::iterator;
|
|
using const_iterator = typename ht::const_iterator;
|
|
|
|
|
|
public:
|
|
/*
|
|
* Constructors
|
|
*/
|
|
sparse_map(): sparse_map(ht::DEFAULT_INIT_BUCKET_COUNT) {
|
|
}
|
|
|
|
explicit sparse_map(size_type bucket_count,
|
|
const Hash& hash = Hash(),
|
|
const KeyEqual& equal = KeyEqual(),
|
|
const Allocator& alloc = Allocator()):
|
|
m_ht(bucket_count, hash, equal, alloc, ht::DEFAULT_MAX_LOAD_FACTOR)
|
|
{
|
|
}
|
|
|
|
sparse_map(size_type bucket_count,
|
|
const Allocator& alloc): sparse_map(bucket_count, Hash(), KeyEqual(), alloc)
|
|
{
|
|
}
|
|
|
|
sparse_map(size_type bucket_count,
|
|
const Hash& hash,
|
|
const Allocator& alloc): sparse_map(bucket_count, hash, KeyEqual(), alloc)
|
|
{
|
|
}
|
|
|
|
explicit sparse_map(const Allocator& alloc): sparse_map(ht::DEFAULT_INIT_BUCKET_COUNT, alloc) {
|
|
}
|
|
|
|
template<class InputIt>
|
|
sparse_map(InputIt first, InputIt last,
|
|
size_type bucket_count = ht::DEFAULT_INIT_BUCKET_COUNT,
|
|
const Hash& hash = Hash(),
|
|
const KeyEqual& equal = KeyEqual(),
|
|
const Allocator& alloc = Allocator()): sparse_map(bucket_count, hash, equal, alloc)
|
|
{
|
|
insert(first, last);
|
|
}
|
|
|
|
template<class InputIt>
|
|
sparse_map(InputIt first, InputIt last,
|
|
size_type bucket_count,
|
|
const Allocator& alloc): sparse_map(first, last, bucket_count, Hash(), KeyEqual(), alloc)
|
|
{
|
|
}
|
|
|
|
template<class InputIt>
|
|
sparse_map(InputIt first, InputIt last,
|
|
size_type bucket_count,
|
|
const Hash& hash,
|
|
const Allocator& alloc): sparse_map(first, last, bucket_count, hash, KeyEqual(), alloc)
|
|
{
|
|
}
|
|
|
|
sparse_map(std::initializer_list<value_type> init,
|
|
size_type bucket_count = ht::DEFAULT_INIT_BUCKET_COUNT,
|
|
const Hash& hash = Hash(),
|
|
const KeyEqual& equal = KeyEqual(),
|
|
const Allocator& alloc = Allocator()):
|
|
sparse_map(init.begin(), init.end(), bucket_count, hash, equal, alloc)
|
|
{
|
|
}
|
|
|
|
sparse_map(std::initializer_list<value_type> init,
|
|
size_type bucket_count,
|
|
const Allocator& alloc):
|
|
sparse_map(init.begin(), init.end(), bucket_count, Hash(), KeyEqual(), alloc)
|
|
{
|
|
}
|
|
|
|
sparse_map(std::initializer_list<value_type> init,
|
|
size_type bucket_count,
|
|
const Hash& hash,
|
|
const Allocator& alloc):
|
|
sparse_map(init.begin(), init.end(), bucket_count, hash, KeyEqual(), alloc)
|
|
{
|
|
}
|
|
|
|
sparse_map& operator=(std::initializer_list<value_type> ilist) {
|
|
m_ht.clear();
|
|
|
|
m_ht.reserve(ilist.size());
|
|
m_ht.insert(ilist.begin(), ilist.end());
|
|
|
|
return *this;
|
|
}
|
|
|
|
allocator_type get_allocator() const { return m_ht.get_allocator(); }
|
|
|
|
|
|
/*
|
|
* Iterators
|
|
*/
|
|
iterator begin() noexcept { return m_ht.begin(); }
|
|
const_iterator begin() const noexcept { return m_ht.begin(); }
|
|
const_iterator cbegin() const noexcept { return m_ht.cbegin(); }
|
|
|
|
iterator end() noexcept { return m_ht.end(); }
|
|
const_iterator end() const noexcept { return m_ht.end(); }
|
|
