Merge branch 'master' of https://github.com/iot-salzburg/gpu-jupyter
This commit is contained in:
commit
81d319c061
45
README.md
45
README.md
@ -1,2 +1,45 @@
|
|||||||
# gpu-jupyter
|
# gpu-jupyter
|
||||||
Leverage the power of Jupyter through your NVIDEA GPU and use Tensorflow and Pytorch in collaborative notebooks.
|
#### Leverage the power of Jupyter and use your NVIDEA GPU and use Tensorflow and Pytorch in collaborative notebooks.
|
||||||
|
|
||||||
|
![Jupyterlab Overview](/extra/jupyterlab-overview.png)
|
||||||
|
|
||||||
|
## Contents
|
||||||
|
|
||||||
|
1. [Requirements](#requirements)
|
||||||
|
2. [Quickstart](#quickstart)
|
||||||
|
3. [Deployment](#deployment-in-the-docker-swarm)
|
||||||
|
3. [Configuration](#configuration)
|
||||||
|
4. [Trouble-Shooting](#trouble-shooting)
|
||||||
|
|
||||||
|
|
||||||
|
## Requirements
|
||||||
|
|
||||||
|
1. Install [Docker](https://www.docker.com/community-edition#/download) version **1.10.0+**
|
||||||
|
2. Install [Docker Compose](https://docs.docker.com/compose/install/) version **1.6.0+**
|
||||||
|
|
||||||
|
3. Get access to use your GPU via the CUDA drivers, see this [blog-post](https://medium.com/@christoph.schranz)
|
||||||
|
4. Clone this repository
|
||||||
|
```bash
|
||||||
|
git clone https://github.com/iot-salzburg/gpu-jupyter.git
|
||||||
|
cd gpu-jupyter
|
||||||
|
```
|
||||||
|
|
||||||
|
## Quickstart
|
||||||
|
|
||||||
|
As soon as you have access to your GPU locally (it can be tested via a Tensorflow or PyTorch), you can run these commands to start the jupyter notebook via docker-compose:
|
||||||
|
```bash
|
||||||
|
./start-local.sh
|
||||||
|
```
|
||||||
|
|
||||||
|
This will run jupyter on the default port [localhost:8888](http://localhost:8888). The general usage is:
|
||||||
|
```bash
|
||||||
|
./start-local.sh -p [port] # port must be an integer with 4 or more digits.
|
||||||
|
```
|
||||||
|
In order to stop the local deployment, run:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
./stop-local.sh
|
||||||
|
```
|
||||||
|
|
||||||
|
## Deployment in the Docker Swarm
|
||||||
|
|
||||||
|
@ -12,7 +12,7 @@ esac; shift; done
|
|||||||
# Check if arguments are valid
|
# Check if arguments are valid
|
||||||
if [[ $PORT != [0-9][0-9][0-9][0-9]* ]]; then
|
if [[ $PORT != [0-9][0-9][0-9][0-9]* ]]; then
|
||||||
echo "Given port is not valid."
|
echo "Given port is not valid."
|
||||||
echo "Usage: $0 -p [port] -n [docker-network] # port must be an integer with 4 or more digits."
|
echo "Usage: $0 -p [port] # port must be an integer with 4 or more digits."
|
||||||
exit 21
|
exit 21
|
||||||
fi
|
fi
|
||||||
|
|
||||||
@ -23,5 +23,5 @@ export JUPYTER_PORT=$PORT
|
|||||||
# echo $JUPYTER_PORT
|
# echo $JUPYTER_PORT
|
||||||
docker-compose up --build -d
|
docker-compose up --build -d
|
||||||
echo
|
echo
|
||||||
echo "Started gpu-jupyter via docker-compose on port $JUPYTER_PORT."
|
echo "Started gpu-jupyter via docker-compose on localhost:$JUPYTER_PORT."
|
||||||
echo "See docker-compose logs -f for logs."
|
echo "See docker-compose logs -f for logs."
|
||||||
|
Loading…
Reference in New Issue
Block a user