MLstuff/ISLR/notebooks/3.6.2.python.ipynb

91 lines
1.8 KiB
Plaintext
Raw Normal View History

2020-03-28 01:06:31 +00:00
{
"cells": [
{
"cell_type": "code",
"execution_count": 59,
"metadata": {},
"outputs": [],
"source": [
"import seaborn as sns\n",
"import pandas as pd\n",
"import numpy as np\n",
"from matplotlib import pyplot as plt\n",
"from sklearn import linear_model\n",
"from sklearn.metrics import classification_report as summary\n",
"\n",
"sns.set()\n",
"sns.set(style=\"whitegrid\")\n",
"tips = sns.load_dataset(\"tips\")\n",
"plt.rcParams[\"figure.figsize\"] = (5,8)"
]
},
{
"cell_type": "code",
"execution_count": 66,
"metadata": {},
"outputs": [],
"source": [
"Boston = pd.read_csv(\"../../datasets/Boston.csv\")\n"
]
},
{
"cell_type": "code",
"execution_count": 67,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[-0.95004935] 34.5538408793831\n",
"0.5441462975864797\n"
]
}
],
"source": [
"X = np.array(Boston[\"lstat\"]).reshape(-1,1)\n",
"y = Boston[\"medv\"]\n",
"model = linear_model.LinearRegression()\n",
"model.fit(X, y)\n",
"print(model.coef_, model.intercept_)\n",
"print(model.score(X,y))\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.2"
}
},
"nbformat": 4,
"nbformat_minor": 4
}