const_iterator cend() const noexcept { return m_ht.cend(); }
|
|
|
|
|
|
/*
|
|
* Capacity
|
|
*/
|
|
bool empty() const noexcept { return m_ht.empty(); }
|
|
size_type size() const noexcept { return m_ht.size(); }
|
|
size_type max_size() const noexcept { return m_ht.max_size(); }
|
|
|
|
/*
|
|
* Modifiers
|
|
*/
|
|
void clear() noexcept { m_ht.clear(); }
|
|
|
|
|
|
|
|
std::pair<iterator, bool> insert(const value_type& value) {
|
|
return m_ht.insert(value);
|
|
}
|
|
|
|
template<class P, typename std::enable_if<std::is_constructible<value_type, P&&>::value>::type* = nullptr>
|
|
std::pair<iterator, bool> insert(P&& value) {
|
|
return m_ht.emplace(std::forward<P>(value));
|
|
}
|
|
|
|
std::pair<iterator, bool> insert(value_type&& value) {
|
|
return m_ht.insert(std::move(value));
|
|
}
|
|
|
|
|
|
iterator insert(const_iterator hint, const value_type& value) {
|
|
return m_ht.insert_hint(hint, value);
|
|
}
|
|
|
|
template<class P, typename std::enable_if<std::is_constructible<value_type, P&&>::value>::type* = nullptr>
|
|
iterator insert(const_iterator hint, P&& value) {
|
|
return m_ht.emplace_hint(hint, std::forward<P>(value));
|
|
}
|
|
|
|
iterator insert(const_iterator hint, value_type&& value) {
|
|
return m_ht.insert_hint(hint, std::move(value));
|
|
}
|
|
|
|
|
|
template<class InputIt>
|
|
void insert(InputIt first, InputIt last) {
|
|
m_ht.insert(first, last);
|
|
}
|
|
|
|
void insert(std::initializer_list<value_type> ilist) {
|
|
m_ht.insert(ilist.begin(), ilist.end());
|
|
}
|
|
|
|
|
|
|
|
|
|
template<class M>
|
|
std::pair<iterator, bool> insert_or_assign(const key_type& k, M&& obj) {
|
|
return m_ht.insert_or_assign(k, std::forward<M>(obj));
|
|
}
|
|
|
|
template<class M>
|
|
std::pair<iterator, bool> insert_or_assign(key_type&& k, M&& obj) {
|
|
return m_ht.insert_or_assign(std::move(k), std::forward<M>(obj));
|
|
}
|
|
|
|
template<class M>
|
|
iterator insert_or_assign(const_iterator hint, const key_type& k, M&& obj) {
|
|
return m_ht.insert_or_assign(hint, k, std::forward<M>(obj));
|
|
}
|
|
|
|
template<class M>
|
|
iterator insert_or_assign(const_iterator hint, key_type&& k, M&& obj) {
|
|
return m_ht.insert_or_assign(hint, std::move(k), std::forward<M>(obj));
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
* Due to the way elements are stored, emplace will need to move or copy the key-value once.
|
|
* The method is equivalent to `insert(value_type(std::forward<Args>(args)...));`.
|
|
*
|
|
* Mainly here for compatibility with the `std::unordered_map` interface.
|
|
*/
|
|
template<class... Args>
|
|
std::pair<iterator, bool> emplace(Args&&... args) {
|
|
return m_ht.emplace(std::forward<Args>(args)...);
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
* Due to the way elements are stored, emplace_hint will need to move or copy the key-value once.
|
|
* The method is equivalent to `insert(hint, value_type(std::forward<Args>(args)...));`.
|
|
*
|
|
* Mainly here for compatibility with the `std::unordered_map` interface.
