Merge branch 'master' of https://github.com/iot-salzburg/gpu-jupyter
This commit is contained in:
		
							
								
								
									
										45
									
								
								README.md
									
									
									
									
									
								
							
							
						
						
									
										45
									
								
								README.md
									
									
									
									
									
								
							@@ -1,2 +1,45 @@
 | 
			
		||||
# gpu-jupyter
 | 
			
		||||
Leverage the power of Jupyter through your NVIDEA GPU and use Tensorflow and Pytorch in collaborative notebooks. 
 | 
			
		||||
#### Leverage the power of Jupyter and use your NVIDEA GPU and use Tensorflow and Pytorch in collaborative notebooks. 
 | 
			
		||||
 | 
			
		||||

 | 
			
		||||
 | 
			
		||||
## Contents
 | 
			
		||||
 | 
			
		||||
1. [Requirements](#requirements)
 | 
			
		||||
2. [Quickstart](#quickstart)
 | 
			
		||||
3. [Deployment](#deployment-in-the-docker-swarm)
 | 
			
		||||
3. [Configuration](#configuration)
 | 
			
		||||
4. [Trouble-Shooting](#trouble-shooting)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
## Requirements
 | 
			
		||||
 | 
			
		||||
1.  Install [Docker](https://www.docker.com/community-edition#/download) version **1.10.0+**
 | 
			
		||||
2.  Install [Docker Compose](https://docs.docker.com/compose/install/) version **1.6.0+**
 | 
			
		||||
 | 
			
		||||
3.  Get access to use your GPU via the CUDA drivers, see this [blog-post](https://medium.com/@christoph.schranz)
 | 
			
		||||
4.  Clone this repository
 | 
			
		||||
    ```bash
 | 
			
		||||
    git clone https://github.com/iot-salzburg/gpu-jupyter.git
 | 
			
		||||
    cd gpu-jupyter
 | 
			
		||||
    ```
 | 
			
		||||
 | 
			
		||||
## Quickstart
 | 
			
		||||
 | 
			
		||||
As soon as you have access to your GPU locally (it can be tested via a Tensorflow or PyTorch), you can run these commands to start the jupyter notebook via docker-compose:
 | 
			
		||||
  ```bash
 | 
			
		||||
  ./start-local.sh
 | 
			
		||||
  ```
 | 
			
		||||
  
 | 
			
		||||
This will run jupyter on the default port [localhost:8888](http://localhost:8888). The general usage is:
 | 
			
		||||
  ```bash
 | 
			
		||||
  ./start-local.sh -p [port]  # port must be an integer with 4 or more digits.
 | 
			
		||||
  ```
 | 
			
		||||
In order to stop the local deployment, run:
 | 
			
		||||
 | 
			
		||||
  ```bash
 | 
			
		||||
  ./stop-local.sh
 | 
			
		||||
  ```
 | 
			
		||||
 
 | 
			
		||||
 ## Deployment in the Docker Swarm
 | 
			
		||||
  
 | 
			
		||||
 
 | 
			
		||||
@@ -12,7 +12,7 @@ esac; shift; done
 | 
			
		||||
# Check if arguments are valid
 | 
			
		||||
if [[ $PORT != [0-9][0-9][0-9][0-9]* ]]; then
 | 
			
		||||
    echo "Given port is not valid."
 | 
			
		||||
    echo "Usage: $0 -p [port] -n [docker-network]  # port must be an integer with 4 or more digits."
 | 
			
		||||
    echo "Usage: $0 -p [port]  # port must be an integer with 4 or more digits."
 | 
			
		||||
    exit 21
 | 
			
		||||
fi
 | 
			
		||||
 | 
			
		||||
@@ -23,5 +23,5 @@ export JUPYTER_PORT=$PORT
 | 
			
		||||
# echo $JUPYTER_PORT
 | 
			
		||||
docker-compose up --build -d
 | 
			
		||||
echo
 | 
			
		||||
echo "Started gpu-jupyter via docker-compose on port $JUPYTER_PORT."
 | 
			
		||||
echo "Started gpu-jupyter via docker-compose on localhost:$JUPYTER_PORT."
 | 
			
		||||
echo "See docker-compose logs -f for logs."
 | 
			
		||||
 
 | 
			
		||||
		Reference in New Issue
	
	Block a user