|
|
*/
|
|
template<class... Args>
|
|
iterator emplace_hint(const_iterator hint, Args&&... args) {
|
|
return m_ht.emplace_hint(hint, std::forward<Args>(args)...);
|
|
}
|
|
|
|
|
|
|
|
|
|
template<class... Args>
|
|
std::pair<iterator, bool> try_emplace(const key_type& k, Args&&... args) {
|
|
return m_ht.try_emplace(k, std::forward<Args>(args)...);
|
|
}
|
|
|
|
template<class... Args>
|
|
std::pair<iterator, bool> try_emplace(key_type&& k, Args&&... args) {
|
|
return m_ht.try_emplace(std::move(k), std::forward<Args>(args)...);
|
|
}
|
|
|
|
template<class... Args>
|
|
iterator try_emplace(const_iterator hint, const key_type& k, Args&&... args) {
|
|
return m_ht.try_emplace_hint(hint, k, std::forward<Args>(args)...);
|
|
}
|
|
|
|
template<class... Args>
|
|
iterator try_emplace(const_iterator hint, key_type&& k, Args&&... args) {
|
|
return m_ht.try_emplace_hint(hint, std::move(k), std::forward<Args>(args)...);
|
|
}
|
|
|
|
|
|
|
|
|
|
iterator erase(iterator pos) { return m_ht.erase(pos); }
|
|
iterator erase(const_iterator pos) { return m_ht.erase(pos); }
|
|
iterator erase(const_iterator first, const_iterator last) { return m_ht.erase(first, last); }
|
|
size_type erase(const key_type& key) { return m_ht.erase(key); }
|
|
|
|
/**
|
|
* Use the hash value `precalculated_hash` instead of hashing the key. The hash value should be the same
|
|
* as `hash_function()(key)`, otherwise the behaviour is undefined. Useful to speed-up the lookup
|
|
* if you already have the hash.
|
|
*/
|
|
size_type erase(const key_type& key, std::size_t precalculated_hash) {
|
|
return m_ht.erase(key, precalculated_hash);
|
|
}
|
|
|
|
/**
|
|
* This overload only participates in the overload resolution if the typedef `KeyEqual::is_transparent` exists.
|
|
* If so, `K` must be hashable and comparable to `Key`.
|
|
*/
|
|
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
|
size_type erase(const K& key) { return m_ht.erase(key); }
|
|
|
|
/**
|
|
* @copydoc erase(const K& key)
|
|
*
|
|
* Use the hash value `precalculated_hash` instead of hashing the key. The hash value should be the same
|
|
* as `hash_function()(key)`, otherwise the behaviour is undefined. Useful to speed-up the lookup
|
|
* if you already have the hash.
|
|
*/
|
|
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
|
size_type erase(const K& key, std::size_t precalculated_hash) {
|
|
return m_ht.erase(key, precalculated_hash);
|
|
}
|
|
|
|
|
|
|
|
void swap(sparse_map& other) { other.m_ht.swap(m_ht); }
|
|
|
|
|
|
|
|
/*
|
|
* Lookup
|
|
*/
|
|
T& at(const Key& key) { return m_ht.at(key); }
|
|
|
|
/**
|
|
* Use the hash value `precalculated_hash` instead of hashing the key. The hash value should be the same
|
|
* as `hash_function()(key)`, otherwise the behaviour is undefined. Useful to speed-up the lookup
|
|
* if you already have the hash.
|
|
*/
|
|
T& at(const Key& key, std::size_t precalculated_hash) { return m_ht.at(key, precalculated_hash); }
|
|
|
|
|
|
const T& at(const Key& key) const { return m_ht.at(key); }
|
|
|
|
/**
|
|
* @copydoc at(const Key& key, std::size_t precalculated_hash)
|
|
*/
|
|
const T& at(const Key& key, std::size_t precalculated_hash) const { return m_ht.at(key, precalculated_hash); }
|
|
|
|
|
|
/**
|
|
* This overload only participates in the overload resolution if the typedef `KeyEqual::is_transparent` exists.
|
|
* If so, `K` must be hashable and comparable to `Key`.
|
|
*/
|
|
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
|
T& at(const K& key) { return m_ht.at(key); }
|
|
|
|
/**
|
|
* @copydoc at(const K& key)
|
|
*
|
|
* Use the hash value `precalculated_hash` instead of hashing the key. The hash value should be the same
|
|
* as `hash_function()(key)`, otherwise the behaviour is undefined. Useful to speed-up the lookup
|
|
* if you already have the hash.
|
|
*/
|
|
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
|
T& at(const K& key, std::size_t precalculated_hash) { return m_ht.at(key, precalculated_hash); }
|
|
|
|
|
|
/**
|
|
* @copydoc at(const K& key)
|
|
*/
|
|
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
|
const T& at(const K& key) const { return m_ht.at(key); }
|
|
|
|
/**
|
|
* @copydoc at(const K& key, std::size_t precalculated_hash)
|
|
*/
|
|
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
|
const T& at(const K& key, std::size_t precalculated_hash) const { return m_ht.at(key, precalculated_hash); }
|
|
|
|
|
|
|
|
|
|
T& operator[](const Key& key) { return m_ht[key]; }
|
|
T& operator[](Key&& key) { return m_ht[std::move(key)]; }
|
|
|
|
|
|
|
|
|
|
size_type count(const Key& key) const { return m_ht.count(key); }
|
|
|
|
/**
|
|
* Use the hash value `precalculated_hash` instead of hashing the key. The hash value should be the same
|
|
* as `hash_function()(key)`, otherwise the behaviour is undefined. Useful to speed-up the lookup
|
|
* if you already have the hash.
|
|
*/
|
|
size_type count(const Key& key, std::size_t precalculated_hash) const {
|
|
return m_ht.count(key, precalculated_hash);
|
|
}
|
|
|
|
/**
|
|
* This overload only participates in the overload resolution if the typedef `KeyEqual::is_transparent` exists.
|
|
* If so, `K` must be hashable and comparable to `Key`.
|
|
*/
|
|
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
|
size_type count(const K& key) const { return m_ht.count(key); }
|
|
|
|
/**
|
|
* @copydoc count(const K& key) const
|
|
*
|
|
* Use the hash value `precalculated_hash` instead of hashing the key. The hash value should be the same
|
|
* as `hash_function()(key)`, otherwise the behaviour is undefined. Useful to speed-up the lookup
|
|
* if you already have the hash.
|
|
*/
|
|
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
|
size_type count(const K& key, std::size_t precalculated_hash) const { return m_ht.count(key, precalculated_hash); }
|
|
|
|
|
|
|
|
|
|
iterator find(const Key& key) { return m_ht.find(key); }
|
|
|
|
/**
|
|
* Use the hash value `precalculated_hash` instead of hashing the key. The hash value should be the same
|
|
* as `hash_function()(key)`, otherwise the behaviour is undefined. Useful to speed-up the lookup
|
|
* if you already have the hash.
|
|
*/
|
|
iterator find(const Key& key, std::size_t precalculated_hash) { return m_ht.find(key, precalculated_hash); }
|
|
|
|
const_iterator find(const Key& key) const { return m_ht.find(key); }
|
|
|
|
/**
|
|
* @copydoc find(const Key& key, std::size_t precalculated_hash)
|
|
*/
|
|
const_iterator find(const Key& key, std::size_t precalculated_hash) const {
|
|
return m_ht.find(key, precalculated_hash);
|
|
}
|
|
|
|
/**
|
|
* This overload only participates in the overload resolution if the typedef `KeyEqual::is_transparent` exists.
|
|
* If so, `K` must be hashable and comparable to `Key`.
|
|
*/
|
|
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
|
iterator find(const K& key) { return m_ht.find(key); }
|
|
|
|
/**
|
|
* @copydoc find(const K& key)
|
|
*
|
|
* Use the hash value `precalculated_hash` instead of hashing the key. The hash value should be the same
|
|
* as `hash_function()(key)`, otherwise the behaviour is undefined. Useful to speed-up the lookup
|
|
* if you already have the hash.
|
|
*/
|
|
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
|
iterator find(const K& key, std::size_t precalculated_hash) { return m_ht.find(key, precalculated_hash); }
|
|
|
|
/**
|
|
* @copydoc find(const K& key)
|
|
*/
|
|
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
|
const_iterator find(const K& key) const { return m_ht.find(key); }
|
|
|
|
/**
|
|
* @copydoc find(const K& key)
|
|
*
|
|
* Use the hash value `precalculated_hash` instead of hashing the key. The hash value should be the same
|
|
* as `hash_function()(key)`, otherwise the behaviour is undefined. Useful to speed-up the lookup
|
|
* if you already have the hash.
|
|
*/
|
|
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
|
const_iterator find(const K& key, std::size_t precalculated_hash) const {
|
|
return m_ht.find(key, precalculated_hash);
|
|
}
|
|
|
|
|
|
|
|
bool contains(const Key& key) const { return m_ht.contains(key); }
|
|
|
|
/**
|
|
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
|
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
|
|
*/
|
|
bool contains(const Key& key, std::size_t precalculated_hash) const {
|
|
return m_ht.contains(key, precalculated_hash);
|
|
}
|
|
|
|
/**
|
|
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
|
|
* If so, K must be hashable and comparable to Key.
|
|
*/
|
|
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
|
bool contains(const K& key) const { return m_ht.contains(key); }
|
|
|
|
/**
|
|
* @copydoc contains(const K& key) const
|
|
*
|
|
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
|
|
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
|
|
*/
|
|
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
|
bool contains(const K& key, std::size_t precalculated_hash) const {
|
|
return m_ht.contains(key, precalculated_hash);
|
|
}
|
|
|
|
|
|
|
|
std::pair<iterator, iterator> equal_range(const Key& key) { return m_ht.equal_range(key); }
|
|
|
|
/**
|
|
* Use the hash value `precalculated_hash` instead of hashing the key. The hash value should be the same
|
|
* as `hash_function()(key)`, otherwise the behaviour is undefined. Useful to speed-up the lookup
|
|
* if you already have the hash.
|
|
*/
|
|
std::pair<iterator, iterator> equal_range(const Key& key, std::size_t precalculated_hash) {
|
|
return m_ht.equal_range(key, precalculated_hash);
|
|
}
|
|
|
|
std::pair<const_iterator, const_iterator> equal_range(const Key& key) const { return m_ht.equal_range(key); }
|
|
|
|
/**
|
|
* @copydoc equal_range(const Key& key, std::size_t precalculated_hash)
|
|
*/
|
|
std::pair<const_iterator, const_iterator> equal_range(const Key& key, std::size_t precalculated_hash) const {
|
|
return m_ht.equal_range(key, precalculated_hash);
|
|
}
|
|
|
|
/**
|
|
* This overload only participates in the overload resolution if the typedef `KeyEqual::is_transparent` exists.
|
|
* If so, `K` must be hashable and comparable to `Key`.
|
|
*/
|
|
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
|
std::pair<iterator, iterator> equal_range(const K& key) { return m_ht.equal_range(key); }
|
|
|
|
|
|
/**
|
|
* @copydoc equal_range(const K& key)
|
|
*
|
|
* Use the hash value `precalculated_hash` instead of hashing the key. The hash value should be the same
|
|
* as `hash_function()(key)`, otherwise the behaviour is undefined. Useful to speed-up the lookup
|
|
* if you already have the hash.
|
|
*/
|
|
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
|
std::pair<iterator, iterator> equal_range(const K& key, std::size_t precalculated_hash) {
|
|
return m_ht.equal_range(key, precalculated_hash);
|
|
}
|
|
|
|
/**
|
|
* @copydoc equal_range(const K& key)
|
|
*/
|
|
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
|
std::pair<const_iterator, const_iterator> equal_range(const K& key) const { return m_ht.equal_range(key); }
|
|
|
|
/**
|
|
* @copydoc equal_range(const K& key, std::size_t precalculated_hash)
|
|
*/
|
|
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
|
|
std::pair<const_iterator, const_iterator> equal_range(const K& key, std::size_t precalculated_hash) const {
|
|
return m_ht.equal_range(key, precalculated_hash);
|
|
}
|
|
|
|
|
|
|
|
|
|
/*
|
|
* Bucket interface
|
|
*/
|
|
size_type bucket_count() const { return m_ht.bucket_count(); }
|
|
size_type max_bucket_count() const { return m_ht.max_bucket_count(); }
|
|
|
|
|
|
/*
|
|
* Hash policy
|
|
*/
|
|
float load_factor() const { return m_ht.load_factor(); }
|
|
float max_load_factor() const { return m_ht.max_load_factor(); }
|
|
void max_load_factor(float ml) { m_ht.max_load_factor(ml); }
|
|
|
|
void rehash(size_type count) { m_ht.rehash(count); }
|
|
void reserve(size_type count) { m_ht.reserve(count); }
|
|
|
|
|
|
/*
|
|
* Observers
|
|
*/
|
|
hasher hash_function() const { return m_ht.hash_function(); }
|
|
key_equal key_eq() const { return m_ht.key_eq(); }
|
|
|
|
/*
|
|
* Other
|
|
*/
|
|
|
|
/**
|
|
* Convert a `const_iterator` to an `iterator`.
|
|
*/
|
|
iterator mutable_iterator(const_iterator pos) {
|
|
return m_ht.mutable_iterator(pos);
|
|
}
|
|
|
|
/**
|
|
* Serialize the map through the `serializer` parameter.
|
|
*
|
|
* The `serializer` parameter must be a function object that supports the following call:
|
|
* - `template<typename U> void operator()(const U& value);` where the types `std::uint64_t`, `float` and `std::pair<Key, T>` must be supported for U.
|
|
*
|
|
* The implementation leaves binary compatibilty (endianness, IEEE 754 for floats, ...) of the types it serializes
|
|
* in the hands of the `Serializer` function object if compatibilty is required.
|
|
*/
|
|
template<class Serializer>
|
|
void serialize(Serializer& serializer) const {
|
|
m_ht.serialize(serializer);
|
|
}
|
|
|
|
/**
|
|
* Deserialize a previouly serialized map through the `deserializer` parameter.
|
|
*
|
|
* The `deserializer` parameter must be a function object that supports the following calls:
|
|
* - `template<typename U> U operator()();` where the types `std::uint64_t`, `float` and `std::pair<Key, T>` must be supported for U.
|
|
*
|
|
* If the deserialized hash map type is hash compatible with the serialized map, the deserialization process can be
|
|
* sped up by setting `hash_compatible` to true. To be hash compatible, the Hash, KeyEqual and GrowthPolicy must behave the
|
|
* same way than the ones used on the serialized map. The `std::size_t` must also be of the same size as the one on the platform used
|
|
* to serialize the map. If these criteria are not met, the behaviour is undefined with `hash_compatible` sets to true.
|
|
*
|
|
* The behaviour is undefined if the type `Key` and `T` of the `sparse_map` are not the same as the
|
|
* types used during serialization.
|
|
*
|
|
* The implementation leaves binary compatibilty (endianness, IEEE 754 for floats, size of int, ...) of the types it
|
|
* deserializes in the hands of the `Deserializer` function object if compatibilty is required.
|
|
*/
|
|
template<class Deserializer>
|
|
static sparse_map deserialize(Deserializer& deserializer, bool hash_compatible = false) {
|
|
sparse_map map(0);
|
|
map.m_ht.deserialize(deserializer, hash_compatible);
|
|
|
|
return map;
|
|
}
|
|
|
|
friend bool operator==(const sparse_map& lhs, const sparse_map& rhs) {
|
|
if(lhs.size() != rhs.size()) {
|
|
return false;
|
|
}
|
|
|
|
for(const auto& element_lhs: lhs) {
|
|
const auto it_element_rhs = rhs.find(element_lhs.first);
|
|
if(it_element_rhs == rhs.cend() || element_lhs.second != it_element_rhs->second) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
friend bool operator!=(const sparse_map& lhs, const sparse_map& rhs) {
|
|
return !operator==(lhs, rhs);
|
|
}
|
|
|
|
friend void swap(sparse_map& lhs, sparse_map& rhs) {
|
|
lhs.swap(rhs);
|
|
}
|
|
|
|
private:
|
|
ht m_ht;
|
|
};
|
|
|
|
|
|
/**
|
|
* Same as `tsl::sparse_map<Key, T, Hash, KeyEqual, Allocator, tsl::sh::prime_growth_policy>`.
|
|
*/
|
|
template<class Key,
|
|
class T,
|
|
class Hash = std::hash<Key>,
|
|
class KeyEqual = std::equal_to<Key>,
|
|
class Allocator = std::allocator<std::pair<Key, T>>>
|
|
using sparse_pg_map = sparse_map<Key, T, Hash, KeyEqual, Allocator, tsl::sh::prime_growth_policy>;
|
|
|
|
} // end namespace tsl
|
|
|
|
#endif
|